Zeitschrift: Helvetica Physica Acta

Band: 57 (1984)

Heft: 5

Artikel: The quasipotential formalism for pion exchange effects in the two-
nucleon system

Autor: Jaus, W. / Woolcock, W.S.

DOl: https://doi.org/10.5169/seals-115520

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-115520
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta, Vol. 57 (1984) 644-686 0018-0238/84/050644-43%$1.50 + 0.20/0
© Birkhiduser Verlag Basel, 1984

The quasipotential formalism for pion
exchange effects in the two-nucleon system

By W. Jaus, Institut fur Theoretische Physik der Universitat,
Schonberggasse 9, CH-8001 Ziirich, Switzerland

W. S. Woolcock, Research School of Physical Sciences, The
Australian National University, Canberra, ACT 2601, Australia

(12. V. 1984)

Abstract. A systematic exposition is given of the covariant quasipotential formalism for the
two-nucleon system, showing how the potential itself and the electromagnetic 4-current can be
consistently obtained within the same formalism. We calculate the impulse approximation charge
density and current density with relativistic corrections and the one-pion exchange and two-pion
exchange charge densities which it is correct to use in conjunction with c.m. wavefunctions derived
from an energy independent potential. The results for the one-pion exchange charge density with
pseudoscalar and pseudovector wNN coupling are related via the equivalence theorem and it is shown
how one may obtain a physically reasonable result which is independent of the coupling. The
difference between our results and those obtained using the transformation method is traced to the
difference between the prescriptions for the retardation in the one-pion exchange potential in the two
methods.

I. Introduction

It is well known that the calculation of relativistic and meson exchange
corrections to the usual nonrelativistic treatment of nuclei presents many difficul-
ties. In particular, the problem of providing a consistent treatment of both the
scattering and bound state properties of the two-nucleon system and its elec-
tromagnetic properties has received considerable attention in recent years. Such a
treatment is necessary if the electromagnetic properties and reactions of the
deuteron are to be properly understood.

In our work [1] on the effect of meson exchange on the theoretical calcula-
tion of the forward cross section for deuteron photodisintegration (hereafter
referred to as JW) we used the quasipotential approach, but did not attempt to
develop the formalism properly. As far as we know, there does not exist in the
literature a complete and systematic development of the quasipotential formal-
ism for the two-nucleon system. Our aim in this paper is to provide such a
development, and to do it in a covariant way in an arbitrary frame of reference. In
later papers we shall present applications of the formalism to a variety of
problems involving the deuteron, including the forward cross section for deuteron
photodistintegration.

In Section II we explain the basic quasipotential formalism. Starting from the
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Bethe—-Salpeter equation, we use a covariant reduction procedure based upon
the prescription due originally to Blankenbecler and Sugar [2] (BBS). The BBS
prescription is simple only in the two-nucleon rest frame, but we show how it can
be given covariantly in an arbitrary frame and how it leads to a relativistic equation
of motion for the moving two-nucleon system. This equation of motion can by
means of a Lorentz boost be transformed to the rest frame, where it is just the
nonrelativistic Schrodinger equation. We carry through this procedure both for a
two-nucleon bound state and for a continuum state. The quasipotential which
appears in the Schrodinger equation can be expressed in terms of Feynman
diagrams. The relationship between the two-nucleon wavefunction in the moving
frame and that in the rest frame is very simple, and relativistic effects can be
discussed easily. The wavefunction undergoes a Wigner rotation and the nucleon—
nucleon relative momentum is shifted. No expansion in powers of ¢~ is made.

We then give a general expression for the matrix element of the elec-
tromagnetic four-current density, taken between wavefunctions derived from the
quasipotential. We do this when the matrix element is taken between bound states
and when it is taken between a bound state and a continuum state. We are able to
put the two-nucleon current density into a compact form which involves only the
contributions of certain Feynman diagrams for the process YNN — NN, which are
irreducible in the same sense as one uses in referring to NN — NN diagrams.
Moreover, one can take the matrix elements between rest frame wavefunctions,
even though the initial and final states cannot simultaneously be in the rest frame,
because the transformation properties of the wavefunction are known. With a
single equation as the starting point, one can derive in a unified way expressions
for the relativistic impulse approximation and meson exchange contributions to
the charge and current densities.

The lowest order diagram (no mesons exchanged) gives the relativistic
expressions for the impulse approximation charge and current densities, which we
derive in Section III. For the charge density we find the well known corrections of
order m 2 to the nonrelativistic impulse approximation, namely the spin-orbit and
Darwin-Foldy terms, whose importance for deuteron photodisintegration was first
demonstrated by Cambi, Mosconi and Ricci [3]. They used the result in Appendix
D of De Forest and Walecka [4] and we generalize that result to an arbitrary
frame of reference. From the relation between the two-nucleon wavefunction in a
moving frame and that in the rest frame, we derive the relativistic corrections of
order m~? to the wavefunction, and thence obtain additional corrections of the
same order to the impulse approximation charge density which arise from the
transformation of the initial and final wavefunctions to their individual rest
frames. This result also generalizes to an arbitrary frame a result already obtained
by other approaches. At the same time, we are able within our formalism to
obtain the expression for the impulse approximation current density in a general
frame, which we evaluate up to order m™2 and to first order in the external
momenta.

The remainder of the paper (Sections IV-VIII) is devoted to a thorough study
of the one-pion exchange (17E) and two-point exchange (27E) charge densities
within the quasipotential framework. For p(1wE) we consider both pseudoscalar
(PS) and pseudovector (PV) wNN coupling. The leading contributions to p(2wE)
do not depend on the form of coupling. Since the Hamiltonians of the =yN
system, for PS and PV NN coupling, can be derived from a single Hamiltonian,
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each together with its appropriate contact terms, it should be possible, if all
calculations are carried out consistently, to locate any difference between the
results for PS and PV coupling in a suitable contact term [5]. The contact term
which should account for the difference has been derived for example by Friar [6]
in his study of the equivalence theorem, which relates the Hamiltonians for the
7wyN system with PS and PV coupling by means of a unitary Dyson-Foldy
transformation. Now H(PV) contains not only the ywNN contact interaction
which is generated by the usual (minimal) yNN charge coupling, but also a gauge
invariant magnetic moment ymwNN contact interaction which is generated by the
Pauli term in the yNN interaction. By carefully considering all the possible
contributions to p(17E) we have been able to show that it is this second contact
interaction which accounts for the difference between the results for PS and PV
coupling.

In Section IV we consider a very subtle contribution to p(1wE) which
depends on the coupling and whose origin lies in the 17E NN potential. When
this potential is calculated to order m 2, one of the relativistic corrections to the
static potential is independent of the coupling and is included in semi-
phenomenological potentials like the Nijmegen [7] and Paris [8] potentials. There
is, in addition, a second relativistic correction which depends on the wNN
coupling. If one calculates with wavefunctions deduced from a potential which
does not include this second correction, then one needs to take into account the
change in the wavefunction which is induced by the omitted piece of the potential.
It turns out that because of its particular form, it is possible to separate from this
piece of the potential a 1wE part. The changes in the initial and final state
wavefunctions which are induced in this way can be translated into a contribution
to the charge density which is of 1wE form and which depends on the wNN
coupling. This derivation of an effective 17E charge density from a piece of the
17E NN potential which has a particular form in momentum space is central to
our discussion of 17E effects. Its inclusion in p(1wE) is essential if one is to be
able to relate p(1wE) for PS and for PV coupling via the equivalence theorem
and, as we shall discuss later in this introduction, also if one wishes to make a
correct practical calculation using wavefunctions derived from an NN potential
whose 17E part is independent of the coupling.

In Section V we derive all the other parts of the 17wE and 2#wE charge
densities. The section begins with the derivation of a coupling dependent con-
tribution to p(17E) which arises in a subtle way when the quasipotential formal-
ism is developed covariantly. All the other contributions in Section V arise either
from particular Feynman diagrams or from the retardation in the 17E potential.
By this we mean the way in which the 17E potential depends on the time-
component of the 4-momentum transfer. In Section VI we prove the result
described earlier for the difference between p(17E) for PS and for PV coupling.
It is important to make this check that our formalism satisfies the constraints of
the equivalence theorem, as Friar [9] has emphasized.

It is a general property of the quasipotential method that it generates an
energy dependent quasipotential; in our case the uncrossed and crossed 2wE
potentials are energy dependent, in the sense that they depend explicitly on the
time component of the total 4-momentum of the two nucleon system. This energy
dependence means that the bound state wavefunction is no longer normalized to
unity. It is possible, however, to use a method given by Friar [6] to extract from
an energy dependent potential an energy independent part, in terms of which a
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modified wavefunction satisfies the usual bound state equation with the same
bound state energy. It turns out that this modified wavefunction is normalized to
unity, and that, when the two-nucleon 4-current is taken between modified
wavefunctions, it has itself to be modified by the addition of extra pieces. In the
particular case of the 27wE charge density, one finds that when these pieces are
added, the resulting uncrossed and crossed 27E charge densities separately have
the property that the total charge is zero. This discussion of the energy depen-
dence of the quasipotential and its consequences is given in Section VII.

The detailed expressions for exchange operators in the quasipotential formal-
ism are in general different from those derived using the unitary transformation
method. In particular, the 17E and uncrossed 27E charge densities are different.
We show in Section VIII that these differences arise from the different retardation
prescriptions for the 1wE potential. In this context, we shall clear up a misunder-
standing in the paper of Sato, Kobayashi and Ohtsubo [10] (hereafter referred to
as SKO). We shall also show how our results for p(17E) relate to those derived
by Hyuga and Gari [11] (hereafter referred to as HG) using the unitary transfor-
mation method.

It will be clear from the comparison between our results and those of HG
that it is not correct to use their 1wE charge density in practical calculations.
Apart from an error which arises in their work because they do not have a fully
covariant treatment, there are terms in their 17E potential which are coupling
dependent and which need to be interpreted as effective 1wE charge densities
according to the method which we develop in Section IV. These should then be
added to the explicit expression which HG give for p(1wE), if one wishes to make
a practical calculation using a semiphenomenological NN potential whose 17E
part is coupling independent. There are treatments in recent literature of the
form factors of the deuteron and of the forward photodisintegration
of the deuteron which are incorrect because they use expressions for p(17E)
which are incompatible with a coupling independent 1wE NN potential.
We shall discuss these papers, and present our own calculations, in future
publications.

Zuilhof and Tjon [12] point out that there are conceptual difficulties with the
definition of the deuteron current in the BBS model, and draw attention to the
lack of a consistent treatment of both the two-nucleon system and its electro-
magnetic properties in a quasipotential approach. We give such a treatment in this
paper, and develop a formalism which is compact and consistent, which is fully
relativistic and does not require an expansion in powers of ¢ * and in which
relativistic and meson exchange effects can be calculated in a straightforward and
unified way. Moreover, it is the only formalism available for the two nucleon
system which can be used directly for practical calculations of deuteron properties
and reactions.

I1. Basic formalism

The starting point of the formalism which we shall use for meson exchange
processes is the BBS reduction of the Bethe-Salpeter equation. For the NN
scattering amplitude W ‘without legs’ this equation is, in symbolic operator
notation,

W=U+UGW=U+ WGU. (2.1)
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The quantity U is the amplitude obtained by summing all irreducible two-nucleon
diagrams and has a meaning only in the context of some field theoretic description
of the NN interaction. The Green function G is well known, and does not need to
be written here. The products UGW and WGU in (2.1) imply sums over spinor
indices and an integration over an internal relative 4-momentum.

In order to apply (2.1) to bound state problems which are described by a
single-time wavefunction, as is the case in nuclear physics, the quasipotential
method has been developed, in which the 4-dimensional equation (2.1) is reduced
to a 3-dimensional equation by using a new Green function g which restricts the
time-component of the internal momentum to a fixed value. Equation (2.1) is
then replaced by

W=V+VgW=V+WgV, (2.2)
where U, V are connected by
V-U=V(G-g)U=U(G—-g)V. (2.3)

Equation (2.2) is now a simpler 3-dimensional integral equation, but the complex-
ity of equation (2.1) has been transferred to equation (2.3). In practice one hopes
that the quasipotential V can be obtained by an iterative procedure, in which U
and V are expanded in series which consist of terms which correspond to the
number of bosons exchanged between the interacting nucleons.

