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Introduction

Si on considère naïvement l'approche de Lax et Phillips à la théorie de la
diffusion on est surpris par le fait que l'opérateur d'évolution a toujours un
spectre non borné inférieurement et ainsi on a l'impression que cette approche ne
s'applique pas à la mécanique quantique.

Les rares essais d'application, à l'équation de Schrödinger par exemple [1],
sont compliqués et artificiels.

Or, comme nous allons le montrer, cette théorie de Lax et Phillips s'applique,
bel et bien, directement à la mécanique quantique si on traite le paramètre t
correspondant au temps comme une règle de supersélection continue et qu'ainsi
on décrit le système dans un espace plus grand que l'espace de Hilbert usuel.

1. L'évolution quantique

A partir des postulats de la mécanique quantique on définit à chaque instant t
l'état d'un système physique donné, par un rayon dans un espace de Hilbert H„
copie d'un espace H fixé une fois pour toute.

L'évolution réversible qui fait passer le système de l'état au temps t à l'état
au temps f + r est donnée par une famille d'opérateurs unitaires {V,(t)} qui
agissent sur les H,

^=vm*\Th:v (L1)
li>,+TeHI+T

la relation suivante étant satisfaite:

V,+Ti(t2)V,(t1)=V,(t1 + t2) (1.2)



698 C. Flesia and C. Piron H. P. A.

Dans le cas d'une évolution homogène dans le temps, les opérateurs V.(t) sont
indépendants de t et la relation précédente s'écrit

V(t2)V(t1)=V(t1 + t2)

Et dans ce cas V(t) définit une représentation d'un groupe à un paramètre, de
générateur

K=s-lim-(V(T)-7) (1.3)
t—»0 T

Si la représentation est continue, le théorème de Stone affirme que le générateur
k est autoadjoint. Dans le cas d'une évolution inhomogène, on peut se ramener
au cas précédent en décrivant l'évolution dans un autre espace, un espace plus
grand, l'espace de Hilbert H défini comme intégrale directe des H„ intégrale prise
par rapport à la mesure de Lebesque sur U

H=\ H,dt

Chaque H, étant une copie de H, l'espace H n'est autre que l'espace des fonctions
de t de carré sommable à valeur dans H:

H=L2(R,dt,H) (1.4)

où par définition la fonction \\d),\\H est mesurable et le produit scalaire donné par

h 4>>h f(tl/,<t>)R= dt(tUt,dyt) (1.5)
JR

Soit W(t) l'opérateur agissant dans H et définit à partir de la famille {V,it)} par
la relation

(W(t)4>)i+t=V.(t)4>, (i.6)

où les V.(t) sont les opérateurs unitaires définis précédemment.
Si la fonction ||V-(t)<£-||h est mesurable dans les deux variables t et t, alors

W(t) définit une représentation unitaire d'un groupe à un paramètre.
En effet, d'une part, les operateurs V,(t) étant unitaires, le produit scalaire

sur H est conservé

(W(T)th, W(T)<fr>fi f dt(V.(T)ib,, V,(t)<M
Jr

f dm, ch,) (1.7)

et d'autre part, on a la loi de groupe

W(t2) W(t1)^),+Ti+T2 V,+t,(t2)(W(t1)^),+t,
V1+T,(T2)Vt(Tl)^ V.O-i + Ta)*
(W(t1 + t2)<|»)i+t,+T2 (1.8)
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Si de plus cette représentation est continue, son générateur:

K s-lim-(W(t)-I) (1.9)
t—0 f

est autoadjoint dans H et

W(T) e"iKT (1.10)

Rappelons tout d'abord le résultat suivant:

Théorème 1 [2]. S'il existe un sous-ensemble dense (un coeur) dans H pour
lequel les opérateurs K, id„ K + id, sont essentiellement autoadjoints, alors on a la
formule de Trotter [3]

e"'KT=s-lim (e-*.*/»e-«'«/")n

où k est Vextension autoadjointe de id, + K et de plus cet opérateur est decomposable

(kcj>), K,d), p.p reIR

Dans ce cas, le générateur K est l'extension autoadjointe de K, — id, et p.p.

k,4>, s - lim - V-(t) - I)d>,
t—*0 T

De plus on peut montrer que:

Théorème 2. Toujours dans Vhypothèse que ||V,(t)<^,||h est mesurable dans les

deux variables, si le théorème 1 s'applique, alors l'opérateur K est unitairement
équivalent à —id, et en conséquence, son spectre est absolument continu de —^ à

+00.

