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La théorie de la diffusion de Lax et Phillips
dans le cas quantique

Par C. Flesia, Institute de Physique Théorique, Ecole Polytechni-
que Fédérale de Lausanne, PHB-Ecublens, CH-1015 Lausanne,
Suisse

C. Piron, Département de Physique Théorique, Université de
Geneve, CH-1211 Geneve 4, Suisse

(15. IX. 1984)

Introduction

Si on considére naivement ’approche de Lax et Phillips a la théorie de la
diffusion on est surpris par le fait que l'opérateur d’évolution a toujours un
spectre non borné inférieurement et ainsi on a I'impression que cette approche ne
s’applique pas a la mécanique quantique.

Les rares essais d’application, a ’équation de Schrodinger par exemple [1],
sont compliqués et artificiels.

Or, comme nous allons le montrer, cette théorie de Lax et Phillips s’applique,
bel et bien, directement a la mécanique quantique si on traite le parametre t
correspondant au temps comme une reégle de supersélection continue et qu’ainsi
on décrit le systtme dans un espace plus grand que I’espace de Hilbert usuel.

1. L’évolution quantique

A partir des postulats de la mécanique quantique on définit a chaque instant ¢
I’état d’un systeme physique donné, par un rayon dans un espace de Hilbert H,,
copie d'un espace H fixé une fois pour toute.

L’évolution réversible qui fait passer le systéme de I’état au temps ¢t a I’état
au temps t+7 est donnée par une famille d’opérateurs unitaires {V,(7)} qui
agissent sur les H,

¥, € H,

(1.1)
d’t+'r € I-I!+T

bioe = Vil {

la relation suivante étant satisfaite:

Vi (1) Vi(1) = V(7 + 1) (1.2)
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Dans le cas d’une évolution homogéne dans le temps, les opérateurs V,(r) sont
indépendants de ¢ et la relation précédente s’écrit

V() V(T) = V(11 +7)

Et dans ce cas V(r) définit une représentation d’un groupe a un parametre, de
générateur

K=s—li_r’r(1)£(V('r)—I) (1.3)

Si la représentation est continue, le théoréme de Stone affirme que le générateur
k est autoadjoint. Dans le cas d’une évolution inhomogeéne, on peut se ramener
au cas précédent en décrivant I’évolution dans un autre espace, un espace plus
grand, I’espace de Hilbert H défini comme intégrale directe des H,, intégrale prise
par rapport a la mesure de Lebesque sur R

FI=I H, dt
5]

Chaque H, étant une copie de H, I'’espace H n’est autre que I’espace des fonctions
de t de carré sommable a valeur dans H:

H= LR, dt, H) (1.4)

ou par définition la fonction ||¢,||; est mesurable et le produit scalaire donné par

by = | et ) (1.5)

Soit W(r) I'opérateur agissant dans H et définit a partir de la famille {V,(7)} par
la relation

(W(T)) s = Vi), (1.6)

ou les V,(7) sont les opérateurs unitaires définis précédemment.

Si la fonction ||V,(7)é, ||y est mesurable dans les deux variables t et 7, alors
W(r) définit une représentation unitaire d’'un groupe a un parameétre.

En cffet, d’unc part, les opérateurs V,(7) €tant unitaires, le produit scalaire
sur H est conservé

Wiro, Wby = | V., Viw)0)
R
= [ artw. 0 (.7)

et d’autre part, on a la loi de groupe

(W(t,) W(Tl)¢)t+-r|+'rz = ‘4+1,(72)(W(71)¢)t+7,
= Vt+1'\(72)‘/[(1-1)¢t = ‘/1(1'1 +T2)¢1
=(W(r, + 72)¢)t+¢,+72 (1.8)
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Si de plus cette représentation est continue, son générateur:
.
K=s—llrr(1)—(W('r)—I) (1.9)
T—0 T

est autoadjoint dans H et
W(r)=e ¥ (1.10)

Rappelons tout d’abord le résultat suivant:

Théoreme 1 [2]. S’il existe un sous-ensemble dense (un coeur) dans H pour
lequel les opérateurs K, id,, K +i0, sont essentiellement autoadjoints, alors on a la
formule de Trotter [3]

e—iK‘r =5— llm (e—a'-rlnefix‘r/n)n

n—oc

ol k est I’extension autoadjointe de i9, + K et de plus cet opérateur est décomposable
(k@) =k pp teR