There are many choices of g in the literature, but we shall use the BBS
choice in its covariant form (see for example Woloshyn and Jackson [13]), which
leads naturally to the Lippmann-Schwinger equation in momentum space and
thence to the Schrodinger equation in coordinate space. The BBS Green function
belongs to that class which restricts the internal summation over spinor indices to
positive energy states only (for each nucleon). We now fix our notation in detail
by considering the process

NLGP+p', A1)+ No(GP—p', A3) = N1GP +p", A1) + No(GP —p”, A%).

Primed and doubly primed quantities will invariably be quantities associated with
the initial and the final state respectively. The subscripts 1 and 2 will always label
quantities associated with nucleon 1 and nucleon 2 respectively. The total
4-momentum is P = (P,, P) and the initial and final relative 4-momenta are p’, p”
respectively. The quantities A are the helicities. We now define an amplitude V
with positive energy spinors attached:

VA’;A'Z';A oY 5(P; p",p")
= a{"GP + " us?GP - p) V(P; p", p uGP + ) ud?GP - ), (2.4)
and similarly for W. The sums over spinor indices have been suppressed in (2.4).
It is not necessary in what follows to exhibit the helicities explicitly, and we shall

suppress them from now on.
The covariant BBS prescription fixes the time-component of the internal
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relative momentum according to the BBS condition P - k =0. Thus

. Pk EGP+K)P-EGP-k)?
k(,=P k_EG ) (3 ), @.5)
P, 2P,

where E(p)=vm If k=(ko, k) we shall use kK to denote the restricted
4-vector k = (ko, k) The covariant BBS Green function g is given by

g(P; k) =27 8(ko— ko)g(P; K)ATRO + KA GO —K), (2.6)

where A" is the usual positive energy projection operator,
4m?

RO B DIPP—am = B2 .
Q=Q(P; k) =2PNPH)/m?>— k> (2.8)
E(P; k) = Qu/2 = (PWP>)Vm?— k> (2.9)

and Q has the property that (Q/2+k)?=m?, since Q - k =0 according to the BBS
condition. Therefore the projection operators in equation (2.6) for g(P; k) remain
positive energy projection operators under Lorentz transformations.

Using (2.6), the full statement of (2.2) is

WP p", p)
—V(P; p", p) + (2m) jdf’w(P; 0. K)&(P; B)W(P; K, p')

=V(P;p", p)+Q2m)~>3 Id3kW(P; p", k)g(P; k)V(P; k, p'). (2.10)

Care is required in interpreting (2.10). The W and V which stand alone are
defined in (2.4), using spinors which we shall in future refer to as standard spmors
However, the appearance of k in the quantities which stand in the integrals in
(2.10) signals that, on the side in which k appears, BBS spinors are used. Thus,
for example, V(P; k, p') stands for

V(P; k, p') = 0,0+ K)iat,3Q — k) V(P; k, p)u, GP+ B u, AP — p).

We shall need (2.10) later, but now we need a more restrictive equation in
which p”, p’ are fixed at p”, p’ respectively and at the same time the corresponding
standard spinors are replaced by BBS spinors. We therefore define a quantity

V(P Al "I) by
V(P; p", p) = 0, 3Q" + p)aG6Q" — ) V(P; B, p)u, B Q' + 5w, Q" - §),
(2.11)
where Q’, Q” stand for Q(P; P, Q(P: p"”) respectively. We shall sometimes use

the symbol V, as a shorthand for the fully restricted potential defined by equation
(2.11). The quantity W, is defined in the same way as V, in (2.11) and from
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(2.10) the integral equations it satisfies are

W(P; p", p)

V(P; p", p)+(2m) 3 Id3kV(P; p", k)g(P; k)W(P; k, p')

V(P; B, ')+ (2m) jd3kW(P; 5", K)a(P; K)V(P: £, p). (2.12)

Now if the amplitude W, has a pole at P>= M? corresponding to a bound
state of mass M, the equations satisfied by the bound state vertex function f‘
follow directly from (2.12):

fp; py=2m) 3 dek\‘/(P; p", kK)g(P; k)I'(P; k),
(2.13)

P p) = 2m) jaPkl‘“(P; DaP; V(P K, ).

In equations like (2.13) involving bound state functions it will always be under-
stood that P,=~M?+ P?. The normalization condition for I is

&P P) o o .

1 =4m[~—(27r)'3 jd3pf‘(P; 5)

aV(P; p", p')
a(P?)

-(2m)™° jd“(p", pI'(P; p")g(P; p") g(P; pOI(P; ﬁ’)] :

(2.14)

where the derivative is evaluated at P> = M2. Now note that V(P; p”, p'), defined
in (2.11), is Lorentz invariant, as also is (vVP?/P,) d>p, on account of the in-
variance of 8(P - k) d*k. Here we have made use of the covariant BBS condition
(2.5). Further, it follows from the definitions of §, E in (2.7), (2.9) respectively
that (P(,/JF)Q and (VP?/P,)E are also invariant. The normalization condition
(2.14) then shows that the bound state vertex function f‘(P;ﬁ) is Lorentz
invariant.
Now define a wavefunction ¢ in terms of [' by

(P )= /= “; P) o(p; )EP; ) (2.15)

and a modified quasipotential V by

5 m A m
V(P 5", ) = \ = V(P38 8) \ s (2.16)
PRPI=NEPR gy PP NE®P; p)

where E is defined in (2.9), ¢ in (2.7) and it is of course understood that
P,=~M?+ P?. Using these definitions, equation (2.13) becomes
. . EP;p) . L
&(P; p) = g(P; p) —;P* (2m)~? Id3kV(P; p, k)d(P; k) (2.17)
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or, in more detail,
(4m)'[M2 - 4m?2 + 4521 (B; ) = (2m)~> [d3k\7(P; RSB, (218)

with a similar equation for ¢. From the invariance properties already established
for E, ¢ and T, it follows from the definition (2.15) that (Po/NP?)2¢(P; p) is a
Lorentz invariant. This result is also clear from the normalization condition for ¢,
which may be deduced from (2.14). Using the definitions (2.7), (2.9), (2.15) and
(2.16), this condition may be shown to be

1=@m [dp l6(B; B

2m 5 =—— oV(P;p",p) , 5 -
- n, ' P, " P’ s 2.19
\/M2+P2.[d PP B P p ¢ D) el

with the derivative evaluated at P, = VM?+ P2. Equation (2.19) shows that, when
the quasipotential V depends explicitly on P,, the wavefunction ¢ derived from
this quasipotential is no longer normalized to 1.

We now transform the wave equation (2.18) to the rest frame by considering
the rotationless Lorentz transformation which maps the 4-vector P = (P,, P) to
P = (VP2 0). At the same time it maps the 4-vector p = (py, p) to p = (0, p), where

3 — ﬁﬁfj + ﬁﬁp
= —_—_— = e 2'20
PP (P+vP) P 8m? (2.20)

In the bound state case, P?=M? and P,=+M?+ P2. We showed above that
(P,/~/P?)2¢(P; p) is Lorentz invariant, so that

% IJ0 1/2 .
60:9)=(7%) o (P: ). (2.21)

Since p2=p2=—p2, we find, using the invariance properties given after (2.14),
that (2.18) becomes

(Am) " (M?—4m?—4p> ¢ (0; p) = (2m) 3 j'd%\'/(ﬁ; 3. R)o(0: k). (2.22)

The above system of equations constitutes a covariant framework for the
description of the deuteron. Thc relativistic equation of motion (2.18) for the
moving deuteron transforms by means of a Lorentz boost into equation (2.22) in
the rest frame. This equation is recognized as the nonrelativistic Schrodinger
equation in momentum space and can be solved in the usual way. The eigenvalue
in our formalism is (M*—4m?)/4n:. which in the case of weak binding reduces to
(M—2m). In the case of the deutcron, this difference is of no importance. The
relationship between the bound state wavefunction in the frame with total
3-momentum P and that in the rest frame is given exactly by equation (2.21), and
the shift of the relative momentum is given by equation (2.20). Note that the
transformation property (2.21) of ¢ cannot be established using the wave equa-
tion alone, since it is homogeneous. The normalization condition (2.19) is
required.
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Our next task is to sketch the way in which two-nucleon continuum states are
treated in the quasipotential formalism. Consider such a state with 3-momentum
P and relative 3-momentum p,, so that

= E(%P‘*' Do) + E(%P‘ Po) = 2E(P: Po)»
where
E(P; k)=iEGP+k)+ EGP-K)]. (2.23)

Note from (2.7) that, when P, = 2E(P; p,), 8(P; k) has a singularity when k lies in
a 2-dimensional manifold, and it is necessary to specify the behaviour of ¢ in the
neighbourhood of this singularity. We define

4m?
E(P; k)[4E(P; po)*— P> —4(m?>—k?) +ie]’

Defining W from W, exactly as V is defined in (2.16), we note that W(P; p" p")

has a cut along the real axis in the P,-plane for P,=2E(P;0)= 2Vm? +P2/4
Denoting by W®(P; p”, p") the boundary values as P, approaches 2E(P; j,) from
above (+) and from below (—), we see from (2.12) that W™ satisfy the singular
integral equations

We(P; 5, 5)

g=(P; k)=

(2.24)

E(P; k) g(j:)(P; ’2) W(t)(P; }-(’, p)

=V(P;p", p)+Q2m) > jd3kV(P; p", k)

2 & . E(P;k A - -
= Vi, )+ @m) [aewe; ) BT g V(P K ).
(2.25)
Also,
W(:t)(P 41 -1)_W(x)(P ) -n) W—V(P ~ —w) (226)

Now define scattering wavefunctions ¢*(P, py; p) in the usual way by
¢ (P, Bo; P)
|E(P; o) oy BB e i s
= _m_po [(277)3 5(3)(P_p0)+ m i g( )(PQ p) W )(P§ P, bo) |, (2.27)

W™ in (2.27) being half on-shell. It follows by standard methods of scattering
theory that ¢ satisfy the inhomogeneous equations

¢“(P, po; P)

[E(P; po) . . E®D) e p. A
= Tm(ZwPB‘”(p—po)Jr (m P) s p)

X (2)3 jd%\?(P; 5, )6 (B, Bo: ). (2.28)
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By complex conjugating (2.28) and using (2.26) we deduce that

332 _pm— -3 30 4 (F(D 2 .20 ”-m

x[(2m)* 89(p"— k") — V(P; p", k)E(P; k") (2.29)

Since (2.28) is an inhomogeneous equation, the transformation of the wavefunc-
tion and of the equation itself follow directly. Equation (2.28) becomes, in the rest
frame,

(b(i)(ﬁ 5025)
\/E(E )(2 )? 8 (P - pg)+—m———(2w) 3
m (P2 £)

x Jd3iv( B, )0, Bo; k), (2.30)

where, just as in (2.21),

& (0, Bo; B) = (Po/VP?)' ¢ (P, po; P),
with p given by (2.20), while P, is defined analogously. Equation (2.30) is the
standard integral equation for the incoming and outgoing scattering wavefunctions

in the two-nucleon rest system. For completeness we give also the corresponding
Schrodinger equation in momentum space

m = (P2 — PO, po; p) = (2m) 3 jdi‘:é\?(ﬁ; B, B, Bo; ).

We turn now to the formalism for meson exchange effects in the two-nucleon
system, and begin by considering the amplitude for the process

v(q)+ N,GP'+p")+ N3P —p’) = N,GP"+ p")+ N,GP"— p").

Using the standard reduction procedure of field theory, the S-matrix element for
this process may be written in terms of the electromagnetic current operator

J,.(0):
(P";p"|S| P';p'sq, &)
= ~i2m)Q2m)* 8 (P"~ P'~ q)e, (P"; p" (0 P's p). (2.31)
Single particle plane wave states are normalized according to
(k| k'y=2E(k") 8¥(k"~ k')

and ¢ is the polarization 4-vector of the photon. The quantity on the left side of
(2.31) is evaluated using standard Feynman rules. Now define the quantity M* by

(P"; p"| J*(0) |P'; p"y = 2m) " *(4m*)M*(P", P'; p", p'), (2.32)

where M* has standard spinors on both sides.