Démonstration. Comme par hypothèse la fonction ||V,(t)</>,||h est mesurable,
l'opérateur R(t0) défini par

(R(t0)d>)t V,(t0-t)ci,, V-t\t-t0)cht (1.11)

est unitaire

(R(t0)th, R(t0)d.)R f dt(V,(t0-t)xl-„ V,(t0-t)d>,)
Jr

dt(tf/„ d),)

Pour achever la démonstration, il suffit de montrer que

R(t0)KR-\t0) -id,
Or, en effet,

(«(tok^taR-H-oW. V-1(.-t0Xe-'KT.R-1(fo)4>),

V7n\t-t0)V,_T(T)(R-\t0)d>),_T

v-'d-10) v,_t(t) v,jLt - t - t0)<t>,-T

Vro1(t-(0)V1()(t-to)*t-T <f>«-T c.q.f.d.
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L'opérateur R(t0) défini en cours de démonstration, induit une nouvelle
représentation des états et des observables du système qui est caractérisée par la
forme triviale du générateur K et qui n'est rien d'autre que la représentation
usuelle de Heisenberg. Cette représentation dépend en fait de l'instant choisi t0,
instant où elle coincide avec la représentation de Schrödinger.

Il est utile pour la suite de définir une autre représentation, celle dite
d'interaction. On l'obtient en considérant l'opérateur

(JR0(*o)*)« V^(t-t0)<fc (1.12)

où les V0[o(t) correspondant à un W0(t) sont définis comme précédemment, mais
pour une évolution particulière, l'évolution libre.

2. L'évolution selon Lax et Phillips

Rappelons que dans leur approche à la théorie de la diffusion, Lax et Phillipi
considèrent un espace de Hilbert H, sur lequel agit une représentation unitaire
û(t) d'un groupe à un paramètre. Ils supposent alors l'existence de deux sous-
espaces D_ et D+, appelés respectivement sous-espaces entrant et sous-espac<
sortant, tels que

û(t)D+czD+ t5=0

û(t)D_cD_ t^O
nû(T)D+=ri"(T)D_={0} (2.1)

IJû(t)D+=U«(t)D_ H
T T

D+1D_
Une telle représentation û(t) satisfaisant ces hypothèses est appelée une
'évolution de Lax et Phillips'.

Ces auteurs démontrent alors le théorème suivant [4], dit des 'représentations
de translations'.

Théorème 3. Soit ù(t) une évolution de Lax et Phillips sur H.

Il existe alors un espace de Hilbert auxiliaire N et deux applications unitaires B_
et B_ de H sur L2(U, dt, N) telle que

B+D+ L2(U+, dt, N)
B_D_ L2(U-, dt, N)
B±û(t)B;1=T(t)

où T(t) est le groupe des translations sur L2(U, dt, N), c'est à dire

(T(r)d>), d,,_T d>eL2(U,dt,N)

Ces deux représentations de H sont appelées respectivement représentation d<

translation entrante et représentation de sortante.
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Lax et Phillips définissent l'opérateur de diffusion comme l'opérateur qui
relie la représentation de translation entrante à la représentation de translation
sortante.

Cet opérateur est donc

S^^B+BZ1 (2.2)

Il vérifie les propriétés suivantes [4]:
a) SL p est unitaire sur L2(U, dt, N).
b) SLP commute avec les translations et est donc decomposable.

3. L'évolution quantique comme évolution de Lax et Phillips

On peut interpréter le système {.H, W(t)} définit au paragraphe 1 comme une
évolution de Lax et Phillips. En effet, si on définit D+ comme le sous-espace
L2([p+, +oo], dr, H) et D comme le sous-espace L2([-oo, p_], dt, H), où 0<p+ et
p <0 sont deux temps données, les conditions (2.1) sont trivialement satisfaites.

Dans ces conditions, notre théorème 2 n'est autre q'un cas particulier du
théorème des représentations de translations.

En effet, l'opérateur unitaire R(p+) qui fait passer de la représentation de
Schrödinger à celle de Heisenberg (définie pour t0 p+) n'est autre que
l'opérateur B+ et de même l'opérateur R(p-) n'est autre que l'opérateur B^.