Dans ce cas, le générateur K est |I’extension autoadjointe de k, —id, et p.p.
L
Kt‘t)t =s—lim — (VI(T)—I)¢t
T—0 T
De plus on peut montrer que:

Théoreme 2. Toujours dans I’hypothése que ||V, (1), |y est mesurable dans les

deux variables, si le théoreme 1 s’applique, alors I’opérateur K est unitairement
équivalent a —id, et en conséquence, son spectre est absolument continu de —© a
+00,

Démonstration. Comme par hypothése la fonction ||V,(1),||y est mesurable,
I'opérateur R(t,) défini par

(R(t)) @), = V. (to— ), = V. ' (t — to)d, (1.11)

est unitaire

(R(to): Rto)b)sz = j dt(V,(to— Wi Vi(to— 0)ebe)

= L dt(¢, &b,

Pour achever la démonstration, il suffit de montrer que
R(ty) KR '(t,) =—id,
Or, en effet,
(R(t))e "R~ Nto)d), = V;‘(t —to)(e "R (1)),
=V (t—=t)) Vi (1)(R7(to) )~
=V, t-t) V. (V (t—1= 1),

to

=V ) t-t)V (t-t)d .= . c.qfd.
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L’opérateur R(t,) défini en cours de démonstration, induit une nouvellg
représentation des états et des observables du systéme qui est caractérisee par la
forme triviale du générateur K et qui n’est rien d’autre que la representatloﬁ
usuelle de Heisenberg. Cette représentation dépend en faitde I'instant choisi t,,
instant ou elle coincide avec la représentation de Schrodinger.

Il est utile pour la suite de définir une autre représentation, celle dite
d’interaction. On I’obtient en considérant ’opérateur

(Ro(to)d). = Vo (t—to) &, (1.12)

ou les V, (7) correspondant a un Wy(7) sont définis comme précédemment, mais
pour une évolution particuliere, ’évolution libre.

2. L’évolution selon Lax et Phillips

Rappelons que dans leur approche a la théorie de la diffusion, Lax et Philli
considérent un espace de Hilbert H, sur lequel agit une représentation unitair
i(7) d’un groupe a un parameétre. Ils supposent alors I’existence de deux sous
espaces D_ et D,, appelés respectivement sous-espaces entrant et sous-espa
sortant, tels que

u(r)D,.< D, =0
u(t)D_<D_ r=<0

N u(r)D. = a(r)D_={0} (2.1)

U a()D,=U a(+\D_=H
D.1D.

Une telle représentation u(r) satisfaisant ces hypothéses est appelée une
‘évolution de Lax et Phillips’.

Ces auteurs démontrent alors le théoréme suivant [4], dit des ‘représentations
de translations’.

Théoréme 3. Soit ii(t) une évolution de Lax et Phillips sur H.
Il existe alors un espace de Hilbert auxiliaire N et deux applications unitaires B,
et B_ de H sur L2(R, dt, N) telle que

B.D, = Lz(R+, dt, N)

B_D_=L*R_,dt N)

B.ii(t)BL'= T(7)

ou T(7) est le groupe des translations sur LR, dt, N), c’est a dire

(T(T)¢)t = (bt—'r (b € Lz(R> dt, N)

Ces deux représentations de H sont appelées respectivement représentation de
translation entrante et représentation de sortante.
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Lax et Phillips définissent 'opérateur de diffusion comme l'opérateur qui
relie la représentation de translation entrante a la représentation de translation
sortante.

Cet opérateur est donc

S“* =B,B~! (2.2)

Il vérifie les propriétés suivantes [4]:
a) S™F est unitaire sur L*(R, dt, N).
b) S“* commute avec les translations et est donc décomposable.

3. L’évolution quantique comme évolution de Lax et Phillips

On peut interpréter le systeme {H, W(r)} définit au paragraphe 1 comme une
évolution de Lax et Phillips. En effet, si on définit D, comme le sous-espace
L%(p., +=], dt, H) et D_ comme le sous-espace L*([—x, p_], dt, H), ou 0<p, et
p_ <0 sont deux temps données, les conditions (2.1) sont trivialement satisfaites.

Dans ces conditions, notre théoréme 2 n’est autre q’un cas particulier du
théoreme des représentations de translations.