We are interested first in the matrix element of the current J*(0), not
between states containing free nucleons, but between two-nucleon bound states.
We shall denote the state vector for such a bound state by |d; P), since the
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deuteron is the only such bound state. The 3-momentum of the deuteron is P and
its total energy is P, =+M?>+P-. Adopting for bound states the same relativistic
normalization as before, we find, using for example the arguments in Ref. 14, that

(d; P\ J*(0)|d; P")

= @m)*@m)@m)® | d*(p", p') F(P"; p)&(P"; pA=(P", P 57, )

x g(P"; pI'(P'; p)

=(2m) 3 (am)2xn) "¢ | d3(p”, p') ¢(P"; p") A= (P", P'; p", p)d(P'; ),

(2.33)
where
Au (P”, P', ﬁ", ﬁ'
s (211_)—6 j 3(kn k' )[(27‘_)3 8(3)( = H)_ V(P"', ﬁ", IE”)Q(P“; Eu)]
X M*(P", P'; k", K)[2w)* 8F(K'—p") - g(P'; K)V(P K, 0], (2.34)

m A~ m
w ' ’ *n "N — = NG P", P" "", n’ =T 2.35
A“(P", P p", P') \/E(P,,; 5 ( p p)\/E(P;p) (2.35)

We shall use the symbol M} as a shorthand for M*(P", P'; . p", p’), and similarly
for A%. While M* in (2.32) has standard spinors attached, Mo in (2.34) has BBS
spinors instead. Moreover, M¥ has poles at Pj=vM?*+ P2, Pi=+/M?+ P"? which
are compensated by the zeros which arise, according to (2.13), from the quantities
in square brackets, when the matrix element indicated in (2.33) is taken. From
(2.33) we see that, when one calculates matrix elements using nonrelativistic
wavefunctions, the correct two-nucleon current to use is A*, which is given in
terms of A% by (2.35). In turn, A is given in terms of M% by (2.34), and M is
obtained by applying the BBS prescription to the field theoretic amplitude defined
by (2.31) and (2.32).

We wish now to indicate the modifications which are required when we take
the matrix element of the current J*(0) between an initial two-nucleon bound
state and a final continuum state, as in the case of deuteron photodisintegration.
We normalize two-nucleon states according to

(2N; P3Pz | 2N; p1p2) = 4E(P1)E(B3) 8°(p3— P2) 8 V(P - (2.36)
We shall label continuum states as before using the total 3-momentum P and the
relative 3-momentum p,. With the normalization (2.36) the equation analogous to
(2.33) is
(2N; P, o J*(0) |d; P')
= @m) > 2am™ [ @k, DN, P o, B

x[(2m)? 8k —p")—g(P'; K)V(P'; k', p)1g(P; pOI(P'; p'). (2.37)
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Equation (2.37) can be rewritten, using (2.29) to give
(2N; P", po| J*(0) |d; P')

— (277')_2”24"13/2 J'dS(pn, pr) d)(f)(ijn, ﬁo; i)w) A”(P”, Pf’ ﬁ": p’!)(b(ijl’ '*I),
(2.38)

where f\:‘ is defined by (2.34) and (2.35), with g(P", k") in this case being
A(+) " ”
g (P"; k").

To proceed further we decompose the complete set of diagrams which
contribute to M* (which has the spinors removed) in a way which is exactly like
the decomposition which gives the Bethe-Salpeter equation (2.1). Using symbolic
operator notation again, the result is that M* can be written as

M" = K"+ WGK" + K*GW + WGK"GW. (2.39)

Equation (2.39) defines K", which is obtained by summing all irreducible dia-
grams. The NN scattering amplitude W and Green function G are exactly as in
(2.1). The 1irreducible diagrams whose contributions we shall consider are given in
Fig. 1. There are two diagrams for each of (a), (b), (d) and (e), corresponding to
absorption of the photon on nucleon 1 and on nucleon 2. In (d), the intermediate
state is the A(1232) isobar. There is another diagram like (d), in which the pion is
exchanged first, but this gives no contribution when there is a deuteron initial
state.

For the present we consider what happens when the matrix element is taken
between bound states. When we use (2.34) and split A§ into four parts according
to the decomposition of M" in (2.39), the matrix elements of the first three parts

T
1
[}
1
1
[}
(]
i
)
|
|
E % (c)
(a) (b) \ &
N\, ’
N ’
Y
V4
] A ,’ l"\\\
! N VRN
i N ’ s’ b
: e 5 \,
! AN
’ \
i EE Y (f)
L N
é X
g \\ ”
VAVAVAVAY N
N
N’
(d) (e) 7

Figure 1
Irreducible diagrams which contribute to K*, defined in equation (2.39), in impulse approximation
and one- and two-pion exchange approximation.
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vanish when they are calculated using (2.33). This follows directly from (2.13),
since the first three terms on the right side of (2.39) do not have poles in both P,
and Pg to compensate for the zeros which arise from the equations for the initial
and final vertex functions. Therefore, for the purpose of calculating matrix
elements between bound states according to (2.33), one can replace M* by the
final term on the right side of (2.39) and write

M* = WGK"GW. (2.40)

(The notation = will mean ‘equal for the purpose of calculating matrix ele-
ments’.) Using the identity

E(G)(voqo— v - G+m)
=m(qo+ E(@)) 2, u”(@a"(d)+m(qo— E@) X, v"(-§)5"(-4),
the Green function G can be split into four parts. This means that the right side of
(2.40) decomposes into sixteen terms, just one of which contains four internal

positive energy states. Each of the other fifteen terms contains at least one
negative energy state. Thus, attaching positive energy spinors, we have

M*“(P", P'; p", p')
:(217)—8 Jdtt(ku, kt) W(P", pw’ k")G++(P”; kfl)Ku(Pl, Pl’ k", kl)
X G, (P; KYW(P'; k', p)+- - -, (2.41)

the remainder on the right side denoting the other fifteen terms. For an internal
two-nucleon state with total 4-momentum P and relative 4-momentum p, the
function G, , is given by

1 m?2 1
G++(P;P)=_. 1 = 15 _ = = - TR
i EGP+ P)E(zp_P) (Po_xl(P, p)+ie)(po+ x,(P; p) — ig)
(2.42)
where
LA B a 1
x,(P; p)= EGP+p)—3P,, (2.43)

x2(P; p) = E(%P_ﬁ)'%Pn-

The two impulse approximation diagrams are slightly different. Each of them
gives a contribution which splits only into eight terms, and the term containing only
positive energy internal states has only one propagator for particle 2 when the
photon is absorbed on nucleon 1, and vice versa. This term for the impulse
approximation charge density, when the photon is asorbed on nucleon 1, is given
in (3.6).

We now discuss the terms in (2.41) which involve at least one negative energy
internal state. The only terms which contribute at 17E level are those in which
K* is given by the impulse approximation diagrams and there is one negative
energy state adjacent to the vertex where the photon is absorbed. These terms
give what is called the pair current (PC) and they are important for PS wNN
coupling. The use of PV «#NN coupling results in pair suppression, and these
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terms are not important in that case. However, for PV coupling the SG diagrams
(Fig. 1(b)) have to be included in K*; they are absent for PS coupling. All the
other terms in (2.41) which involve at least one negative energy internal state are
at least at 2wE level. Some of these terms are very important if one calculates
them naively using PS #NN coupling. However, these important contributions are
cancelled to a large extent by a special class of 27E contributions which are
generated by a mwNN contact interaction which arises quite naturally in a chiral
invariant theory. This interaction is usually simulated by a oNN interaction. So
one hopes that there is no unusually big effect due to 27E, and notes that there
would be serious problems if one tried to do a full 2#E calculation using PS 7NN
coupling. For PV coupling all these negative energy contributions are strongly
suppressed, so that one obtains only the 27E contributions which come from the
positive energy term which we have written explicitly in (2.41). These contribu-
tions are the same for PS and PV coupling; we shall consider them later in order
to compare the results which come from the BBS formalism with those from the
unitary transformation method. From now on then we consider only the term
which we have written explicitly in (2.41). Inserting this in (2.34) and using (2.10),
we arrive at the key result

j‘\p.(Pn, P’, ﬁ", ﬁr)
> (27_‘_)—8 jd4(k”, kf) V(P"; ﬁn, k")G_,_.,_(P”; kn)

x R*(P", P'; k", k"YG,.(P'; k) V(P'; k', p') (2.44a)
or, in shorthand notation,
Ay =VG,.K*G,. V. (2.44b)

It will be seen that the right side of (2.44) is free of zeros and poles.

We complete this section by indicating what happens to the preceding
arguments when the matrix element is taken between a bound state and a
continuum state. Now the third and fourth terms of (2.39) remain, so that

M"*=K*GW+ WGK*GW,
Keeping only positive energy states as before, we have
M4 =K*G, , W+ W®G, K*G, . W. (2.45)

Note that it is W which appears in the second term on the right side of (2.45);
for this reason, the matrix element in (2.38) involves ¢™. Using (2.34), it follows
from (2.10) that

Ab=(1-V,$“HK*G,, V+ VG, . K*G, . V. (2.46)

Note that there is a cut for P§=v4m?+ P in M} due to the appearance of W™,
but that this cut has disappeared from Aj§. If matrix elements are calculated
between bound states using (2.44), and between a bound state and a continuum
state using (2.46), one finds formally identical results for the two cases. This can
be proved using the methods which will be developed in the next section. We shall
therefore for convenience use equation (2.44) as the basis of all our calculations.
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III. The impulse approximation with relativistic corrections

In this section we shall calculate the two-nucleon charge density and current
density for the impulse approximation diagrams. To do this, we start from (2.44)
and write each V in the form

‘7= ‘70+(V_ ‘A/()), (31)

but take only the term in which each V in (2.44) is replaced by V,. We shall
consider the effect of the second term of the decomposition (3.1) in later sections.
Using the definitions of V,, V and A* in (2.11), (2.16) and (2.35) respectively, we
have for the term which we are now considering

_ - E~ Plf; ’2"
Au(Pn P'- ﬁ"a -1 — (27T jd4(k'r, kl) V(P"; ﬁlr’ kn) / ( )G++(P”; k:r)
m

A E(P; k') - o
XK"*(P",P'; k", k")G, .(P'; k) EZ k) V(P'; k', p').
m

(3.2)

From now we shall denote A” by p and the 3-vector (A',A% A% by j. All
expressions in this paper for the various parts of p will have the opposite sign to
those given in JW. It will be seen from (2.31) that, in computing M* from a
particular diagram, a factor +i has to be included as well as the various factors
given by the Feynman rules. In JW a factor —i was used, which arose from the
unconventional Fourier transformation between coordinate and momentum space
which was used there (see (2.9) and the equation after (2.10) of JW). In this paper
we use the standard Fourier transform convention. The results given in JW for the
electric dipole operator in coordinate space are of course correct, and independent
of the convention used.

We now consider the impulse approximation charge density p(IA). This is
obtained from (3.2) by taking for K° the contribution of the impulse approxima-
tion diagrams of Fig. 1(a). The charge density p(IA) may be split into two terms:

p(IA) = p,(IA) + py(IA), (3.3)

where p, and p; correspond to absorption of the photon by nucleon 1 and nucleon
2 respectively. For the yNN vertex we need to include the Pauli term which is
conventionally introduced to simulate the anomalous magnetic properties of the
nucleons. Then

V(YNN) = —ie(éy“ + m;;:ql,) , (3.4)
where the isospin operators é, k are defined by

é=31+1,), R =3(ks 1+ KkyT,), (3.5)
with

1+KS p“p_*-““m 1+KV:“'p_)u'u'

The 4-vector g* is the 4-momentum of the incoming photon. Then, using (3.2),
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(2.42), (2.43) and (3.4) and the Feynman rules, we have
pl(IA; PH’ Pf; i)'ﬂ’ p'f)

. . E~ pP- Eu
= —je(2m)™* Jd“(k", kK" YV(P"; p", k") \/—( m’ )

. K1V g -
<, 4P+ B e1v0— L) (4 + )

EP: k') - .
X \/—L”}—) V(P'; k', p')

N 89k~ k' ~3a)
EGP'+k"YEGP' + k" YEGP'— k') (kii—x"+ie)(ky—x}+ie)ky+xs—ig)’
(3.6)
where
xi=EGP' +k')-3P;,
x} = EGP"+ k")~ 1P}, 37
Xz = E(%ﬁ’_ EI)—%P{)-
Note that
P'~P'=q,
so that, because of the &-function in (3.6),
P’—k"=3iP' - k',
and so
EGP -kY=EGP"-k"), kh+xj=ki+x}, (3.8)
where
x3= EGP"—k") 3P (3.9)

n

Now the integration over kg, k; can be simply performed by using the
d-function and then by closing the contour in the upper half-plane, with the result

8(ko—ko—290)
(kg—x{+ie)(ki—xy +ie)(ky+ x5 —ig)
. 1
~ [P6—2E(P"; k)P, —2E(P'; k)]’
where we have used equations (3.7)—(3.9) and the definition of E in (2.23). Using
(3.10), we now write (3.6) in the form
p1(IA; P", P'; p", p')

1
ol Jd(kﬁ, k)

(3.10)

E(P"; I’(‘n)
m

= @m® [0, k) v 5, 1) & (P k)

(P5Py)*”

x e(2m)* (k" — k'~ 1)
2m
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X \/————-»m =~ i, (3P + fc"')(é Y BLILALLD é’yo)u (P + k')
E(%P”'*‘ ku) 170 2m 12
/ m . EP; k) - .
X N T — P" By e B L 2

where
. V2 m?
eGPk e N (3.12)
[E(P; k)EGP+k)EGP —k)]"*Py*[P,—2E(P; k)]

From the definition (2.9) of E, it follows that, to terms of order m %,

- = E(%ﬁ-*r E)E(%ﬁulz) [ (k>—8)P> (P- E)z]

E(P; k)= e — 1+ 3.13

(P k) E(P: k) 8m? 4m* I ( )

where

6 =—mB (bound state), 8 =pg (continuum state), (3.14)

B being the binding energy of the bound state. Also, from the definition (2.7) of
¢, it may be shown that

4m?

