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Some nonstandard quantum electrodynamics

By Robert Fittler, Freie Universitait Berlin Fachbereich
Mathematik, D-1000 Berlin 33

(1. XII. 1983; rev. 12. VI. 1984)

Summary. Quantum electrodynamics in 3+ 1 dimensions is modified by means of non standard
analysis in practical approximation to the classical development yielding a consistently defined
mathematical theory, avoiding in particular the usual divergence problems. Detailed computations of
vacuum polarization, including the Uehling term, display our methods explicitly.

0. Introduction

Quantum electrodynamics has been beset with the divergence problems from
its very beginnings. Up to now no mathematical solution of these problems has
been found, despite the fact that good numerical results have been given by using
infinite renormalizations. In our mathematical theory we relax the principles of
translation invariance, relativistic invariance, unbounded particle numbers and
gauge invariance by applying a space cutoff, ultraviolet cutoff, particle number
cutoff and using a nonvanishing photon mass, respectively. In distinction to the
work done in constructive and axiomatic quantum field theory we do not remove
the cutoffs in the end (cf. [1] part 6, [2]). In order to keep the damage low we
apply nonstandard analysis, in particular we use an infinite space cutoff, an infinite
particle number cutoff, and an infinitesimal photon mass. This allows us to closely
follow some developments of standard quantum electrodynamics (in ‘3+ 1 dimen-
sions’) without running into the usual troubles. The heart of the problem lies in
the initial values (value for time t =0) of the free fields. That’s where we apply
cutoffs once and for all. The resulting initial cutoff fields have to be used not only
for the interaction Hamiltonian (cf. 5.2) but also for the free Hamiltonians (cf.
2.15, 3.5, 4.8) and the other field functions (e.g. observables). Our modified
Hamiltonians (free and interacting, resp.) in turn determine the modified time
dependent fields, through Heisenberg’s equation (cf. 2.20, 3.7, 4.11 and 5.4).

The use of A. Robinson’s Nonstandard Analysis (cf. [3]) is not new in physics
(cf. (4], [5], [6], [7], [8], [9], [10], [11], [12] and [22]). Since it does not seem
necessary to give a full introduction into the subject, we give only a brief account
(chapter I) of it in order to fix the main concepts. Furthermore we introduce the
‘normapproximations’ of certain distributions, in particular (the nonstandard)
function k(p —q) approximating 8°(p —q), arising from a space cutoff by Fourier-
transformation (cf. 1.8, 1.10 and 1.11).

In chapter 2 we first introduce the standard formalism for the Klein-Gordon
field (cf. 2.1 through 2.4) of restmass m. The nonstandard modifications start with
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the introduction of nonstandard extensions Mi;,2Mp 2M of the basic standard
model M for analysis (cf. 2.5, 1.1 and 1.13). In view of the photon field (cf.
chapter 2) we fix the restmass m >0 to belong to M, and to be infinitesimal with
respect to the standard model M. The corresponding Fockspace then will be cut
off at some nonstandard particle number « belonging to M, (cf. 2.6), yielding a
corresponding cutoff-modification of the annihilation and creation operators
a™(f). The resulting a'”(f) thus become bounded operators on the cutoff
Fockspace F“. By choosing w to be a nonstandard natural number every state of
the original Fockspace F can be approximated infinitesimally closely in F* (norm
topology).

In order to approximate the operator valued distributions a',’(p) by operator
valued functions we introduce a space cutoff Q in M,,, which is infinite with
respect to M, (cf. 2.8). Then we introduce an UV cutoff P>0 which turns the
annihilation and creation operators into uniformly bounded operator valued
functions b'"(p) (cf. 2.11 and 2.12). First and second order perturbation theory
together suggest that P be standard (or at least finite). Some possible values are
listed in 6.24.

The commutator [b(p), b*(q)] approximates 2w,5>(p —q) infinitesimally (cf.
2.10 and 2.13). The modified initial Klein-Gordon field x(0, x) as well as the free
Hamiltonian HYC is defined by means of the cutoff annihilation and creation
operators. The time dependent modified free Klein-Gordon field then has to be |
the corresponding Heisenberg field x(t, x) = e x(0, x)e """, an operator val- |
ued function in t, x over the particle number cutoff Fockspace F* (cf. 2.20). The
rest of chapter 2 is devoted to infinitesimally closely approximating the contrac- |
tions of the modified free Klein-Gordon field. |

It turns out that they agree almost completely with the usual contractions of
standard quantum field theory as long as one restricts oneself to consider only
those (0-quasistandard) particle states in [F*~' whose support is inside the cutoff P,
(cf. 2.29). The latter could be called the physical states (cf. also 5.13b).

In chapter 3 we develop the free photon field as a massive vector boson field |
with an infinitesimal restmass m. We start with the standard Stiickelberg-Coester |
type formalism, which is based on the standard KG field. Then we replace the
latter by the modified KG field of chapter 2. Thus the approximations of the
contractions of chapter 2 carry over directly to the modified photon field.

In chapter 4 the standard Dirac field is modified along the lines of chapter 2
and 3. The developments so far are of interest only in view of interactions.
Without such there would be no reason to modify the standard initial free fields. |

Chapter 5 introduces electromagnetic interactions by means of the interac-|
tion Hamiltonian H,. H,; arises from the standard interaction Hamiltonian by
using the modified free fields instead of the standard free fields. Thus H; becomes
a bounded operator. One introduces the interaction picture in the usual way
without the existence difficulties in connection with Haag’s theorem (cf. 5.5 and
5.6). The Dyson expansion (from time s to time t) turns out to be a well defined
infinite series which even converges (cf. 5.7 and 5.8). The theorem of Wick and
Feynman’s rules work in the usual way (cf. 5.9 and 5.10). It turns out that the
modified first order theory of perturbation agrees very well with the standard one
(cf. 5.13).

Chapter 6 deals with scattering of an electron in a (slightly modified) Coulomb
field (cf. 6.1). The first order contribution (‘Coulomb scattering’, cf. 6.4) gives the
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expected result (cf. 6.6). Also the second order contribution (‘vacuum polariza-
tion’, cf. 6.7) agrees completely with the standard result (cf. 6.21). This is shown
by explicit computations and approximations. We recover the standard results
without any divergences, the charge renormalization is finite and the Uehling
effect is secured (cf. 6.23). In 6.24 we list some possible values for the UV cutoff
and the corresponding charge renormalization. A further development of the
(renormalization-) theory should determine the UV cutoff as well as the other
cut-offs much more precisely. It seems anyway that a lot more questions have to
be raised than have been answered.

1. Tools from nonstandard analysis

1.1. The basic structure M

One usually does analysis inside a structure M which contains the set R of
real numbers as subset, and possibly the Cartesian products R XR, RXRXR, etc.
Furthermore it is convenient to have iterated powersets " (R) as subsets of M the
n depending on the type of analysis in consideration. We do not want to be
explicit about M), just assuming it to be rich enough to carry what we need. For
later convenience we shall also assume that subsets of elements of M are again
elements of M. Examples are the ‘superstructures’ of [14], pg. 23 or any model of
Zermelo Fraenkel set theory (cf. [15], pg. 1).