En effet, 'opérateur unitaire R(p,) qui fait passer de la représentation de
Schrodinger a celle de Heisenberg (définie pour t,=p,) n’est autre que
I'opérateur B, et de méme 'opérateur R(p_) n’est autre que l'opérateur B .

L’espace usuel H de la mécanique quantique s’identifie a I’espace auxilaire
N et finalement, en vertu de ce qui précéde, B, W(7)B.' est bien le groupe des
translations sur L*R, dt, H) défini précédemment. Ainsi, dans notre cas,
I'opérateur de diffusion de Lax et Phillips correspondant au systeme {H, W(1)} est
donné par

S*"(p_,p.)=R(p, )R '(p) (3.1)

I1 se réduit donc a un double changement de représentation, plus précisement il
fait passer de la représentation de Heisenberg, qui coincide avec celle de
Schrodinger au temps t, = p_ a la représentation de Heisenberg qui coincide avec
celle de Schrodinger au temps t, = p,. Explicitement il s’écrit

(S“P(p_, p)b) = V; (t—p,)V, (t—p ), (3.2)
Ainsi S“F(p_, p,) est décomponsable et presque pour tout t

St (p_,p)=V, t—p)V, (1—p.) (3.3)
En particulier, cette théorie s’applique au cas d’une évolution homogene

Vilp)= V(r)=¢e " (3.4)

décrite en représentation d’interaction (au temps t,=0 avec V,(1)= V,(1)=
exp (—iH,7). Le systeme {H, W(7)} correspondant ou

(W(T)d))t+1— — eiH“(‘+T)e_iHTe_iH“‘¢, (3-5)

définit un opérateur de diffusion de Lax et Phillips qui est donné, tous calculs
faits, par I’expression

Sf"P‘(p_, p+) — SL'P'(p_, p+) - eiH”p,e—iHo*einie—iH”pf (36)
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De plus, pour une telle evolution, chaque fois qu’existent les opérateurs de Mgller

Q,=s— lim e'HPe How (3.7)

et la matrice S correspondante
S=0%Q_ (3.8)

I’opérateur de diffusion de Lax et Phillips que nous venons de trouver a une limite
pour p — % et

SL'P‘(OO) =— ‘}l_r}l SL'P'(—p, p) =8 (39)

Ceci nous montre qu’il est naturel d’étendre la définition de la matrice S au cas
d’une évolution inhomogeéne. I1 suffit de considérer cette évolution en
représentation d’interaction (1.12) et de faire tendre p — o dans S“*(—p, p) (3.1).
Le méme formalisme s’applique également tout naturellement au cas d’un
potentiel a longue portée (Coulombien par exemple) en partant d’une
représentation d’interaction définie pour une évolution libre modifiée [5].

4. Conclusion

En conclusion le formalisme developpé ici permet de définir une matrice S
dans le cas général d’un potentiel (ou d’une perturbation) dependant explicite-
ment du temps et le resultat s’exprime chaque fois uniquement en terme de
I’Hamiltonien en représentation d’interaction. Le méme formalisme permet aussi
d’exprimer l'effet dii a I’enclenchement (adiabatique ou non) d’une interaction
exterieure sur I’évolution du systéme.

Typiquement c’est le cas d’un systtme evoluant selon un Hamiltonien de la
forme

H,=H,+H;, (4.1)

ou H, est 'Hamiltonien libre et H; est l'interaction extérieure supposé de la
forme

HI.I =

= <
{H,_, 0 t<0 4.2)

I-‘Ii.l = HI t> P
En représentation d’interaction ce probléme correspond a un systeme de Lax et

Phillips {H, W,(7)} ot H est le grand espace, integrale directe des H,, et W; (1) est
donné par

Wi(r) = e i (4.3)
avec
1= €M H o™ Ho! (4.4)
Et effectivement la matrice de Lax et Phillips que nous avons définie en (3.1)
s’écrit
$™*(0, p)=R(p)R™'(0) (4.5)
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ou encore plus explicitement (3.2)
(8"7(0, p)d), = (R(p)R'(0)), = Vy,(p — 1)V, o() b, (4.6)

ce qui nous montre, en particulier, qu’elle applique I’état entrant défini en temps
t =0 sur Vy(p)d, qui n’est autre que ce méme é€tat mais apres évolution de 0 a p
(toujours en représentation d’interaction)

(S“F(0, p)b)o= (Wi(p)), = (i #rep), .
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