E(P; k)[P3—4E(P; k)*[1— (P - k)*/4m*]’

g(P; k)=~ (3.15)

Putting together equations (3.12), (3.13) and (3.15), we find that

(P - E)2+(E2— 8)P2+(E2—8)2]
8m* 16m* 32m* 1’

g (P; k)=~ g(P; 12)[1—

so that g, and g may be identified in the approximation to which we are working.
Thus, forming the matrix element of p,(IA) in (3.10) between two-body
wavefunctions according to (2.33) and using (2.17), it follows that

p1(IA; P", P'; p", P')
=e(2m)* 8V (p"— b’ —2G)(PePo) */12m

m — 1D = (A '21'? ) QYO)
X '\/——'::— sP" + Ll S
= - m \
Xul(%P"*'P)\/m. (3.16)
2

As we indicated at the end of Section II, when a physical photon produces
transitions from a bound state to a continuum state it may be shown that the
expression for p,(IA) in (3.16) remains the same.

Performing the spinor reduction in (3.16) and noting that

P-P=i '-v-=4

N|—=
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we have, to order m 2,

pl(IA Pn P -n pr)

=e(2m)> 5‘3)("’ ~34)(PgPg)*12m
" t(e+2f<)¢ e ymn (828R
X [el___i_r;t_?:__l-q {a, x(p +%P)}-—"-18—m§~—1- g\, (3.17)
where
P=P+P". (3.18)

In a frame for which P is parallel to g, P may be removed from the spin-orbit
term in (3.17) and our result then agrees with that given in Appendix D of Ref. 4.
The expression for p,(IA) in (3.3) is obtained from that for p,(IA) in (3.17) by
making the changes é, — é,, K, > K,, 0, 05, p'— —p’', p”"— —p". We note here
too that our derivation of p(IA) using the Green function g, of (3.12) shows that
the ‘one pion exchange’ charge density of JW is in fact absent.

The right side of (3.16) should in fact be sandwiched between helicity spinors

X(IA’;)(%P‘”'F ﬁrt)*xg\’g(%ﬁn -u)* . (A )( Pf g p’l)X()\ )(113’_ ﬁ’),

which come from the spinor reduction in (3.16). Helicity spinors depend of course
only on spatial direction, but the notation we have just used is convenient. We
next remark that one may replace these standard helicity spinors by BBS helicity
Spinors:

(A )(2011 s ﬁ”)*X 2)(2()H -u)* : (A )(20 + ()\ )(ZQ 'p’l)

where
= 0(P"; P, Q' =0(p; p').

One can show that, in making this replacement, one is neglecting 17E contribu-
tions to the charge density which are down by O(m ?) compared with the 17E
contributions which are considered later in the paper. The argument is easy to
construct using two results which we shall need again later, namely

O(P; ﬁ)zﬁ[lﬁp"_zE(P;p)] (3.19)
2m

and
ip' (6’)(6)] A) 3
—_— +

which is the familiar expression for the Wigner rotation. In equation (3.20), Q
stands for Q(P; p) and p is related to p by (2.20).

Instead of sandwiching the right side of (3.17) between BBS helicity spinors
as explained above we can take the matrix element of the charge density in (3.17)
between an initial wavefunction

O(P'; p)= ), xPVGO +p)x$PGA - P (P p) (3.21)

AAS

xMGO+p)= [1 + (3.20)

and a final wavefunction with all primed quantities changed to doubly primed
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quantities. Equation (3.21) gives the initial wavefunction which is used in practical
calculations. It is chosen to be an eigenfunction of total angular momentum. We
now drop the primes from (3.21) and express ®(P; p) in terms of the wavefunction
®(0; p) in the rest frame. Using (2.21) and (3.20) we have

P, HE s 5 ip - ‘1_* b 2 3
(ﬁ) CD(P;p)x[l—lP {(“Smfz)x"}]cp(o;p). (3.22)

Using the relation (2.20) between p and p, we find the desired transformation

P())”z *.*,_[ iP-{(6,~6)xp} P-pP-V;
(\/F" O(P; p)=~|1 8m? 8m?

Note that, in the order in which we calculate, (3.23) is independent of the
potential. This result depends on (2.20), and is an interesting feature of the BBS
prescription. We wish to note here that the Gross prescription [15], which treats
the two nucleons in an unsymmetrical manner, gives instead of (2.20) the relation

p=p—p- PPI8m>+(m>+p>— P> B/am?

and the additional term induces dynamic corrections [16]. It was clearly shown by
Friar [9] that the dynamic corrections peculiar to the Gross formalism correspond
to certain 1wE (or retardation) corrections in a framework in which the two
nucleons are treated symmetrically. This correspondence is true also for the

quasipotential formalism. Equation (3.23) agrees with results given by Friar [6]
and Coester and Havas [17].

We can now write the expression for the impulse approximation charge
density p,(IA) whose matrix element is to be taken between rest frame wavefunc-
tions ®,(0; p’) and CI),(O p"). From equations (3.17) and (3.23) we have

]cp(o B). (3.23)

pl(IA P" P’ i)’", "f)

= e(VPP?) " /2m
2 L (8,+2k
[(2,”_)3 8(3)( =y -' %q’){él u lq (O-I X( }_'P))_M -
4m? 8m
é] . - - - 1D él = - Ty v
+ 2IQ‘((0’1'0'2)><(P aP)) H;JP'PP'vﬁ'}
8m m
_% I'Sn . V Pn . *u(z_n_)‘% 6(3)( > =) _%q’)_}_ O(mkft)] , (3_24)
m

where it is understood that V. acts to the right on the initial wavefunction and V.
acts to the left on the final wavefunction.
We conclude this section by giving the result for j (IA) analogous to that for
p(IA). To obtain II(IA) one goes to (3.16) and replaces the central bracket in the
spinor reduction by

Ky . - Qo

" 2m

We write the expression for j,(IA), whose matrix element is to be taken between

K 1 'Y“/o
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'rest frame wavefunctions, and work this time to first order in g and P. The result
is
f1(A; P", P'; 5", B')
= e(f@'—z)mlzm(zm '2m)* 8V(p"— b~ 3d)
<[P rar+ 25+ @+ ig x - L5 G+ io <GP+ @) +26)

A

—26‘ (55 - (P+G+25)+4 - p'icy X p' +352(P+ G +2i5, X d))

m
’21 . - -7 = -y él ol B - - -y —4

a L b AR s 5D0'iq - ((6,—3d2)xp")+O(m )]. (3.25)
m 4m

To obtain p,(IA) from p,(IA) and j,(IA) from j,(IA), one makes the changes
By — By, Ry—3 Ry, B 858y, F ——F, B —5—p" in (3.24) and (3.23),

IV. The one-pion exchange potential

Many of the developments in the rest of this paper hinge on a proper
understanding of the 17E NN potential, and we shall devote this section to its
study. For the process

NGP +p")+ NyGP—p’) = N{GP+p")+ N,GP—p")
the full field-theoretic 1wE potential V,_(P;p", p') is

V.(P;p' ,p)—fz2 Fio Fy— *lj 5, (4.1)
mx ~w(p"—p')" +(ps—po)
where
N(PS)=—4m>@,GP+ p")ysu, QP+ B)iGP — ") ysusGP — p), 4.2)
N(PV) =GP+ p")vo(ps—po) =7 - ("= B)lysurGP + ')
X i,GP — P vo(ps— PO — ¥ - (B"— ) ]ysuG6P - ), (4.3)
w(k)?=mZ+i?,
and f*/4m=0.079. We define p by
p=p"—p 44
For both PS and PV coupling the leading approximation to N is
N=ag, - pa, ' p. (4.5)

For PV coupling there is a term in each spinor reduction which involves (pg—pJ).
Taking only the term in N which is linear in (p§—ps), we obtain

.. = (Po—Ppo) -
N(PV)zol-pcrz-p——pz—nf—o[

- pa, - (P—p"—p")].

(P+p"+p)G, - P
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It is convenient to introduce a quantity ¢ such that
¢ =+1 (PV coupling), ¢ =—1 (PS coupling). (4.6)

For the calculation in Section V of 1wE and 27E effects, we shall use the

approximation for V. which we have just obtained, which neglects terms of order

m* in the spinor reductions, namely

V.(P;p", p)
f2 . 1
——2 T =1 =N\2
2(ph—poy?—w(p"—p"

[ . (1+0)(pg P()){
Po2 P 2 2m

(P+p"+p)6,- P
+6, 0, (-5~ |
4.7)
This exhibits explicitly the dependence of \7,, on pg and p{. Note that \A/,,, unlike

the 27E potential which we shall consider in Section VII, does not depend on P,,.

We next want to consider the quasnpotentlal V. in the two-nucleon rest
frame (P=0). From now on we use p’, p” to denote the initial and final
3-momenta in this frame. Using (4.1)—(4.3), with

-

P=0, po=p;=0,

and making the spinor reductions to order m 2, we find using (2.16) that

e o fz . . _1 . . . (ﬁr2+ﬁn2) . . .
Vw(O;P,P)Zm—iTl'Tz—i‘I)E O'I'po‘z'P""‘Tmz_"O'I'poz‘p
( "2 __ 12)
+T(01 PG, Pp+Gy-p'oy p+0,y - poy - p)] (4.8)

The quantity c is defined in (4.6) and the difference between PS and PV coupling
appears in the third term of (4.8).

_Within the framework of the quasipotential formalism it is the 17E potential
V_(0:p".p") of (4.8) which should be included in a semi-phenomenological
potentlal for computing two-nucleon wavefunctions in the c.m. system. All
semi-phenomenological potentials use the leading term in (4.8). The second term
gives a relativistic correction to the 1wE potential which is included in the
Nijmegen potential [7] and is partly included in the Paris potential [8]. The Paris
potential is energy dependent. However, the linear energy dependence of the
central potential can be transformed into a p° dependence which for the 1wE
potential is given exactly by the second term of (4.8). The p> dependence of the
tensor potential is neglected. This is a defect of the Paris potential, but this
potential is available in the literature in readily usable form and is the one most
widely used in recent calculations. The third term in (4.8), which is c-dependent,
is not used in any of the semi-phenomenological potentials. It turns out, however,
that this part of V. can be dealt with in a very neat way, which has also been
indicated by HG [11], and that the resulting corrections to the initial and final
state wavefunctions lead to 17E contributions to the charge density.
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To show this, we write the third term of (4.8) as

(5::2 _ 5:2)
C —_—

AV, p) = >—v(p", p'), (4.9)
4m

2
",P)zfg”']"rz .._2(0'1'P‘TZ'P+0'1'P0'2'P+0'1'P0'2'P)s (4.10)
ms w(p)
p being defined in (4.4). From equation (2.22) for the case of weak binding, the

first order correction A¢ to the bound state wavefunction ¢ associated with V is
given by the inhomogeneous equation

(Hy+ B+ V)A¢p =—-AVe, (4.11)

where we have written H,, instead of p*/m, and V and AV are of course integral
operators. The trick which we now use is to take advantage of the special form of
AV in (4.9) to separate from A¢ its longest range part. We have

AV =ﬁ(H0v—vHo>¢
:ﬁ[(HO+ V+B)v+[v, V] —v(Hy+ V+B)]é

=—[(Ho+ V+B)vé +[v, V18],
4m
using the Schrodinger equation for ¢. Thus (4.11) becomes
(Ho+ V+ B)(Ad; s vqb) =——"[v, V]o. (4.12)
4dm 4m