In order to apply first order model theory we have to fix a first order
language L with interpretation in M. It is convenient to use the ‘full language Ly,
over M, having an individual constant for each element of M, a predicate constant
for each finitary relation over M and a functional constant for each function (with
finitely many variables) over M.

The interpretation of these ‘constants’ over M is the obvious one. Thus M
becomes an Ly-structure. Notice that quantified variables (in the Ly,-formulas)
which always correspond to elements of M may actually cover subsets of R and
more complicated things since #(R) <M, etc.

1.2. A nonstandard model
M’ over M is (by definition) an Ly-structure

M’ 2M
such that

a) the embedding M =M’ preserves the validity of any Ly,-formula

b) there are elements s of M’ belonging to the interpretation of R in M’ which
fulfill s >r for all elements r belonging to (the interpretation of) R in M.
This means that there are nonstandard real numbers s beating all the
standard reals r in magnitude.

The existence of such models is an immediate consequence of the ‘compactness
theorem’ of first order model theory (cf. [3], pg. 21).
The elements of M’ which belong to M are called standard elements.
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1.3. Internal and external sets

A subset N of some Ly-structure $ is called internal if there is an element n
in 8 such that N={m |men holds in 8}. Then N can be represented by the
element n. Subsets that are not internal are called external. Our basic Ly,
structure M is such that all subsets of elements are internal (cf. 1.1). This is not
any more the case for the nonstandard models 8 =M'.

In order to apply (first order) theorems of M to subsets N of M’ it is necessary
to know that the latter are internal, because only those are covered by the
variables in the theorems (through the resp. elements n which represent them).
The subsets N one is particularly interested in are the ‘definable’ ones, i.e. those
which are introduced through their definitions.

1.4. Definable subsets

A subset N of some element m of an Ly-structure & is called definable if
there exists an Ly,-formula ¢(x) having one free variable x (and possibly
additional parameters from 8) such that N={le m | ¢(l) holds in $}.

1.5. Proposition. A subset N of any nonstandard model M' is internal if and
only if it is definable.

Proof. If N is internal there is n in M’ such that N={len |l en holds in M’}
hence it is definable (by the formula: x € n). Conversely if N is definable such that

N={lem|¢(l) holds in M’} where ¢(x) is the formula y(x, m,,..., m,), the
m,, ..., m, being all the parameters needed, then one knows that M fulfills the
formula Vx, - - - Vx, Vz Ay Vx(xe y & ¢(x, x,,..., X, ) AXE z), because in Ml every

subset of any element z is internal, cf. 1.3. The formula then holds in M’ too,
since M’ is a model for all theorems of M. L.e. in M’ we have a uniquely defined y,
such that Vx(x e y, @ o(x)Axem). Or yo={xem | ¢(x) holds in 8}=N. qed.

1.6. Remark. Proposition 1.5 enables us to carry out nonstandard analysis
by applying the theorems of standard analysis to things that are defined in the
right way, namely according to 1.4.

1.7. Finite, infinite, infinitesimal and quasistandard elements

Any (nonstandard) real in M’ whose (interpretation of) absolute value is
bounded by some standard real (in M!) is called finite. Otherwise it is called
infinite.

Any nonstandard real r =0 (=0) which is sandwiched between every positive
(negative) standard real and O is called infinitesimal. In this case one writes r ~ 0.
More generally, x ~y means |x—y|~0. This definition should be applied to
complex x, y, too.

If some (nonstandard) complex number z fulfills z ~w, where w is standard,
then we write st (x) = w. Notice that w is uniquely defined.

For any internal f:R"— C in M’ belonging to LA(R") the Hilbertspace of
square integrable functions in M’, with respect to d"x, we write f=0 if the
L*-norm fulfills ||f|| ~ 0. More generally, f~g if f— g =0. Later on we will use the
same notation f=g for f g belonging to some other Hilbertspaces e.g.
LZR?, d°p2w,) (cf. 2.1).
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In case f, g :R"—C have an additional parameter k e R™ we shall write
fi= g, to indicate that f~=g:R™ XR"—C as functions whose variables include k.
Any fe LZ(R") is called quasistandard if there exists a standard f, € LZ(R") such
that f~=f,.

1.8. Internal norm approximations of distributions

We consider ‘function valued distributions’ D:LZ(R*)— LZ(R?) where
(D()(p) =§ d*aD(p, q)f(q), e.g. D =id, D(p, q) =38>*(p—q). An internal function
K(p, q) with the property

j d>*qK (p, q)f(q)%j d*qD(p, q)f(q) for all quasistandard f e LZ(R?)

is called an internal norm approximation of D(p, q). Our next aim is to construct a
handy internal norm approximation k(p—q) of 8°(p—q). For this we use some
means from the theory of

1.9. Fourier transformations

By abuse of notation we describe Fourier transformations by

f(x)= GIREE j d’pe™f(p) (x eR? ‘configuration space’)
1 ;
fp)= am J d’xe”™f(x)  (peR’ ‘momentum space’)

‘distinguishing’ the transforms only by the names of the variables x, y, z and p, q, k
respectively. So far we assumed f (and its transform) to belong to ¥(R?), the
Schwartz space of C” functions of rapid decrease. The two transformations are
inverse to each other and can be uniquely extended to the whole of L&(R?) (cf.
[16] pg. 10 or [17] pg. 153 ‘Plancherels theorem’). The extensions are still unitary
transformations.

The convolutions f * k for f(p), k(p) belonging to L&(R?) is defined according
to (f * k)(p) =J f(@)k(p—q) d>q and has the Fourier transform (27)**f(x)k(x), in
case this product belongs to LZ([R?) (cf. [17] pg. 154/55).

1.10. Space cutoff Q
Let k :R*— C be the function with

1
k(x)={—(2fn-)3’2 for |x|=Q
0 for |x|>Q

where Q is some positive infinite real in M’ over M. It follows that for any f(x)
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belonging to LA(R?),

f(x) for |x|=0

3/2 & —
(27)7f(x) - k(x) {() for [x|>Q

belongs to LZ(R?), too.
Furthermore, for any standard f(x) in LZ(R") we have (2m)*?fk =f.

Proof. ||f = (2m)*?fk|| =< ~0 If(x)]* d’x is infinitesimal, because for any stan-
dard £ >0 there exists some standard Q, >0, such that € >, o [f(x)]?d’x=
x\)(‘) 'f X)‘ d X.

1.11. Theorem. The Fourier Iransform k(p) of the space cutoff function k(x)
(cf. 1.10) fulfills | f(q)k(p —q) d*q=f(p) for any quasistandard f(q) from LZ(R).
Le. k(p—q) is a norm approximation of 8*(p—q).

Proof First let f(p) be a standard function from LZ(R?). Then |f(q)k(p—
q) d*q=(f * k)(p) has thc Fourier transform (’)w)q’ﬁ’f(x)k(x) (cf. 1.0) fulfilling
(717)"2f(x)k(x) f(x). Since Fourier transformation is unitary, we get (f * k)(p)

=f(p).