L'espace usuel H de la mécanique quantique s'identifie à l'espace auxilaire
N et finalement, en vertu de ce qui précède, B±W(t)B±1 est bien le groupe des
translations sur L2(IR, dt, H) défini précédemment. Ainsi, dans notre cas,
l'opérateur de diffusion de Lax et Phillips correspondant au système {H, W(t)} est
donné par

SLP(p_,p+) R(p+)R-1(p_) (3.1)

Il se réduit donc à un double changement de représentation, plus précisément il
fait passer de la représentation de Heisenberg, qui coincide avec celle de
Schrödinger au temps t0 p_ à la représentation de Heisenberg qui coincide avec
celle de Schrödinger au temps ta p+. Explicitement il s'écrit

(sLP(P_, P+)<t>), v:)(t-P+)vp (t-PJ)d>. (3.2)

Ainsi SL F'(p-, p+) est décomponsable et presque pour tout t

SÏP(p_,p+)=Vel(t-p+)Vp (t-p.) (3.3)

En particulier, cette théorie s'applique au cas d'une évolution homogène

V,(p)=V(T) e-'HT (3.4)

décrite en représentation d'interaction (au temps tn 0 avec V0,(t) V0(t)
exp,—i'H0t). Le système {H, W(t)} correspondant où

W(r)d>)t+r e'H"(,+T,c-iHTe-iH"^, (3.5)

nit un opérateur de diffusion de Lax et Phillips qui est donné, tous calculs
-. par l'expression

S\-P(p_, P+) S^ip^, P+) eiH""e-iH^eiHp <riH"p (3.6)
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De plus, pour une telle evolution, chaque fois qu'existent les opérateurs de M0ller

n± s- lim ciHpc"iH"p (3.7)
p—»±oo

et la matrice S correspondante

s nïn. (3.8)

l'opérateur de diffusion de Lax et Phillips que nous venons de trouver a une limite
pour p —> oo et

SLp (<*)-s- lim S^i-p, p) S (3.9)
p—»oo

Ceci nous montre qu'il est naturel d'étendre la définition de la matrice S au cas
d'une évolution inhomogène. Il suffit de considérer cette évolution en
représentation d'interaction (1.12) et de faire tendre p—>co dans SLF'(~p, p) (3.1).

Le même formalisme s'applique également tout naturellement au cas d'un
potentiel à longue portée (Coulombien par exemple) en partant d'une
représentation d'interaction définie pour une évolution libre modifiée [5].

4. Conclusion

En conclusion le formalisme développé ici permet de définir une matrice S

dans le cas général d'un potentiel (où d'une perturbation) dependant explicitement

du temps et le résultat s'exprime chaque fois uniquement en terme de
l'Hamiltonien en représentation d'interaction. Le même formalisme permet aussi
d'exprimer l'effet dû à l'enclenchement (adiabatique où non) d'une interaction
extérieure sur l'évolution du système.

Typiquement c'est le cas d'un système évoluant selon un Hamiltonien de la
forme

H, H0 + HU (4.1)

où H0 est l'Hamiltonien libre et H, est l'interaction extérieure supposé de la
forme

IH,,, H2 t>p
En représentation d'interaction ce problème correspond à un système de Lax et
Phillips {H, W,(t)} où H est le grand espace, integrale directe des H„ et W,(t) est
donné par

WI(r) e-ilH'''ia')T (4.3)

avec

H'It=eiH"'Hue-iH"' (4.4)

Et effectivement la matrice de Lax et Phillips que nous avons définie en (3.1)
s'écrit

SLP(0,p) R(p)R-1(0) (4.5)
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ou encore plus explicitement (3.2)

(SLP(0, p)d>), (R(p)R-1(0)4>), Vr.,(p-t)VU0(t)d>, (4.6)

ce qui nous montre, en particulier, qu'elle applique l'état entrant défini en temps
t 0 sur V0(p)d>0 qui n'est autre que ce même état mais après évolution de 0 à p
(toujours en représentation d'interaction)

(SLp (0, p)d>)0 W,(p)4>)p (e-'*".'.-^), (4.7)

BIBLIOGRAPHIE

|1| M. Reed et B. Simon, Scattering theory (New York: Academic, 1979) p. 239-241.
|2| C. Piron, Foundation of quantum physics (Reeding: Benjamin 1976).
|3J H. F. Trotter, Approximation of Semi-Groups of Operators, Pacif. J. Math., 8, 887 (1958).
(4J P. D. Lax et R. S. Phillips, Scattering theory (New York: Academic, 1979).
[5] W. O. Amrein, J. M. Jauch et K. B. Sinha, Scattering theory in quantum mecanics (Reeding:

Benjamin, 1977) p. 528-_'>29.


	La théorie de la diffusion de Lax et Phillips dans le cas quantique