We next remark that simply adding AV to V will give a potential which
changes the binding energy B and asymptotic D/S ratio n of the deuteron. Since
the approximation in which we calculate AV breaks down at short distances, the
potential needs to be further modified at such distances in order to reproduce the
bound state parameters correctly. Since the Paris potential is chosen
phenomenologically inside a radius of 0.8 fm, this is a completely justified
procedure. The separation between an inner and an outer region is precisely the
philosophy of the Paris potential. In fact, it turns out that the simple expedient of
cutting off AV in coordinate space at a radius of 0.76 fm leaves B unaltered. What
we see in (4.12) is that, while v has a range m},', the commutator on the right side
has a range (2m,)"', and any further term on the right side arising from a
modification of the potential required to reproduce B and n correctly will also be
of range (2m,)"! or less. Thus we expect that the solution of (4.12) which one
obtains by integrating in from infinity will be ‘small’ compared with (¢/4m)v¢
until one gets to a radial distance of about (2m,,)~". This expectation is borne out
by detailed numerical calculations. _

We have now shown that, because of the special form of AV in (4.9), it is a
good approximation except at short distances to take for A¢ its longest range
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part, namely
C
AP~ ———vd. (4.13)
4m

This result can be derived also by means of a unitary transformation [6]. In
evaluating the matrix element ¢pd of (2.33), we then see that the change in ¢
given by (4.13) is equivalent to a change Ap in p which is given by

i T J | ce 1} > A dl} > )
Ap(g; p ,p)=—4—[elv(p —3G, p')+ év(p"+34, p")

—v(p", p'+24)é, —v(p", p' —2G)é,]. (4.14)

In writing (4.14) we have used the nonrelativistic impulse approximation for p,
namely

p(NRIA; 4; ", ') = e(2m)’[é, V(5" 5’ ~3d) + & 8V~ F' +3d)].  (4.15)

To understand the minus sign in the third and fourth terms of (4.14), note that the
spin factor in (4.10) may be written as

- -y = -

+p"02p"'—0, p'aa P,
so that
v(" H)_ _v(*fl pl)

Since (&, +¢é,) commutes with 7, - 7,, it follows from (4.14) that Ap(O p”, p') = 0.
Expanding Ap around §=0 and keeping only the terms linear in 4 (the exact
dependence on g is given in (4.14)), we have

Ap(q; p", p")
z4 2[%(71z_722)0)(19) X(a, *Go, - p+ay - poy - q)
mmo:

+i(71 X T) Aw(P) 236, - GG p+36, - Poa- G+ Gy - GG P L.
+0,°p'ayq)
—2p - Gu(p) Y&, pG2- P+, p'Gr- P+, - paa- PO}l (4.16)
The corrections to the initial and final state wavefunctions which are induced
by the c-dependent part of the 17E quasipotential V,, have now been shown to
lead to a change Ap in p which is given by equation (4.16). Provided this change is
taken into account, one can calculate matrix elements with wavefunctions ob-

tained in the two-nucleon rest frame from a potential whose 1wE part includes
the c-independent relativistic correction but not the c-dependent correction.

V. One-pion and two-pion exchange processes

We begin by recalling the decomposition of V in (3.1), which splits the right
side of (2.44) into four terms. The contribution of the first term to A* was given
in (3.2). The term which we can write symbolically as

(V - Vo)G++KuG++(V" ‘70)
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can be shown to give as its leading contribution a 27wE term which is down by a
factor of order m_/m compared with the leading 2wE terms. It remains to
consider the terms

"‘/()G++KAMG++(V_ ‘A/())+(V_ Vo)G++KA“G++ ‘70. (5.1)
The factor (V — \70) in the first term of (5.1) is, in full,
V—V,=u,0P' +k)i,(3P - k) V(P'; k', p)u, GO’ + p)u,GQ' — p")

— 4,00+ KA - KYV(P', k', p)us GO + P u6O = ), (5.2)
where

O =0 p), O =0F;k).

We now insert directly to the left of V in the first term of (5.2) the identity
operator in the form

1= | 2 w6+ F)& (6 + )~ T 0,06+ 95,46+ 01
X [Z (00"~ K),(30'— k)~ ¥ 0,0~ K)5,30" - E')] : (5.3)

The sums in (5.3) are over helicities and V in the first term of (5.2) is split by
means of (5.3) into the sum of four terms:

V=V**"4+V "+ V* +V ", (5.4)
where
vor=Y a,6Q'+ E’)az(%fz)’— KYVV(P' k', p)u, GO+ pu,(3O' - p)
x i, (P + KN, G0+ KNG - Ku,3Q' - K), (5.5)
V==Y 5,3Q" + Ka,30' - k) V(P'; k', p)u, (20" + p)u, 3O’ — p')
X i, (3P + K030’ + K a(P — K u,30' - k). (5.6)

There is no need to write the full expressions for V*~ and V™. The_sums in (5.5)
and (5.6) are over the helicities of the spinors which depend on 1Q’'+k’.
Now use (3.19) to write

P,—2E(P'; k')

Q:r_Pl:é(Pl; E,)_P':"’_P
2m

(5.7)
Note further that

P,—2E(P'; k) ~(8—k'*)/m,
where & is defined in (3.14), so that (3'—?" is in fact O(m?). Then

0GP +Ku, GO + k) ~1- 8;12 &, AP — O x K =~1

and, from (5.5),

"‘/++(Pi; k,, ﬁr)z al(%é"" E’)az(%él_ f(’t)V(Pl; kl’ ﬁ’)ul(%é"kﬁ’)uz(%(j'_ii’)- )
5.8

The quantities V™" and V™~ need to be considered only for PS wNN coupling
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(for PV coupling the expressions are down by a factor of order (m_/m)?) and are
given by

[P,—2E(P'; k)] > (1-c)

VP K ) =
(P'; k', p") am 2 2
- .ﬁi* . "('r_-r
x’Fl"an-l ({,2 (4,2 p)+o(m*4), (5.9)
w(k'—p")
ne [P4—2E(P'; k"] f2 (1—c¢)
v+ Pr; k’, Al —
( 2 4m m2 2
> . Er_*r - _i)'r
xﬂ"-r'zal ( »,pz(,yi +0O(m™). (5.10)
w(k’'—p’)

Going again to symbolic notation, from (5.4) we have
V-V,=(V*=V)+V "+ V™ +V (5.11)

where V**, V,, V°* and V*~ are given in full by (5.8), the second term of (5.2),
(5.9) and (5.10), while V~~ can be neglected in the order of approximation to
which we are working.

We shall at first investigate that part of (5.1) which is given by

V,G..K*G, . (V*+ V" +V ) +(V + V™ +V )G, . K*G, ., V,.

We shall obtain the effective charge density (u =0), considering only the impulse
appr0x1mat10n diagrams for K° and taking V as the 17E potential V. The actual
calculation is similar to the one described in Section III and we can use the right
side of (3.11) as a guide, insert (V~*+ V*") from (5.9) and (5.10) instead of V on
the far right, keep only the nonrelativistic impulse approximation in the middle
and use the equation for the final state wavefunction on the left. Since

g (P'; k") =~[Po—2E(P'; k)]

and factors like E/m can be set equal to 1, the resulting charge density is similar
to (4.14), namely

' ’ = dJ (1 - C) ', =2 = SEp A -‘I nd [ - =
p(PS; P, P';p", p')=e [é.X(P'; p"—34, p') + &, X (P'; p"+1d, p)
— X(P"; p", p' +3§)é,— X(P"; p", p' —3d)é,], (5.12)
where
" 72
XH.B, ﬁ’)=_“§‘i:1 2(0'1 pa - P- g, P(Tz p). (5.13)

my w(p)

Expanding p(PS) and keeping only terms linear in the external momenta, we
have

p(PS; P", P'; p", p'
fA (1-¢) .. . 1

" 4mm2 2 [Tl'72+%(71=+72z)]m(51'El&z'ﬁ—ﬁ'fﬁéz'é),

) (5.14)
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since
(él 3 éz)’i:l ) ‘.".2 = 'Fl ' ‘T'z(él + éz) = "-‘:1 : ¥2+%(le + '7'2:)-

We now work out the contribution to the charge density from the remaining
terms in (5.1) which involve the retardation in V, namely

VOG++I€0G++(V++ - VO) F (V++ - VO)G++KOG++ ‘70-
Let us denote this charge density by
p(RET) = p’'(RET) + p"(RET).

Since we are interested only in 17E and 27E effects, we approximate V by V,
and take for K° the contribution of the impulse approximation diagrams of Fig.
1(a). Thus p(RET) may be split into two terms,

p(RET) = p,(RET) + p,(RET),
just as p(IA) was split in (3.3). Using (4.7) for V,, the expression for p}(RET) is
p;(RET; Pll’ Pl; p’iﬁ, p’l)

26(217)~3‘[d3(k"’ k’)V(P"; ﬁﬂ’ E") E(PI > k )
m
= o im| a K '? : (-]."Y ~ m
X a,GP"+ k )(6170— lzm O)ul(%P + k') E(T,ﬁ')

m3 f2
X = = = — = =
EGP'+k)EGP +K)EGP — k) m2
y 8(3)(’-(.”_1—5’—%&)
[w(k'—p")—(ky—pe)?]
x| @ -1, @=L,

-

;'1'1'2

1+C 1 - D/ i’ AT it -
(59 5160 B+E+ )6 R - )

+6, - (k'=p")é, - (13’—1?’—{5')}12], (5.15)
where

I,

1 j n !
S | Ak ko)
y 8(ki—ko—3q0)(ko— ko)(ko + ko —2pg
(kg —x{+ie)(k—xi+ie)(ko+x3 — ie)(ko — Po)* — w(k' = p')* + ie]”

(5.16)
1
by=g— jd(k:;, ko)
Tl
o 8Uks—ko—3a0)(ko— ko)l (ko — Bo)(ko — Bo) + (k' — 5]
(ko= x+ie)(ko—x1 +ie)(ko+ x2— ie)[(ko — Po)* — w(k'— p')* +ie]
(5.17)

The quantities x;, x| and x; are defined in (3.7).
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To obtain the leading contributions to pi(RET), we approximate the spinor
reduction on the second line of (5.15) by é, and replace all factors m/E or m/E by
1. Further, we approximate (2.5) by

ko~HEGP + )~ EGP ~ k)] =3(xi—x),

again neglecting terms of order m™~ compared with the leadmg term. In the same
way, we neglect the quantlty (ki—pe)? in (5.15), since it is of order m 2. The
integration over kg, kg in (5.16) and (5.17) can be performed as before by
eliminating the 5—function and then closing the contour in the upper half-plane.
Using (3.8) and neglecting terms which lead to effective 2#E contributions which

are down by a factor of order (m,/m) on the leading 27E contributions, we find
that

%1 —2(Pp— P6)+E6‘2ﬁ0

I = —
: 2(xt+ x5w(k'—p')?
1 Mei-xD PPy +Eo-2p; o35
4w (k'—p")? 2(x{+ x)w(k'—p')? ’ )
1
IL~=~———— 1
2 2(x"+xD)’ (5.19)

where x5 is defined in (3.9). From (5.15), (5.18) and (5.19) we obtain three parts
of p1(RET). Taking the first term in (5.18) and approximating V in (5.15) by V,
and V_ by the first term in (4.9), we arrive at part of the leading 217E
contribution

p12wE, u; q;p",p’)

4
:_e'_4 '}:1 * ’}:Zél‘:‘:l : ’3:2
m

x(2m)~? jd3(k", k')

8(3)(Eu_ Ef Q)(Tl (pu_ n)0_2 (-—u rf)6_1 . (E!_ﬁr)&z . (E'_pw)
X > n 2 ' =4 ‘
4w(p"— k" w(k'—p')

(5.20)

On the left side of (5.20), ‘u’ denotes the uncrossed 27E process. In an analogous
manner pj(2wE, u) may be derived from p{(RET). We find for p,(2@E, u)=
p127mE, u)+ p{(2wE, u) the result

ef*

- 1) g A NP - - A - -

p1(2wE, u;4; p ,P)“m4 T1® T2€1T1 " T2
qar

-

x (2m) J.d:‘(k", k') 8P(K"— k' =3I (K", k'3 6", B')

X G, (p"— k"6 (p"— k"G, - (k'=p")é, - (k' — ﬁ’z, )
5.21

., E (*n ")2+w(E'~ﬁ')2
40)(!-5"_ E”)“w(lz'— 5:)4 .