For a quasistandard f=f,+g where f, is atandard and g=0 we have
(f = k)(p) = ((fy + g) * k)(p) = (f, * k)(p)+ (g * k)(p)
=(f, * k)(p) since (g * k)(p) has the same norm as g(x)k(x)
which is bounded by the infinitesimal norm of g.
= f,(p) since f; is standard.
= f(p) by definition of f,. qed.

For later use we will insert here a theorem from nonstandard complex analysis.

1.12, Theorem. For any real infinitesimal € >0 we have

—iw |x —v |

too e ip”(x” ‘V“) e o0 0
2 2 2. dpg~ i —————
55 p _p()+m _lt mi’)

where peR>. w,:=Vm?*+p% m >0 and standard. p,. x,. vo€R.
Proof. For real m >0 the formula lim__,,, [. =0 holds for

for e ip,(x,—vy,) e._imijx“ v“i
5 5 5 . dp,—
e PTPLTM T w,

l.:=
in standard complex analysis.

Thus for each standard 6>0 there is a standard £(8)>0 such that
Ve(0<e<e(8)=>]l.|<8) holds. In M' =M let £ >0 be infinitesimal. Then & <
£(8) for each standard 8>0. Hence |[.|<8 for each standard §>0, i.e. || is
infinitesimal (cf. also [18]). qed.

1.13. [lterated nonstandard models

The nonstandard models M' 2M’ can be used again for extensions M" DM
subject to conditions 1.2a) und b) (with respect to the same first order ldnguagg
L.
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In the sequel we will use fixed iterated nonstandard models M;, 2Mg 2M in
order to modify standard quantum field theory (belonging to M).

‘We will distinguish between

a) standard and O-standard elements belonging to M and M, respectively

b) finite and O-finite elements with respect to M, ©M and M;, My,

¢) infinitesimal (r ~0) and O-infinitesimal (r 0) with resp. to M, M and
M) > M.

d) f=0 and f3 0 with resp. to M;, M and M;, 2M,.

e) f=0 and f50 with resp. to M, >M and M(;, >M,.

f) quasistandard f and O-quasistandard f with respect to M,>M and
M1y =M.

g) st x and 0-st x with resp. to M, ©M and M, >M, (cf. 1.7).

2. The Klein-Gordon field

First we consider the standard formulation (cf. [2]).

2.1. Standard Fockspace

The Fock space [ is built up in the usual way by means of the ‘one particle
space’ [ - is the Hilbert space LER? d’pRw,) where w,=
m>+pi+p3+p3(m>0 ‘restmass’). The ‘n-particle space’ F, is the symmetrical

tensorproduct F,:=F, & =F, Q- - -QF, of n factors [F,. For n =0, the compon-

S S s
ent [F, is set to be F,:=C (complex numbers).

Set [F:= @0 [F,., the topological completion of @0 F,.. The annihilation and

creation operators a and a” are usually defined as operator valued distributions
over Fe.g.

n+1

1
(@ (AP, - - Do) = 7= Y fP)APL - R - - - Pusr)

=1
2.2. Remark. The restrictions a(f) [ F, and a*(f) | F,._, both are bounded
operators for each n>1 (and they are adjoint to each other). But a(f) and a™(f)
are unbounded for any f# 0.

2.3. Commutators

The definitions of a,a” yield the commutator relations, [a(f), a(g)]=

[a*(f),a*(g)]=0 and [a(f), a*(g)]=(f, g), (f, g) denoting the scalar product in the
Hilbert space LE(R?, dp’/2w,).

2.4. Standard Klein-Gordon field
The standard Klein-Gordon field ¢(t, x), teR, x eR? is given by

1 d’p —iton f—PE) o t—px) .+
o(t, x):=(2‘n)3,2 %% (e "' Pa(p)+ &' " a™(p))

p
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which, for any fixed time ¢, is an operator valued distribution over the Fock sjpace
[F. Its initial value (¢t =0) reads

1 d3p + ipx
80,0~ | o @) +a”p)e™
The corresponding Hamiltonian HGC is defined to be
d3
H5O = [ £L w0 (la(p).
w

P

2.5. Modifications

The standard Klein-Gordon field ¢, belonging to the basic structure M, will
be viewed as belonging to the nonstandard models Mo, and M, of MM, & M,
(cf. 1.13). We will fix now an infinitesimal restmass m >0, belonging to M, =M.
The further modifications of ¢ concern the Fock space as well as the annihilation
and creation operators:

2.6. Particle number cutoff
Let w be an infinite O-standard natural number. We want to replace the
Fockspace F (belonging to Mg<M,) by F® :=n€:l':31 F,. (which belongs to
My =M,), too). Thus we have to replace
a(f) by a,(f):=a(f) | F*:F*—>F®
and
a* () [F* ' 0
0 0

Then a,, a. become operator valued distributions over [F*.

a*(f) by a:(f):=( ):F“’—fﬂ:‘”"‘@ﬂ:m—)F“’.

2.7. Remark. a,(f) and al(f) are bounded operators which are adjoint to
each other, for any fe L (R}, d’p/2w,) from M, (cf. 2.3).

2.8. Space cutoff

Let k :R{;,—R7,, be the 1-internalnorm approximation (in momentum space)
of the Dirac &-function evolving from a O-infinite space cutoff QeM,, (in
configuration space) according to 1.10 and 1.11 (cf. also 1.13). We set

3

d
ailu(p):=2w, j qu k(p—q)al’(q):F° —F~.

q

It follows immediately:

2.9. Remark. a, .(p) and a; (p) are bounded operators which are adjoint to
each other (cf. 2.7) and belong to My,,.
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2.10. Commutators

The following relations hold

a) [a,.((p), ar.(q)]= [a?Iiw(p), a:.(q)]=0
b) [ako(p), ak.(@)] 1 F*7' =2w,2w, - K,.(p, q)

where K, (p,q):=J d’u(1/2w,)k(p—u)k(q—u) is a 1-internal norm approxima-
tion of §%(p—q)/2w,.

Proof. a) is obvious.

1
2w,

For any 0-quasistandard fe Lg (R?, d’p) we find

b) [aku(p), aku(@)] I F* ' = 20,20, L d*u k(p—u)k(q—u).

1
[ @okntp. 010 = [ @u | @pfiokip - 05— k(g -w

& jdz‘um k(g—u) & fla) ged.

o
2w, 2w,

2.11. UV cutoff

Let h :R*—R be the characteristic function of the ball Kp around 0 € R’ with
large standard radius P (ultra violet cutoff). I.e.

1 fo =P
h(p)={ r |pl

0 for |p|>P

Possible explicit values of P will be discussed in 6.23 and 6.24. We set
ai) (p):=h(p)ai.(p). For notational convenience we will write b*(p) instead of

ahn..(p).
2.12. Remark

a) p—b(p):F*—F* is an operator valued function belonging to M,,.
It is uniformly bounded.

b(p) is adjoint to b*(p) (cf. 2.9).
b) The standard and the modified annihilation operator resp. are very close

in the sense that a”(p)A 5 b (p)A for any 0-quasistandard A €F,, n =w,
which has support in Kp.