(5.22)
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To deal with the second term in (5.18), we note that, from (3.7) and (3.9),

- 1 1 E Plr u
" ” = " /D, o = é(P” ") ( ) (523)
(x7+x3) Pg—2E(P"; k") m

using (3.15). When the matrix element ¢p¢ is taken, one can therefore use (2.17)
for the final state wavefunction. Also, in leading approximation,

Yxi—x5)=P"-k"2m, ki=P -k'2Zm, po=P -p'2m. (5.24)

In the numerator of the second term of (5.18) there is also the term —3(Pj— Pg) =
—390- When the matrix element is taken between bound states, and one works to
first order in P’ and P”, P~ P}~ M and this term does not contrlbute However,
when a physical photon induces transitions between a bound state and a con-
tinuum state, it needs to be taken into account. We leave a discussion of this term
to the paper on deuteron photodisintegration. Using (5.15), (5.23) and (5.24), the
second term in (5.18) leads to the 1wE charge density

pi(1wE; P", P'; p", p")
ef2 €17, T2

— > (P —-iAA . (-1

-

X[-G-p'—P-p+id- (P-3q)], (5.25)

where P, ﬁ are defined in (3.18), (4.4) respectively. In the same way we may
calculate pj(1mwE) from pj(RET), with the result
pi(1nE; P", B, ", p)

ef> 7,78, .
2;«'1)4‘71 (i~ 2Q)0'2 (P~ 2Q)

=4mmf,w(p
x[g-p"+P-p—5id - (P+q)). (5.26)

Working to first order in P and 4, we find using (5.25) and (5.26) that p,(1wE) =
pi(1TE)+ p{(1wE) is given by

2 - = -
I -*u *r)~ ef Gl'pa.Z'p

."n l*."+z"."
+i(F, X 7,), (34 - (p"+P)+P - p)], (5.27)
where use has been made of the identities
éli:l * +.2 = %(% TZz) %l('}:l X %2)z’ (528)
Fre T2l =3(T) - Tat Tp,) H3i(F1 X T2)..

This is part of the operator which in JW we called CORR; we now call it 17E
since this is the operator which is normally referred to in the literature as the

one-pion exchange operator.
The third part of p,(RET) comes from I, in (5.19). From (5.15), (5.19) and
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(5.23) we obtain a contribution to p of the form
p:(PV; P, P'; p", p')
_ ef? (1+c) 1
amm2\ 2 /o(p—34)°
x[él’Fl : 1':2{51 : (%P._C‘l'*'ﬁ”'"ﬁ

')5'2'(5“%51')_ o vma e by o
+6, - (p—24)0> - GP—p"—p")}

—;‘:1"FZél{&l'(%P+a+ﬁ”+5,)&2'(ﬁ—%é)_. e e s
+ao,- (P—EQ)Uz (3P - P"_P')}]-
(5.29)

We use the label PV because this term arises from the PV wNN vertex. To first
order in P and g we find, using (5.28) again,

p1(PV; pr’ 13:; ﬁu, ﬁr
ef> (1+c¢ R e as =
z4mmi( 5 ) [—(F) - T2+ T2.)0 (D) 20'1 *qo, " p
+i(%1x%2)z{w(ﬁ)_2(26—l : 50'2 : 5’_26'1 ) ﬁ'&z ' ﬁ —%6'1 * 136'2 ' 5
—56, poy* P =36, GG, - (p"+p) +36, - (p"+ G2 4)
+2p - Go(p) (&, - po,- p'— 61 PGz D)} (5.30)

In the second part of this section, we consider the charge density given by
(3.2) for each of the diagrams (b)—(g) of Fig. 1. In fact the results for SG (Fig.
1(b)), wC (Fig. 1(c)), 1wE with A(1232) intermediate state (Fig. 1(d)) and crossed
2wE (Fig. 1(e)) are given in JW, although the results for #C and SG need to be
generalized to an arbitrary frame of reference and that for SG is misprinted in
equation (4.3) of JW. It is instructive to see how these results come from the
formalism which we developed in Section II. We take the wC diagram as an
example. Omitting the factors vE/m in (3.2) and the factors m/E in G, , in (2.42),
and using (4.5) for the #NN vertex, equation (3.2) gives

p(wC; P", P'; p", p")

- L [(—2ef?
z(2,"_)—6 Id:%(kn, k')V(P"; p*n’ kn)( ezf )

X i(F1X 7,),61 - (k+34)d, - (k—3§)V(P'; k', p')
(ko— ko)
(kg—x1+ie)kg+x5—ie)(kg—x1+ie)(kg+x5—ig)
1
(kg—ko)—w2+ic](kg— ko) — w2 +ie]’

x (2mi)* [ ks, ki

x[ (5.31)

where x1, x5, x], x5 are defined in (3.7) and (3.9) and
k=k"—k', w2=m?+(k+id)>
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The integral over kg, k¢ in (5.31) may be evaluated exactly, with the result

(x1—x5—x,+x)[1+ (w0, + 0 ) Mxi+x5+x]+x5)]
(x1+x2)(x1+x2)2(w++x + x5 (w,+x1+x5)(w_+x]+x3)(w_+x]+ x5

(X{—xi—x1+x3)

20-’+Cﬂ2 (x]+x35)(x; + x3)
in leading approximation. As in (5.24),
x!—xt=P" k"/m, x\—x4=P -k'Im.

Using (5.23) and the similar equation with singly primed quantities, taking the
matrix element between two-body wavefunctions and using (2.17), Eq. (5.31)
gives

2

A € o -
p(mC; P, P' "o ] yEE— % i1(T1 X Tp),
2mm:,

1 - (B+34)d, - (P —29)
@ (p+34)’0(p —14)°

[P-p+d-(p"+p)]. (5.32)

The correct result for the SG diagram (Fig. 1(b)) is

pA(SG; B, P'; 5", b
ef? 1+c i(F,X7,),
4mm?2 ( ) w(p—14)?
x[26, (p"+p)G, p—Gy - (B"+P)G2- 4 _
+6G, - Po,-p—36, - Pé,-4). (5.33)

We now show that p(lqrE)+p(1rC) is_a function of 4 only, and does not
depend on P if only terms linear in g and P are considered. Returning to (5. 27)
and noting that p,(17E) is obtained from p,(17mE) by the replacements ¢, <> &,
T, T, p'— —p, p"— —p", we have for the sum of p,(17E) and p,(17E)

_—

p(1mE; P", P'; p", p')

ef> G, PG, p e a i a x cxn L
z4mm3‘, lw(ﬁ)’i [_%(TIz_TZz)q'p+l(1'1x’l'2)z(q (p +p)+2P Pl
(5.34)

Adding the charge densities in (5.32) and (5.34),

. ef> G, pG,- p
C+1wE; P, P'; 5", p)~ —
AleC+im ') 4mm?  w(p)*

X§ - [2(11: = T2.)P +i(F1 X 7)., 25"+ p)), (5.35)

which is independent of P.
Next we show that p(SG)+ p(PV) does not depend on P in the linear
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approximation. Adding the charge densities in (5.30) and (5.33), we have
p(SG+PV; P, P'; ", ')

ef> [(1+c¢ e L
4mm2( 2 )[w(p) H=(F1- T+ 72,)8, 402 P

f——t
=

+i(71%X7,),(28, - pa, - p'+26, - p'Gr- P+25, - PG, p

—30,° Ga, - (p+2p')—36, (p+2p")G, §
+§&1'P&2’ﬁ*§&1'5&2'1’)}

+24 - po(p) ti(F 1 X72),(Gy * po, - p'+ 61 p'02 - P+, - pos- p)l (5.36)

On making the same replacements as before to obtain p,(SG+PV) and then
adding, we find that

p(SG+PV;P" P p", p")

ef> (1+c¢ o b bR e o oo« pEe s
z4mm2( 2)[0)(P) HG (11, +12.)+ T TGy PO - G— Gy - GG - P)

+3(T1, = 12.)(G1 - PG - G+ Gy + G462 - )

—i(T1X 7). (61 - GF5 - (p+2p)+ 371 - (p+2p)d2 - 4)}

+4qG - pw(p) (71X 72).(Gy - po, - p'+6y - P'Go- p+6, - poz- p)l, (5.37)
which is independent of P. Note also that, from (5.35) and (5.37),

C+17E;§=0;p",p") =0,
p(m "= p*p) (5.38)
p(SG+PV;qG=0;p",p") =
Equation (5.38) means that these parts of the total charge vanish.

This completes the study of 17E effects, except for 1mE with A(1232) as the

intermediate state and the pair current (PC) contribution for PS coupling which
was discussed near the end of Section II. The charge density for the latter is

p(PC;q;p", p")
ef?

1~ G N e b Fd T 5
= 2( )[w(p—%q) 2‘5"1 *qos (P_%Q){(1+K5)71 * Tt (1 + Ky)Ta, }
2Zmmi \ 2

—o(p+2d) %6, (P+2§)G2 - Gl1+ke)Ty - T+ (1 +Kky) 7. }]. (5.39)

The study of the 1wE diagrams with a A(1232) intermediate state (Fig. 1(d)) is
quite separate from that of the 17E effects we have considered so far. It is made
in great detail in the latter part of Section 4 of JW and there is no need to add
anything to the discussion given there.

We have already given in (5.21) and (5.22) the leading contribution to
p1(27E, u). Obtaining p,(27E, u) from p,(27E, u) by the usual substitutions and
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adding, we have
p(2wE; u;q;p", p’)

ef" d3 (k" 3) r_ 1=
- 2m)” *ldP(k”, k)T, - To[é, & (k"-k"'~ 34)

"’ +&, 8 (k"—k'+1q)17 - Ta
X.IN(E”, Er; ~p*u’ ﬁ')o'l (p _k”)O'z (--n ”)61 . (k _ﬁl 6’2 . (k _p ),
(5.40)

where J, is given by (5.22). This of course is the result given in Equations (3.2)
and (3.6) of JW, and it is the correct result within the framework of the BBS
formalism. SKO [10] give a result which is twice that given by (5.40) and claim
that our result is incorrect. We shall explain in Section VIII how the difference
between the two results arises from the different retardation in the 17E potential
in the two cases. For the crossed 27E process (Fig. 1(e)) we are in agreement with
SKO, as one would expect, since the result comes from a direct calculation of the
crossed diagram and does not involve subtle details of the retardation in V. The
result is given in equations (3.9) and (3.10) of JW and is

o] | "I)

p(2mE, c;q;p", p

ef* TR
- Lz [k k) T e mraomaa 80F - R -1
a.B

+ T14T18T2862 T24 5(3)(2" K+ 34)]

XI (ku kl = *1)0_1 (-'n ”)6'] . (E’_ﬁ')&z . (E! )0_2 (-u H),
(5.41)

where

-Ic(’—(.”a E', ﬁn, ﬁ:)__zj (ku kl 7 -'r } (5.42)

Finally, the charge density arising from the diagrams of Fig. 1(f) and (g), in which
the photon is absorbed on one of the intermediate pions, is easily found to be

4
e
o2, wC; d; 5" 5 = I 21y + 210, + iR X 7))
m

X (2m) jd3k

G1- ("= R)G, - (k=5 +30)6, - (K= 5'~3d)3> - (5"~ K)
w(p"— k) w(k—p'+34) °w(k —p'—34)*

ef*
+— 27, + 27, —i(T1 X T,),)
m

aw

x(2m)™? Jd3k

G (p"—k+3G)d, - (k- ")62 (k—p")a, - (p"— k —3q) (5.43)
w(p"— k+33)0(p"— k—34)*w(k - p')? '
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SKO call this charge density the 27E boson charge density; we use the notation
7C in analogy with that for the corresponding 17E process.

VI. The equivalence theorem and the difference between PS and PV coupling

Adding the expressions for p given in (4.16), (5.14), (5.35), (5.37) and (5.39).
the result is

ef’

4mm?

m

i 37, 37 = [(1+(1 _CYke)E, » FaarlB) G = g~ A=y B )

+3(1+ (1= )ky)(7i, +72.)0(p) %G, - po2 " q— Gy - 465 )
+%(1 +(1=c)ky)(Ty, —Tzz)w(ﬁ)nz((}l POy q+ay 4o, p)
i (B B 011002 260 B0 56 )

w(p) w(p)
—3i(T1 X 72),0(p) (G, * G&2 - (2p"+p)+ 6, - (2p'+P)G> - G)
+i(F, X 72),0(P) 12p - G(G, - P62 p+G, - Pp'G2 P+Gy - PG p')

~6, 62 5F D) ). 6.1)

One sees that in the final result for p there are three c-dependent terms. The
difference between PS and PV coupling is located in just these terms. We now
show how it is these terms which are singled out by the equivalence theorem,
which connects the PV and PS interaction Hamiltonians for the ywN system.