2.13. The modified commutators
The following relations hold, ‘because of 2.10

a) [b(p), b(@)1=[b"(p), b"(q)]1=0
b) [b(p), b*q)] | F*~' = h(p)h(9)2w,2w,K,.(p, q)

2.14. The initial cutoff Klein-Gordon field x(0, x)

Now we are going to replace a and a™ in the initial value of the Klein-
Gordon field (cf. 2.4) by the modified annihilation and creation operators b(p)
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and b*(p) respectively. Thus, the initial cutoff Klein-Gordon field x(0, x:) is
defined to be the 1-internal uniformly bounded operator valued function

1
2m)*?

3
% > (0, x): = L dw e (b(p)+b*(—p)).

2.15. Modified free Hamiltonian

The modified free Hamiltonian HX® is constructed likewise from the sitan-
dard free Hamiltonian H,, by inserting the cutoff creation and annihilation
operators into Hi©, yielding

3
HKO = j% w,b*(p)b(p)

2.16. Remark. HYC is a 1-internal bounded operator over the cutoff Fock
space [F“.

2.17. Remark. Since b(p) and b*(p) are adjoints it follows that HXC is
selfadjoint.

2.18. Definition. Let G=F*~' be the (external) subset consisting of all
0-quasistandard states of F“~' having the property that for all n <w—1 their
[F..-components have support in K} (cf. 2.11). Furthermore let G, :=GNF,. One
sees immediately that G=M,, is a subset of the domain of HiCeMy,.

2.19. Theorem. Any state AcG fulfills HX°Az A’ where

A’(pla---apn z w A(pla"'7pn)'

Proof. For such a A we get
(Hi(GA)(Pl " D)

- ([£9a+@) [ L2 h120 ko -k 120,

q

X j ;;' = r)a(r)A)(rh "t P)

n 1 d3
5 % 7= | L2k ph(NEAG. b1 b
= Vn
F 2 @Ay Pt Pa)
(For more details cf. [23]). qed.
2.10. Modified Klein-Gordon field

The modified Klein-Gordon field x(t, x) is defined according to
x (t, x) := "X (0, x)e 7
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where x(0, x) is the initial cutoff Klein-Gordon field of 2.14 and HXC the
modified free Hamiltonian of 2.15. (This definition is obviously consistent for the
value t=0).

Thus x(t, x) is for each teRf;, an l-internal uniformly bounded operator
valued function in x over the modified Fock space [“.

In order to be able to compute contractions of yx (cf. 2.26) we need the
following result.

2.21. Lemma. For any A€G,, n=w—1, and any g €G, the following terms
belong to G and fulfill

d3p r d3
L} o g(p)b ™ (PAT L pr g(p)a™(p)A
i P : p

Proof. Use 2.12b.

2.22. Theorem. For any 0O-finite t and any AeG
a) e""""“A belongs to G and fulfills
b) e*Hi“A % e"HT A,

The following is an immediate

2.23. Corollary. For any O-finite t, any g € L&(R?, d>p/2w,) which is 0-quasi-
standard and for any A€G the following formulas hold
. d3p ) J' d’p _.
itHXKG | = P —itHKG —iwt
a) e IZ% g(p)b(p)e Az )5, e 'ePbPA

p

3

d3 4 itlHKG d +1i +
pg(p)b (—p)e i A%I Pe “o'og(p)bT(—p)A
2w, 2w,

Proof of 2.23 from 2.22 straightforward, using 2.21. For the proof of
Theorem 2.22 we use

b) eirH'f“J

2.24. Deﬁn.itiono U(I) :: ei'Hr(;e—i[H‘!’((;

2.25. Lemma. U(tH)A50 for AeG.
Proof. By applying 2.19.
Proof of 2.22

a) e"™MT°A eG follows from b) since e AeG
b) We are going to show that

W(t):=||U(t)A—A|? 5 0 for AeG and any O-finite t,
which yields

gUHIG A — itHEC A — (QUHYC g =itHES _ i) o itHES A =0.
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We have

[

=|(U()A, (U(t)—id)A) + (U(t)— id)A, U(1)A)

=2[[UMA| - (U0 —id)A||=2 |U@®)A] - 2 ||Al 5 0.

W(t) 5 0 (for t O-finite) then follows from the mean value theorem of diflerential
calculus. qed.

2.26. Contractions

Contractions of operators are defined in the following way. Let A,(x,),
i=1,2 be time dependent operators in the following sense A;(x,) =

ix HKe

e A e oM™ where A, is a (smeared) polynomial in b(p), b*(q). The contrac-

. 1 & = ) R 5\
tion A;(xp)Ax(ye) is set to be A;(x)Ax(yo):= T(A(x0)A2(yo)) —: Ai(xo) As(yo):
(cf. also [19] p. 83) where the ‘time ordered product’ equals

Al(x())AZ(Y()) for x,>vy,

T(A(x0)Ax(yo)) = {Az(y‘o)Al(x”) for  xo<yo

and the ‘normal product’: A;(x,)A(y,): arises from A;(xy)A(y,) by transposing
‘annihilation parts’ e™"""b(r)e =" and ™" ' b(s)e VoM™ with ‘creation parts’
ix H¥®

e " b (u)e M and e™ M b*(v)e YoM until the latter occur only as left side
factors of the former.

2.27. Definition. By abuse of notation we will write

ipx

1
x (1, x) :Wj d’px(t, p)e™™.

For t =0 this implies x(0, p) = b(p)+ b*(—p)2w, (cf. 2.14). It follows easily

2.28. Lemma.
[eix“HlK(}é@e —ix HKG e.",-”u‘kr‘—_u:q_)e iy TG

2w, ’ 2w,

———— ] for x>y,
x (X0, P)x(vo, q) = i
H:\'(i b(q) e__l'y“Hll((i eix()H:(('- b (_p) el'xUthl'n

ew() i
2w, 20

] for x,<y,

P

2.29. Theorem. For any O-finite time values x,# y,, any 0-quasistandard
f:R*—C and for any A€ G we have

e - ""“’p IK“— yul

P h(p)A

2) | daf@xe PIX(v0 AT Fp)

p

—iw, |x, =y,
0) [ dpfp)Cx0, PR (o, DAFF(-) S —— h(a)A

q

(cf. 1.7 and 1.13 for the meaning of =)
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Proof. a) For x>y, it follows

j 4*af(@) X o PIX (Yo A
:ei"uHr(;(b(p) e_i(xn*Yn)Hr“J BCUC( ) +( Q) l("n Yy HEC

2w, w,

—i(x — KG K b — KG

— (x,, Y")Hl J d qf‘( ) ( Q) —~y,)H! (p)) ix H! A (Cf. 2'28)
2w, 2w
= ,ix HKG 1 dq iw (x,—vy,) 2= —ix HKG
TN ) 20 20 f(q)e 5 0lb(p), b*(—g)le *HEA
i (x,— v") (cf. 2.12b and 2.23b)

= f(— p)——— h(p)A (cf. 2.10b, 2.22a)

F’

For x,<y, we compute the ‘adjoint’ (f d*qf(q)x(xo, P)x (o, 9))*A along the same
lines. b) is proved similarly. qed.
2.30. Definition. Let

8 (P()'!'QU)S%(P +q)h(p)
p p0+m —ig

AF(p()s P> 9o, CI)

where e eR,) is O-infinitesimal, £ >0.