The equivalence theorem in just the form we want is given by Friar [6]. He
shows that, if H(PS) and H(PV) are the Hamiltonian operators for the ymwN,
system, then a unitary Dyson-Foldy transformation gives

H(PS) — H'(PS) = H(yNN; charge) + H(yNN; mm)+ H(wNN; PV)
+ H(ymwNN; SG)+ H(ywNN; mm)
+ H(mwaNN)+- - -, (6.2)
There is an infinite sum of multipion vertices generated by the equivalence
transformation, as indicated by the last term and the dots in (6.2). The yNN
charge interaction generates the ywNN contact interaction which we have labelled

H(ywNN; SG) and have used in the calculations of Section V. However, the yNN
anomalous magnetic moment interaction,

H(yNN; mm)= — 2i Na'w%(xs 1+ Ky, )N 0"A", (6.3)
m

generates a second +ywNN contact interaction which we have called
H(ywNN; mm). It is given by

H(ywNN; mm) = ief
2Zm

NO-[,LV'YS(KST([ + Ky 63“)N aVAl-ld)a’

aw
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where there is a sum on the isospin index a. The corresponding vertex is

V(ymNN; mm)= — Lo
2mm

Guyqv‘YS(KSTa + Ky 83(1)’ (6'4)
where q is the 4-momentum of the incoming photon and a is the isospin index of
the pion.

Using the vertex in (6.4) one may quickly derive the expression for p,(mm)
from the seagull diagram in which the photon is absorbed on nucleon 1. It is

3 . —ief f 1
;Pﬂ f " il ) )( ) —~ - - a+ 8 b T "
Pyl p)=~ mm,/\m,/ m2+(p"—p' —34)* (ksT1a + kv B5a)T2
Xty (3P"+ p")ys(i - é)v()ul(%P'+ p’)
X Uy (3P" = p")y - (p" — ' —3G)vsu(GP' — ).
Working to first order in P’ and P,
DI D!, oz 2t efz = = 6-1 ) Q&Z i ﬁ
pi(mm; P", P'; p", p ):—(W)(Ksn " Tat KyTa,) w0 (6.5)

which is independent of P. One obtains p>(mm) from p,(mm) in the usual way,
giving

p(mm;q;p", p')
f? (1 +c

1 . 5 dE % & EE
- 4mm3r 2 )w(ﬁ)z [{2KSTI : T2+KV(le +722)}(0-1 PO q—0," 40y p)

+ Ky (Ty; = T2, )(Gy - PO - G+ - Go, - P)). (6.6)
The factor (1+¢)/2 has been included in (6.6) because the content of the
equivalence theorem is that, if the contact interaction H(ywNN; mm) is added to

H(PV) = H(yNN;charge)+ H(yNN; mm)+ H(wNN; PV)+ H(ywNN; SG),

then, provided that the 1wE processes have been correctly considered, the final
result will be independent of whether PS or PV coupling is used for the
calculation. On adding the charge densities in (6.1) and (6.6), one sees that this is
indeed the case since the sum is independent of c¢. Thus the difference between PS
and PV coupling for the calculations leading to (6.1) is correctly accounted for by
the equivalence theorem. HG [11] have also found that PS and PV coupling are
equivalent except for the Pauli term, which is the same result. Incidentally, this
discussion shows that the splitting of the c-dependent part of V. into a 17E part
and a 2wE part, which leads from (4.11) to (4.12), is a very natural step when
looked at from the point of view of the equivalence theorem. The effect of the
27E part (c/4m)[v, V] of AV, which is fortunately very small, must be discussed
together with all other 27E processes.

What then does one do when calculating the charge density for 1wE
processes? It is often argued that the correct result is that obtained using PS
coupling, on the grounds that this, being renormalizable, is ‘more fundamental’.
The result for p would then be the c-independent expression obtained by adding
(6.1) and (6.6). From this point of view, it would be claimed that PV coupling is
less fundamental, though it may be useful for low energy phenomenology.
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However, we wish to point out that there is a weakness in the formalism, namely
the Pauli term H(yNN; mm) of (6.3), which is conventionally introduced to
simulate the anomalous magnetic properties of the nucleons. It is this term which
generates the equivalence breaking term H(ywNN; mm). It is not clear, for
example, how this Pauli term should be used in higher order perturbation theory.
Moreover, as we remarked in JW, Olsson and Osypowski [18] have shown that it
is possible to obtain a consistent phenomenology of low energy processes involv-
ing vy, 7 and N, using only the gauge invariant Hamiltonian H(PV) and omitting
the contact interaction H(ymNN; mm). In addition, our preliminary study of the
photodisintegration of the deuteron in the forward direction [1] and also the
work of Cambi et al. [3, 19] seem to indicate that the experimental information
favours a PV coupling theory.

We now wish to interpret these results in a slightly different way, namely,
that there is no fundamental difference between PS and PV coupling theories and
that these results rather indicate that the Pauli term cannot be used in connection
with virtual negative energy states. The PV coupling theory naturally suppresses
negative energy states, and that is why it permits a more reliable description of
ywN dynamics. To summarize then, we take the view that a reasonable descrip-
tion of physical effects is possible only if (a) for PV coupling, the contact
interaction H(ymwNN; mm) is not used, which means just the usual PV coupling
theory, and (b) for PS coupling, the Pauli term is permitted to connect only virtual
positive energy states. Under these conditions, PS and PV coupling theories
produce the same results and p is given by putting ¢ = +1 in (6.1), which makes g
and « disappear from the final expression. It is this charge density which we shall
use to calculate the 17E corrections to the electric matrix elements for low energy
deuteron photodisintegration.

VII. Energy dependence of the two-pion exchange potential and its consequences

The quasipotential method described in Section II leads to a potential which
is energy dependent in the sense that it depends explicitly on the time-component
P, of the total 4-momentum P. From (2.14) or (2.19), we see that this leads to a
vertex function I' or a wave-function ¢ for a bound state which is no longer
normalized to unity. This normalization correction was included in JW as an
additional correction to the cross section for deuteron photodisintegration. In this
section we obtain first the dependence on P, of the 27wE potential for both
uncrossed and crossed processes. We then discuss how one can remove this
energy dependence of the potential and arrive at wavefunctions derived from an
energy independent potential. It turns out that such a bound state wavefunction
has to be normalized to unity, and that the two-nucleon current A* has to be
modified when its matrix element is taken between such wavefunctions.

For the uncrossed 27wE quasipotential one has to proceed with care. If
exchange of pions only is considered, the iteration procedure applied to (2.3)
gives

v(l) - U(l), v(2) — U(2)+ U(l)(G — g)U“),

where U‘" is given by the 17E diagram and U® by the crossed 27E diagram.
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The quantity UP(G—g)U" is the uncrossed 2wE quasipotential. As we discus-
sed between (2.40) and (2.41), the Green function G can be split into four parts.
When we compute the quasipotential with nucleon spinors attached (that is, for
NN — NN), the leading part for PV coupling is given by taking G, .. In writing
UVG,, U™ we do not need to include the two factors m/E in (2.42) at the level
of approximation in which we are interested. We therefore write

2N 2
(06, 0P p".p) = (L) G 22m)

X Id—”k&, k"G, - k"G, - k'é,- K'I(P; p", p'; k), (7.1)

where

I(P;p", p'; k)= 2mi)" Idko[(k(,— x, +ie)(ko+ x,—ie)(ky*— w'? +ig)
X(ky?—w+ie)], (7.2)
kl=pf_k, k"=p"—k,
rzw(f('r)’ wnzw("('n)’
xle(%ﬁ'*' E)—%Po, x2=E(%I3“E)—%PO'
We also introduce the total internal energy W(P: k), which is
W(P; k)= EAP+k)+ EGP—k)=2E(P; k).

To find the leading approximation to the integral I in (7.2), it is best to
evaluate it by taking the mean of the expressions obtained by closing the contour
in the upper and in the lower half-plane. One then comes to the result

1 1
P()‘“ W(ﬁ, E) w:zwuz

I(P;p",p'; k)=

g [1+(pé—x1)2+(2p6+xz)2+(pS—x1)2+(p8+xz)2]
20)1 2(1)”2

’ n

0)'2+(0 (!) +wl12
20.),3(0"3((0"}'(0”) ¥

(7.3)

We use the leading approximation to the BBS prescription (2.5) for k,, namely
’z() ~YEGP+k)- E(%I_S_ ’z)] =3(x; = x,).
It follows that

(po— x1)2 +(po+ xz)z =2(po— Eo)z +%(x1 + x2)2
=2(po— Eo)z"'%[Po_ W(is, ,‘{')]2 (7.4)
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The uncrossed quasipotential is then
V(@2mE, u; P; p", p') = (UG, . UM)P; p", p) — 2m)

’ jd%fﬂ”(p", £)g(P; UK, p')

232
=(;£—2) (1‘1-?2)2(2w)_3j d*ké, - k"G, k"G, - k'G, - k'

ar

|:0) +w'w"+w - . 0)'2+(1)”2

20)'30.)”3((0 +{P() W(P, k)} _;W] . (75)

Equation (7.5) follows from (7.1), (7.3) and (7 4), if we approximate g(P; k) by
[P,— W(P; k)] " and use also (4.1) and (4.5) to approximate U“(k, p’) by

([ F o s 61-(13—-13’)62-(1?—{5’)[ (lzo—pé)z]
(0 ' = 14+—=
U (ksp) mf,T T2 w(k_por)z w(k—i)")2 2

and similarly for U (p", IE) The leading approximation to V(2wE, u) given in
(7.5) does not depend on pg and pg and so we may take the right side of (7.5) also
as the BBS uncrossed 2wE potential V(2wE, u; P; p”, §'). Note that we have not
used m~2 terms in spinor reductions, so we have not distinguished between
standard and BBS spinors.

The crossed 2mE potential comes from direct evaluation of the crossed 27E
diagram. A fairly long but straightforward calculation shows that the leading
approximation is

2

2
) Z T1aT18T28T 24 (2‘"')

g a,B

V(nE, c; P; p", p')—(rj:1

-

xjd:‘k&, k"G, Ky K6y K

’2+(1)'(.0”+w . . w12+wu2

- Po—W.(P; p", P ; k)} ———

[ 2(,()’1 H3(w +w ) { 0 c( p p )} 2(.0’4(1)"4
"__ v 12

+(p0 giﬁl(:u nd )]’ (76)

where k', k", ', w" have the same meaning as before and
W.(P;p",p's k)= ECP+ k)+E(2P+k p"—p).

We do not need to consider the final term on the right side of (7.6) because its
matrix element between arbitrary initial and final wavefunctions always vanishes.
To show this, we note that when the matrix element is taken between coordinate
space wavefunctions, it is of the form

a*f(x) 9°g(x)
(0'110'1;0'2k021 0'1;(71.0'210'2k) jdax ll’f( )Bx,- 3% 3%, 3%, Y (X).

The precise forms of f, g can readily be given, but the only important point is that
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they depend only on x =|x|. Now

(chrlfffzko'zl - aljoliUZIUZk) = 21(8um OkiT 1m t Exim 8ij02m)a

I e 1060 + 28 (00— x ' F (00,
X; 0%,

and similarly for g. The kernel of the matrix element is then qulckly shown to be
zero. Thus V(2—rrE ¢) is obtained by takmg the first two terms in square brackets
in (7.6) and is independent of p/; and pg. Thus we may take the right side of (7.6),
without the third term in square brackets, as the BBS crossed 2wE potential
VQrE, c; P;p", p).