2.31. Lemma. For any 0O-finite times x,# y,, any O-quasistandard f:R*—C,
and any AeG we have

" 1
) jd‘ ) (o DX (Vo G

L —i(p,x,+
G > J d*q dao dpof (@) Ar(Po, P, do, @)e Pt a¥d A

b) J d3pf(p)X(x(), P)X(yw Q)A

1 - X+

- J d’p dp, dqof (P)Ar(Po, P, Go, q)e " P WA

Proof of b)
1 - X+
7 j d’p dp, dgof (@)Ag(po, P, qo, q)e " PoXo™ ¥
- I I h e_iqn(yn_xn)
“"l(.o Ix -vY, I
5 f(— Q)—_——h(Q) (cf. 1.12)

Wq

which implies the desired result (cf. 2.29b). ged.
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3. The free photon field

We are going to start with the standard Stiickelberg-Coester type formalism
along the lines of [20] pg. 136137 for photons of ‘small’ mass m >0. The ‘gauge’
A will be fixed at A =1.

3.1. Definition. The Fock space B for the standard photon field will be the
symmetrical tensorproduct B:=F®, 'F®,’F®,’F of the Fockspaces 'F=F, [ =
0-- -3 for the K.G. field of mass m (cf. 2.1) with the usual ‘indefinite metric’.

Let 'a(p),'a*(q) be the canonical annihilation and creation operators resp.
over B (cf. [20]). Let £€°(k):=1/m(w, k) eR®, k €eR> and let £'(k), %(k), £3(k) be
space like real vectors of R* which together form an orthonormal and complete
system of R* in the Lorentz metric. The standard free photon field is now defined
by

1 [d%k ¢

,aianyzewaJZwk2%egkxe“%Ph“auo+emﬂ“““a%k»
Its initial value is
A0, x)= : J dk i e {er(k)a(k)+eM—k)*a*(—k)}.
° (2ar)* J iy 5 =4 ? ?

The free photon Hamiltonian is given by
H-gh = 0H0+ 1H+2H0+ 3H0

where

d3
Hy:= [ £L wla" (p)lap).

2w,

In order to modify the standard A,(t, x) we view it as belonging to M,,, with the
mass m belonging to M, =M,;,. Then we proceed as in chapter 2.

3.2. The cutoffs
We apply first the particle number cutoff (cf. 2.6) to each tensor factor °F. 'F.
F, °F of B, yielding

B4m .= ()[Fm ® lle ®2[F‘m ®3[Fm (CU = N(O))-

s s s

Then we define *a’’(p) according to 2.6, for A =0, 1,2, 3. The space cutoff is
applied to each *a‘"(p), according to 2.8, for A =0, 1, 2, 3, yielding a{.)(p). The
UV cutoff yields *b‘"(p) =*a},"L .(p), according to 2.11, for A =0, 1, 2, 3.

3.3. Commutators
The following holds
[*b(p), " b(q)]=["b"(p), " b"(q)]=0
[*b(p), *b*(q)] I B® ' = — gy h(p)h(9)20,20,K,.(p,q@)  (cf. 2.10, 2.13).
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The restriction | B“~! in the second equation could obviously be weakened to

P @, T R @,

3.4. Initial cutoff photon field
The initial cutoff photon field B(0, x) over B** is now defined according to
1 dsk : itkx A A A AL+
B,(0, x):= Y. e eMk)*b(k)+eX(—k)*b*(—k)}

B (271')3/2 2wy A =0

which is a 1-internal uniformly bounded operator valued function in x (cf. 2.14).

3.5. Modified free photon Hamiltonian
Definition of the modified free photon Hamiltonian H5" according to
H"li)h .= ()H}I(G+ lHll(G+2HII(G+3Hll(G

where

d3
'H¥G=j—2 pwi,lf(p)'b(p) (1=0,1,2,3) (cf. 3.2, 2.16).
wp

3.6. Definition. Let D<B“~' be the (external) subset consisting of all 0-
quasistandard photon states A whose components A, . .. n., Notn;+ny+n;=
w— 1 have support in KpeX Kp' X Kpz XKp* (cf. 2.11 for Kp).

3.7

The modified free photon field B,(t, x) is defined according to
B,(t, x):=¢€""" B (0, x)e """
(cf. also 2.20).

3.8. Theorem. Any state A=°A, Q;'A, XA, XA, €D fulfills

n

'H"A 5 — gu( Z ‘”l,,k) A

k=1
where 'A,, has the variables 'py, ..., 'p,
Proof. Apply 2.19 to Definition 3.5.

3.9. Lemma. For any 'A, €D, B, and any geG; (cf. 2.16) the following
terms belong to D and fulfill

3

d3
j P g(p)‘b‘”(p)‘Am%j 4p g(p)'aP(p)'A,,

2w, 2w,

Proof. Apply Lemma 2.21.
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3.10. Theorem. For any 0-finite time t and any A€D
a) e""A and e""'"A belong to D
b) e"H‘ThAﬁenHlﬂhA.

This follows immediately from 2.22. In the same way one generalizes the
remaining definitions and assertions of chapter 2. Then Lemma 2.31 carries over
to

3.11. Lemma. For any O-finite times x, and y,, any 0-quasistandard f :[R*>—
C and any AeD we have

1
) j daf(a)B, (xo, )B, (o, )A

1 | _
L j d>q dp, dgof(a)(=&,..)Ar(Po, P, Go, @)e """ 4N

b) [ d6f(R)B, (x0, PIBL Gy @A

1

% E j d3p dp() dQOf(p)( - gu.u)AF(pOa ps qu q)e—i(p('x(,+yny(,)A

where Ag is defined according to 2.30.

4. The free Dirac field

4.1. Standard Fockspace

The Fockspace A of the standard Dirac field is the iterated (partially

antisymmetrical) tensorproduct A=H @, HHQ@MH &, H) where H= @7_,H®
is the completed direct sum of the n-fold antisymmetric tensorproducts of
H, = LAR? d°p2Q,), Q, = VMZ+p2, where M is the fermion restmass.

4.2. Standard free Dirac field

The standard free Dirac field is defined for any teR as operatorvalued
distribution in x
d3p s=-+1

V2M . .
g, (1, x):= 2m? jzﬂp s=>:—'1 (e "W Py (p)),Sa(p)+e' (v (p)),’c *(p))

for v=1,2,3,4 where °‘a(p), °c*'(p) are the usual electron annihila-
tion and positron creation operators (s =spin) resp. and u,(p), v,(p) are the
canonical spinor functions (cf. [20] 2-37).
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4.3. Standard free Dirac Hamiltonian

The standard free Dirac Hamiltonian H¢' is

d3 +1
Hy= [P0, L Ca'(ra)+c (prer)

4.4. The cutoffs

First we apply a particle number cutoff QeN,, (cf. 2.6) to each tensor factor
H of A and to its annihilation and creation ‘operators’. This gives rise to the
modified Fockspace A*? and to *'aq(p), *'aa(q), *'ca(p), *'ca(q). Then we apply
a space cutoff k and a UV cutoff h according to 2.8 and 2.11 in each tensor factor
H?, yielding

b (p):="aiialp)

d(p):="ciialp)  (s==x1) in A*.

4.5. Remark

a) R*ap—>bM(p):A**—>A*? and q—°d"(q):A**—>A*? are 1-internal
operator valued functions (i.e. belonging to M;,). They are uniformly
bounded.

b) Furthermore °b(p) is adjoint to *b*(p) and *d(q) is adjoint to *d*(q).

4.6. Cutoff anticommutators

For s, t = £1 the cutoff annihilation and creation operators fulfill the follow-
ing relations

[b(p), b*(@))s 1A =[c(p), ¢*(q@)]. | A% = h(p)h(q)2Q,2Q,K\(p, q)

where

1
Ku(p, q) = L d*u

2Q,

is a 1-internal normapproximation of §*(p — q)/2Q,. All ‘other’ anti-commutators
vanish (cf. 2.13).

k(p—u)k(q—u) (cf. 2.10b)

4.7. Initial cutoff Dirac field

The initial cutoff Dirac field 6,(0, x) arises from ¢, (0, x) by inserting the
respective cutoff annihilation and creation operators i.e.:

\/m d3 p i —ipx s J+
0. (0, x):(ZW)ijﬂI:s;] (e (us(p))ib(p) + e (v (p))d ™ (p))

v=1,2,3,4, converting it into a 1-internal uniformly bounded operator valued
function.
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4.8. Modified Dirac Hamiltonian

The modified Dirac Hamiltonian then becomes

d3 +1
HY= [ 3000, 3 C6'Grbe)+*d" (rdp) (L. 410,

This is a 1-internal bounded selfadjoint operator over the cutoff Fockspace A*?
(cf. 4.5).

4.9. Definition. Let L =A™ ' be the (external) subset consisting of all 0-
quasistandard fermion states A whose components A, . .... have support in
Kp XKpXKp XKp* (n,+ny,+ny+n,<0—1).

4.10. Lemma. If Aecl  belongs to A, it fulfils HfA=
Z::l Q,(p1s - - -5 Pu)-

Proof. In the spirit of 2.19.
4.11. Modified free Dirac field

The modified free Dirac field 6(t, x) is defined according to
0,(t,x):=e"H7g, (0, x)e ™", v=1,...,4 where 6,(0,x) and H$ are defined
according to 4.7 and 4.8 respectively. For any teR, the field 6(t, x) is a
l-internal uniformly bounded operator valued function in x over the cutoff
Fockspace A*“.

4.12. Lemma. For any A€l,, n<Q-1, and any geG, (cf. 4.9, 2.18) the
following terms belong to L and fulfill

d3 +=1 + d
.[20 g(p)' b (P)AT Jzn

3

3

3
Id gP)'d (AT jd g(p)*'c(p)A (et 2.21)

20, 2Q,

4.13. Theorem. For any 0-finite time t and any A€l,, n=Q-1 (cf. 4.9) we
have e"iA=e"™VA, both terms belonging to L,. For the proof cf. 2.22 and its
proof.

4.1. Corollary. For any O-finite time t, any g:R*—C which is O-
quasistandard, and for any A €ll we have

2) e | ap P g(p)*'b(p)e “HI'A zj 4D o “g(p)*'b(p)A
J2q, 20
3
itHe' [ + itHe! d —i{) t =+
b) e 20, P o(p)*'d(p)e s A~Jz “Ye(p)*'d(p)A
i el [ d3 =+ -+ - el d3 t =+ -+
c) e"Hi 20, g(p) 'b*(—p)e " Jmp “Lle(p)*'b*(—p)A
. [ dPp d’p
d |tH|=' +1 3+ —1tH=' J- ;n: +1 3+
) e )20, g(p) d*(—p)e 20, 'g(p)*'d(—p)A

All eight terms belong to L.
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4.15. Contractions

Contractions of time dependent (Fermion-)operators are defined in the usual
way:

Al(xo)Az(Yo) e T(Al(xo)Az(yO)) —: A(x0)Aa(yo)

where

_ Aq(x0)Ax(yo) if xo>Yo
T(Al(xo)Az(YO))_{_Az()’o)Al(xo) if  yo>xo

and :A,(x)As(y,): arises from A,(x,)A,(y,) by transposing annihilation parts and
creation parts, each time introducing a factor —1, until creation parts do not

appear any more as factors on the right side of annihilation parts. (cf. 2.26 and
[19] p. 102).

4.16. Denotations

By abuse of notation we will write

1 ipx
0.0 %) = 57 j dpb, (1, p)e'™.
e.g.

V2M
6..(0, ”)‘m _Z {(us(p)). b (p) + (v,(—p)) 2d*(—p)}

It follows readily

4.17. Lemma
\/_
eixHs (u(P))"b(ple M7,
[ 20, S_Z_l ks
oM g - o
ew.,H. 20 z (us,(_q))ﬂs b (_q)e :yOH‘]
— q st==1
0, (x,, P)EB(}’m q)= 1% SM for xo>Yo
i eiy(,H;I (ﬁs'( )) sd( )e—iyanl,
[ 20, s.zz_l Vi oM
WV2M . o
e XoHf Z (v( p)) sd*(— p)e “H,]
20{1 s=-—1
" fOI' x0< Y()

4.18. Theorem. For any 0-finite time values x, # y,, any (1-internal) f :R* —C
which is 0-quasistandard and for any A€l the following holds

— e —if) |x,—v,l
J d>qf(q)6. (X0, P)Bs (Yo, AT h(p)f(—p) —=—— (M, Qe Pl A
for xo>y,

J' 1 —i€ x|

d*qf(q)8. (xo, P)8s(x0, )AF h(pP)f(—p) —— 5 (+ — Qe Plups A
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for xo<yq
— e lﬂlx =y,
O | dpf(0)6 (x0r PIBa (v DA T W@ (=) S5 — (~ ~
for xo>y,
— —i€2 Jx, v,
d) j d*pf(p)0.(xo, P)Os (Yo, A F h(@)f(—q) —— (M~ QqT.s A
for x,<vy, Wwhere _rgT.= Z r.Y..
v=0
Proof. For x,>y, we have
| @at@ 6. 2Bay0. @) = 25 5 (“z(g”" b(p)
=1
o Vo x)HY j d? af(q )Z - (i (Qq))ﬂs b'(—q)e -xHg ] o~ eHP A

X, VI8,

e_
= . ‘an| 3 -
~2M - e Id q”;l(u (P)a (@ (—q))g 20,20,

X f(q@)*b(p), bt (- q)l.e “X YA since Xo= Yo

M+ efnxnfyninp
T —p)h(p)A f. [20] 2-40
FaM(M ) o fCpGIA (el [20] 2:40)

All other cases work similarly.

4.19. Modified Feynman propagator

Definition of the modified Feynman propagator S according to

(M + pp)
= — 1 4 3 + o
SF,,,,(pn» P> do» 4) i8 ' (po+qo)d (p+q) p?— p(2)+ M2—i

h(p)

where £ >0 is a fixed O-infinitesimal number from R,,,.