We have now derived the P, dependence of both the uncrossed and crossed
2wE potentials in the BBS formalism. This means that the wavefunction ¢
obtained from an NN potential which mcorporates the 27E potentials correctly
will not be normalized to unity. Instead, using (2.19), putting P =0 and neglecting
the very small difference between 2m and M, we have

= = o= n ) av P 2 -’" -” =
1=2m)" Id3p | (p)|*— (27) "J (", p") $(B") ( gP )qb(p ). (1.7
0
For reasons which will appear shortly, we write V(P,) in the form
V(Pn) = ‘7+%{P0_Hn, ‘7'}+, (7.8)

where V and V' are independent of P,. In (7.8), H, is just the nonrelativistic free
two-nucleon Hamiltonian 2m + p?/m. From (7.5) and (7.6) we see that

V'2nE, u+c:p", p)
2
(r’; ) (7, - 72)2Qm) ‘*I ki, - K'Gy - K Gy K6 K

s

(fz) Z T1aT1aT268T2 (27) 2

m

T o3
- - . L, s r2+ "2
X Id‘k&, k"G, K'Gy- k'S k%—) (7.9)
On comparing (7.9) with (5.40)-(5.42) and (5.22), we have
V'QuE, u;p",p")=—e 'ps2wE, u; 4 =0:p", p), (7.10)
V'2wE, ¢; p" ,p)=—e 'ps(2mE, c;3=0;p", B, (7.11)

where the subscript S on the right sides of (7.10) and (7.11) denotes the isoscalar
charge density (that is, the part which does not depend on the nucleon isospin
operators T,,, T»,). The results in (7.10) and (7.11) are special cases of the result
that the normalization expression Z on the right side of (7.7) may be written as

z=e—'(zw)—6j ", p') s (=0 5", 5) (). (7.12)

The first term on the right side of (7.7) comes from the impulse approximation
isoscalar charge density

ps(IA, q- — O =1y "I) _ 6(277)3 5(3)(5n ] )
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This method of calculating Z was used in our former papers [14, 20]. We also see
that, because the uncrossed and crossed 2wE potentials are energy dependent, the
isoscalar parts of the charge densities for the uncrossed and crossed 2wE proces-
ses do not have the property that the total charge vanishes. The criticism of SKO,
that the charge densities given in JW and rederived here cannot be correct
because they fail to have this property, arises from a misunderstanding of the
quasipotential formalism.

Now all semiphenomenological potentials which are used in practical calcula-
tions are energy independent. Thus, in order to present a consistent calculation of
meson exchange effects using wavefunctions derived from a potential such as the
Paris potential, one must remove the energy dependence of the 2#wE potential.
This can be done by a method described by Friar [6], starting from the form of the
potential given in (7.8). We denote by ¢(M) the bound state wavefunction
obtained from V(P,= M), M being the mass of the bound state. Then

M (M) =[Hy+ V(Py= M)]$(M).
Using (7.8) for V(P,= M), we have
M(1-V")é(M)=[H,+ V-¥H,, V'},16(M).

Now define a wavefunction ¢ by

d=01-V)'"2d(M). (7.13)
Then
Mé = (1-V')"'’[Hy+ V=3{H,, V}.J(1- V) ¢
~(Ho+ V) +XV, V'L ¢, (7.14)

working to first order in V. If we now assume that the energy dependence is
sufficiently weak for the second term on the right side of (7.14) to be able to be
neglected compared with the first, we see that ¢ is the bound state wavefunction
obtained from the energy independent potential V, with the same bound state
mass M. When we use an energy independent potential, therefore, the wavefunc-
tion ¢ which we calculate differs from ¢ (M) calculated with the energy dependent
potential, the relation between ¢ and ¢(M) being given by (7.13).

Now the normalization condition in (7.7) applies to ¢(M), and may be
written symbolically as

1=(M)(M) — d(M)V'd(M).
It follows immediately from (7.13) that

¢¢ = 1’
so that the wavefunction ¢ derived from the energy independent potential is to be
normalized to 1. The normalization correction which we included in JW should
therefore be omitted in a consistent treatment of meson exchange processes using
an energy independent potential. 3

At the same time the two-nucleon current A*, which in (2.33) was taken
between states ¢(M) calculated with an energy dependent potential, has to be
modified. Using (7.13) to write, to first order in V',

d(M)=(1+3V)e,
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we have
e = Ko +3VR* +3A0 V",

In calculating the extra pieces which need to be added to A* it is clearly sufficient
to take for A* the nonrelativistic impulse approximation. Corresponding to \%
given in (7.9) for the uncrossed and crossed 2@wE potentials we then have extra
pieces to be added to the uncrossed and crossed 2wE charge densities in (5.40)
and (5.41). The expression in (5.40) is to be changed by replacing 7, - 7,€,7, ' 7>
by

Ty T261Ty " %2_%él(;‘r‘1 : '}.2)2 ""%(7:1 ) '-".2)2é1 = —2(1-12 _Tzz)

and 7, T,6,7, ' T2 by +2(7,, — 75.). In the same way, } .z 71071572572, 10 (5.41)
is to be replaced by

A l‘\ _l A P
Z (TlaelTIB —2€1T1aT18 271a71391)72372a =—=2(7y, +72.)
afB

and Y g T1aT15T2362T2o DY the same quantity. Thus the uncrossed and crossed 2wE
charge operators which are to be used when matrix elements are taken between

wavefunctions obtained from an energy independent potential are '
p2mE, u;q;p", p")
2ef* L. .
- mf (le Tzz)(zﬂ_)ff& Jda(k", kr)[8(3)(ku_ k: _%q)_ 6(3)(ku_ k'+%é)]
XJM(E" Er_ 1y -.’)0'1 (p _ ﬂ)o_2 (-n ”)6-1 . (E,—ﬁ’)a'z . (I‘('f__ﬁr)’ (715)
p(2wE, c;q; p",p")
_ 2ef* .

= -2 4 m) om0, KO E -4+ 89~ B +14)]

kL

X J(K", K3 B, 3)61 - (5" — k"G4 - (K= §)és - (R' = §)&, - (5"~ "),
(7.16)

where J, and J. are given by (5.22) and (5.42).
From (7.15) one sees directly that

p(2mE, u;§=0;p", p') =0, (7.17)
while from (7.16) and (5.28) it follows that
p2wE, c+wC;4=0;p", p")
ef* . . - o o s iE ams s amae g B
= ;nf_4 i(F X 75), (2m) 2 IdBkol “(p"— k)G, - (k—p')G> - (k—p)G, - (p"—k)
(-'n k)2—w(E—ﬁ')2
w(p"— k) w(k—p)*
But we have already seen after (7.6) that the right side of this equation has zero
matrix elements between arbitrary initial and final states. Thus

pRmE;c+wC;4=0;p", p)=0 (7.18)
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We therefore see from (7.17) and (7.18) that the modified total 2@7wE charge
operator vanishes when taken between wavefunctions derived from an energy
independent potential. This is the so-called ‘charge conservation law’ of SKO, but
we emphasize again that it holds only in a formalism which has an energy
independent potential. There is still one remaining difference between us and
SKO. The uncrossed 27E charge operator given in (7.15) is exactly 3 of that given
by SKO. We shall explain the reason for this difference in the final section.

VIII. Comparison with other work

Meson exchange effects are usually discussed using the unitary transforma-
tion method, which is well known to be equivalent to an S-matrix treatment. In
this section we shall show that the essential difference between the transformation
method and the quasipotential formalism which we have developed in this paper
lies in the treatment of the retardation (or nucleon recoil) effect in the 17E
potential V... When this is understood correctly, the reason for the difference
between our result and that of SKO for the leading approximation to the uncrossed
27E charge density becomes clear. Moreover, at the same time it turns out that
the correction which in Section V we labelled 17E is different in the two methods
and this difference is the cause of the difference between our result for the total
17E charge density and that of HG [11].

To see the difference between the two methods, we go back to the integral I,
in (5.18) and write it as

1 —L(x i+ x5)+2(ks— Pl

I.= = —
' 20(k'-p)? 0 20+ xhw(k —p)?

(8.1)

In (8.1) we have explicitly separated from I, the piece which gives the uncrossed
27E charge density of SKO. In the quasipotential method we wrote I, in the form
given in (5.18), with the first term leading to the uncrossed 27E charge density of
(5.20) and the second term leading to the expression for pi(1wE) in (5.25).
However, in the transformation method the decomposition of I; in (8.1) is the
natural one because in that method the quantity (x]+ x5) in the numerator of the
second term in (8.1) vanishes. This comes about because the 17E potential is
characterized by the condition that both nucleons are on their mass shells. In the
transformation method, therefore, the first term on the right side of (8.1) leads to
an expression for p;(27E, u) which is twice that given by (5.20). Since the method
leads also to an energy independent uncrossed 27E potential, it follows that the
final result for p(27E, u) is also twice that given by (7.15) and (5.22), and satisfies
the condition that the total uncrossed 27wE charge vanishes.

In addition, the second term in (8.1) leads to a different 17E charge density
in the transformation method. By (5.24),

2(ko—po)=P' - (k' —p')/m,

and this result holds also in the transformation method. Thus (5 25) is to be
replaced in that method by a similar equation in which the factor in brackets on
the right side is replaced by [-P-p+g - p+2G - (P—§)]. When one makes a
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similar modification to pi(1wE) and then obtains p,(17E) and finally p(17E),
one finds to first order in § and P exactly the expression given by the sum of the
first term in equation (33) and the second part of the third term in equation (34)
of HG. The equation which replaces (5.34) is

ef 2 G PG, P
4mmz2  w(p)*

X[— (11, —72.)q - B+2i(F X 7),P - pl. (8.2)
Unfortunately HG have an incorrect sign in writing part of the wC charge density;
the second term in their equation (34) should have the opposite sign. When this
correction is made, their wC charge density becomes the one we have given in

(5.32). The result which follows from (5.32), (5.34) and (8.2) is that, in the usual
linear approximation,

p(mC+ 17EHG)) = 2p(7wC + 17E(JW)).

p(LmE(HG); P, P'; p", ')

However, the 17E potential used in HG contains a retardation term which is
proportional to ("*>— p'*)/m. The method developed in Section IV can therefore
be used to remove this retardation term from the potential and to interpret it as
an effective charge density. It can be shown that the sum of this charge density
and p(7wC+1wEHG)) is equal to p(wC+17wE(JW)). We note too that one
obtains also the 17E charge density proportional to gy, which appears also in our
formalism and was discussed briefly after equation (5.24). The first part of the
second term in equation (33) of HG is just p(PC). The second part of this term is
part of what we called p(SG+PV). When it is added to the first term in equation
(34), the expression which we give in (5.37) is reproduced exactly. The last two
terms in equation (34) of HG are frame dependent terms quadratic in P and 4
which we have not considered.

The HG 1#E potential contains also two c-dependent terms. We shall not
consider their term proportional to T, — T, (see Friar’s criticism in footnote 53 of
Ref. 9), but shall discuss the remaining term. In the c.m. frame it equals the
c-dependent part of our potential (4.8), whicl_; generates the effective charge
density Ap given in (4.16). In the same way the P-dependent part of this term can
be interpreted as another effective charge density which can be shown to be equal
to p(PS) as given in (5.14), except that the factor (1—c) is replaced by —c.
However, the P-dependent part of the potential must be treated in a covariant
framework and this is not done in HG. For this reason p(PS) is not obtained
correctly in the HG formalism. To summarize, apart from this discrepancy, the
various contributions to the 1wE charge density which we derived in Sections IV
and V agree with the results of HG if the c-dependent and retardation terms in
their potential are intepreted as effective charge densities. A method for doing
this, which is similar to ours, has been sketched also by HG for the isoscalar
charge density.

To conclude, then, the detailed expressions for the meson exchange charge
and current densities depend upon the potential used and are different for the
BBS and SKO or HG potentials. SKO claim that we are incorrect because they
miss this crucial fact. The SKO potential is characterized by putting both nucleons
on their mass shells and is naturally generated in the Fukuda—-Sawada-Taketani
formalism for the construction of an energy independent potential. In principle,
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any potential can be used and no one knows which is the ‘best’ prescription.
However, the 1#7E potential in the transformation method is very complicated, as
can be seen in equation (23) of HG, and has never been used as part of a
semiphenomenological potential for practical calculations. While we have indi-
cated how the retardation and c-dependent terms can be removed from the HG
17E potential, the situation is certainly much more complicated for the 2wE
potential. On the other hand, the BBS potential is distinguished by the property
that there is no retardation in the c.m. frame (see also Friar [9], equation (16)).
This is an obvious advantage, since the wavefunctions used in calculations are
derived from a potential which has this property. We see the BBS formalism as
providing a very natural framework for applications to the two-nucleon system,
and the Paris potential as the most satisfactory one available, for reasons which
were discussed in Section I'V. Within the BBS formalism, we have derived in this
paper the expressions for the 17E and 2#E charge densities which it is correct to
use in conjunction with wavefunctions calculated in the c.m. frame from an energy
independent potential.
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