4.20. Lemma. For any 0-finite time values x,# y,, for any 0-quasistandard
f:R?>—>C and any A€l the formulas

) j a6, (0, P)Ba (yor (@A

1 et
Dy ,[ d*q dpo dqof(q)e ™ *=** ¥ Se._(po, p, do, @A

D) [ dp £(p)6. 5or P30 DA

= 1 —i e
‘-,_(Q)._’ 5; J d3pdp0 dqnf(p)e (P” o qnyn)sﬁkﬂ(pn, p, q(], q)A
hold.
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Proof. For x,>y, we have

1 —i X+
5 J d>q dp, dgof(q)e ' P 9S . (po, P, 4o, @)A

L ph@)(M i+ T ) J e dpoA
= o + iy —+
271_ f( P (p) Yo P! . = YuDu s pz_pg+M2_i8 Po

_iﬂplxn"yul

3
Z Y»Pv) Zwie——A (cf. 1.12)

i ad
> ——f(=ph (M+ Yo —+
W iy f(=p)h(p) Yo axg = ” 20,

= j d*qf(q)0,(xo, P)0s(yo, Q)A  since  x,>y,.

All other instances are proved similarly.

5. Interactions

5.1. Fockspace

The Fockspace of the interacting fields is the tensorproduct A**@B** of the
particle number cutoff Fockspaces A*?, B** for fermions (electrons-positrons) and
photons respectively (cf. 4.4 and 3.2). A special role will be played by the external
subspace L ®D, where L <A** and D<B*” are 0-quasi standard fermion and
photon states respectively with restricted support (cf. 4.9, 3.6 and 5.13b).

5.2. Interaction term
Electromagnetic interactions are introduced by an additional summand Hj in
the total Hamiltonian H = H{ + H}" + H,. We assume H; to be of the form

H,=—e j :6(0, x)v,0(0, x)(B,(0, x)+ E,, (0, x)): d3x

where the ‘external field operator’ E(0, x) is a l-internal uniformly bounded
operator on B*” (—e =charge of the electron).

5.3. Examples

a) The case where there is no exterior field corresponds to E, (0, x) =0.
b) The case of the Coulomb field corresponds to E,, (0, x) = C, (0, x) of 6.3.

5.4. The interacting fields

67"(t, x) and B;™(t, x) in the Heisenberg picture are defined according to

: [ s el ph
G?P(l, X):z el'(H‘|+H{'h+H"9v(0, x)e it(H¢'+Hph+H)) etc.
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5.5. Interaction picture
The interaction picture is introduced by the composed transformation
A*'QB* Heisenberg picture

l evit(H§'+Hr;h+H,)

A* QB Schrodinger picture
1ei:(H;'+th)
A*'RB* Interaction picture

as usual, yielding the equation of motion (d/dt)¢""(t)= —iH}"(t)¢'"(t) for the
state vector ®'F(t).

5.6. Remark

a) The existence of e and e resp. is guaranteed since
the exponents are (internal, nonstandard) bounded operators (cf. also the
Dyson expansion 5.7).

b) The standard difficulties with the existence of the interaction picture of a
translation invariant theory in connection with Haags theorem (cf. [21],
chapter 6) are circumvented because of the nonstandard ‘space cutoff’
hidden in the Hamiltonian through the modified annihilation and creation
operators (cf. 2.8, 3.5, 4.4).

+it(Hg'+Hph) +it(Hs'+Hph+H| )

5.7. The Dyson expansion

The transformation
=] t l] l“ 1
U(t,s):=1d+ Z (=i)" J’ j " j H*(t) - - - H (t,) dt, - - - dt, dt,
n=1 S 8 s
converges in the uniform operator topology and fulfills the equation of motion

d o
a Ut s)=—iH; (1) U(t, s)

for any strongly continuous (internal) map t—> H"(t) of R(,, into the (bounded)
operators A**QB*— A**QB*.

Proof. cf. [16] Theorem X.69 pg. 282.

5.8. Theorem. The Dyson expansion can be rewritten in the form

U(t,s)=1d+ i 0" jr e Jﬂ T(H™(t,) - - - H®(t,)) dt, - - - dt,.
n=1 S

n!

s

The proof can be found in most of the textbooks (e.g. cf. [19] pg. 155).

5.9. Wick’s theorem

The Theorem of Wick on T-products, normal products and contractions in
standard quantum electrodynamics (cf. [19] pg. 161) carries over to our modified
version unchanged.



Vol. 57, 1984 Some nonstandard quantum electrodynamics 601

5.10. Feynman’s rules

Feynman’s rules carry over in the sense that one has to use our modified free
fields and contractions in configuration space instead of the usual free fields and
contractions, respectively.

5.11. First order perturbation theory

First order perturbation theory deals with the summand
U,(t,s):=—i jﬂ H;(xy) dx, of U(t,s) (cf. 5.8)
In order to compare our modified U,(t, s) with the usual
S,(t,5):=ie J't dx, L 1P (Xo, X) ¥, (X0, X)A, (X0, X): dx
assuming E, =0, we need

5.12. Theorem. Let t, s be O-finite, then (@, U,(t, s)A) 5 (&, S,(t, s)A) for any
¢, Acl. & D having support in Kp, (cf. 2.11).

Proof. It suffices to prove

(<I5, J: dx, J- 0*(xo, X)v,0*(xo, x)B(x, X) d3xA)

0] (qb, J dx, Jtﬁ*(xo, X) Y™ (x0, X) A (x0, X) d3xA)

for any normal order of the fermion fields. For example
((ba J. dx J 6_—(x()’ x)‘Yu.o_(xO) x)B:(an x) d3XA)

1 t i(w —{2 — x
= W‘[ dond3pd3qe( a2, 12X,
X(B,(0, p+q)¢$, 67(0, p)v,.67(0, 9)A)
For p, q €eKp,, we have the approximation (cf. also 2.12b)
1

o (211,)3/2

J dxo j d3p d3qei("’v+q'“v'0ﬂ)""
X(ALO,p+q)$, ¢ (0, p)y,. ¥ (0, q)A)
~ (@, [ dxo [ w700 1750 ) A x0r 0) e

The other instances are proved similarly. qed.
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5.13. Remark

a) Assuming that the cutoff value P be rather large (cf. 6.24) Theorem 5.12
guarantees that the first order perturbation theory of our modified Q.EE.D.
agrees with the standard one up into highly relativistic regions.

b) The role which is always played by the external sets D and L suggests that
L ®D be called the set of physical states.

6. Coulomb scattering and vacuum polarization

6.1. The modified Coulomb field
The Coulomb field is usually given by the vectorpotential
@)= Gy €l@)=cala) = @) =0, g R’
in the momentum representation. In connection with our nonvanishing, infinitesi-
mal photon mass m eMy, and our UV cutoff, we suggest the modified form
Ze h(q)
Q@my? w2

which is everywhere defined, as well as its Fourier transformed C,(x), x =R>.

Colq):= :\/mz_*_qz)’ Ci(q)=Cx(q)=Cs(q) =0

6.2. The exterior field operator

We view C,(q) as operating multiplicatively on the Fockspace B* of photon.
We then define the ‘time dependent’ operator Cg(t, q):=e"™"Cy(q)e """
obviously is independent of t, Cy(t, q) = Cy(q).

6.3. The interaction Hamiltonian H,

H,; is defined according to
H;:=—e j :0(0, x)v,0(0, x)(B, (0, x)+ C, (0, x)): d*x

where

L_F, "
Cu(O, x):=(—2—ﬂ_?/—2‘|' e""‘Cu(q) d q

6.4. Coulomb scattering

Coulomb scattering during the time interval [—t, +t] is given by the sum-
mand

s(—tt):=+ iej dx, J’ d>x :0(xo, x)v,0(x0, x)C,, (x):
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of the S-matrix, corresponding to the Feynman graph

D

For the remainder of this chapter we assume t to be a 0-finite time value.

6.5. Theorem. For any two one-electron states ¢, A L@D Coulomb scatter-
ing vyields

(@.5(-LON T + 55 [ ax

% j d>p d>q e (¢, 8 (0, — p)vo8 (0, 9)Colp —q)A)
where

+1

20 _zl:us(w)"b(w), etc. (cf. 4.17)

Proof. Since ¢, A are one-electron states it follows that

0 (0,w):=

(¢)9 S(— L I)A) = (¢ = I dx() J' d3p d‘;q eianf'6+(0, = p)emixn‘”f'

2 (27‘,)3/2

ix H¢

X yoe™ 070, g)e” """ Co(p — q)A)
ie - ix n-+
7 (6. |, x| o0 0.p)

X yoe *o%f7(0, q)Co(p — q)A
(since ¢, AelL @D, cf. 4.14). qed.

We get immediately

6.6. Corollary. For any two one-electron states ¢, A cLQD Coulomb scatter-
ing gives rise to

(b, sA):= !lLrE 0-st (¢, s(—t, 1)A)

ie - ~
= 0-st(J d*qd’*q8'(Q,—Q,)($, 6°(0, —p)ye0 (0, q)Co(p —q)A))
6.7. Vacuum polarization
Vacuum polarization results from the summand

a(—t1):=(ie)? I dzy J dy, J dxoj d*z d*y d>x

=

= N
:G(ZQ, Z)'Yme(Z(), Z)Bm(ZO:v Z)Bn()’o, )’)

X 3()}0, Y) Y8 (Yo, ¥)8(x0, X)(vr)_f"(xo, x)C,(x):
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of the S-matrix, corresponding to the Feynman graph

\“‘”\/

Exactly as in the standard case one gets

6.8. Lemma
o(—t t)=—ie> J dz, dy, dx, I d*zd*yd3x
- )
X :0(2g, 2)Ym0(xo, 2)B,,. (20, z)B,(yo, y)

X Tr(8(xo, x)8(yo, ¥)v.0(yo, ¥)8(xo, X)v,)C,(x):

A straightforward evaluation leads to

6.9. Theorem. For any two one-electron states ¢, A e L@D, vacuum polariza-
tion yields

(b, a(—t,)A) 5 e3(d:, J' dx, dy, dz, I d®p d3q d*w du, dw, dk,

><L e'%o
2 gmn

(ﬂ -, un)elyo(u +w,—k )etxo( w,+k)

h(p—q)
(p—aq)’—uj+m?—ie

0+(0» —p) Ym 1)3/2 0~ (O Q)

" 1
(2,”)3/2 (2

+
1 Tr( M + werw h(w)v, M+ kg, p=q+w

X
(2m)? wi—w2+M?—ig (p—q+w)*—ki+M>—

—voh(p—q+w))
le

1
(2 )3/2 Colp— Q)A)

6.10. Corollary. For any two one-electrons states ¢, A e L&D vacuum polari-
zation yields

(6, A):=1lim (&, o(~1, )A)

1 _
(2 Q)" 5 or 0-st U d>p d*q8'(Q, — Q) (¢, 80, —p)v,,0(0, q)

gmnh(P—q)
X
(P—q)—(Q,—Q)*+m?—ie

I1,,(2, -0 p=a)Colp - )}
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where
M + wew
I, (ug, u):= J dw, d*w Tr (wz— WM i
M+ ug+t w;ar+w

X h(w)y, - h(u+w)yv).

w)? = (up+ wo)>+ M?*—ie

Standard methods yield

6.11. Lemma

1
nu.u(u()v u) = J dU J dW() d3W
)

C

o THAM + Wo =ttty w =0Ty, (M + wo+ (1 = 0)uorw+H—0)1)7,}
(—(wi—wi+ W= v)(ui—ud+M>—ie)?
X h(w+(1—-v)u)h(w—ou)

as well as

6.12. Lemma

Tr {(M+ wy— vug, w—ovu)y, (M+ we+(1—v)ug, w+(1-v)u)y,)}
=a{g,,(M*—(wy, W)+ (20— 1)(wo, W)(Ug, u) — (02— (g, u*)

+2w*w' +2(v2—v)utu’ + (1-2v)
X (w"u"+w'u*)} where u":=g,u, etc.

6.13. Corollary

1
[1,, (ug, u) =4J dvj dw, d>*wh(w —vu)h(w + (1=v)u)
0
g AM? —(wo, w)2 + (20 — 1)(wg, w)(uo, u) — (v —v)(uo, u)*}
+2wHw +2(v% = v)utu’ + (1 -20)(w*u" + w'u*)
(— (wo, W)z + (1’2_ v)(ug, u)2+ M?*— iﬁ)z

6.14. Remark. The following integrals, occurring in II,,, fulfill
a) JM dw L

. (W= w2 (02— 0) (U2 - ud) + M2 —ie)?

_mi 1
2 (VwWi+ (@2 - 0)uZ—ud)+M?>—ie)’

A w

b J d . =0
) L W S W (= o) Ui —uD)+ MP—ig)?

c) dew wg

. W =w2+ (02— o)W —ud) + M2 —ig)?

i 1

2wt o) (- uw)+ M—is
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where vw?+ (v —v)(ui— u?)+ M?—ic is the root with negative imaginary part.

Proof. By applying the residues calculus.

6.15. Theorem. For any two one-electron states ¢, A e LD vacuum polari-
zation vyields:

(b, 0A):= ,IEE 0-st (¢, o(—t, 1)A)

= o o Ot {I d’p d*q8' (2, = Q,)(d, 6"(0, =)o (0, q)

h(p—q)
(Q -Q,p—q)l+m?-

I]()O(Qp - Qq’ p—q)Co(p— Q)A)]

Proof. In view of 6.10 it suffices to show that §'(Q, — Q)I1,,,(Q, — Q. p—q)
=0 for n#0 which follows from Corollary 6.13 since each summand in the

enumerator which does not have ({2, —(},) as a factor contributes 0 according to
6.14b). ged.

6.16. Remark. The expression Il(€2, —€,, p—q) in Theorem 6.15 can be
replaced by Ily,(0, p—q), because of the occurrence of 8'(Q, —Q,).

6.17. Lemma

! s 202 —v)u*—2v—-1Dwu
_ 3
I1y6(0, u) 5 4 L dv ‘[m dw, L(U.u) d w( Wit (0= 0Dt MP— o)}

where G(v, u)=R? is the support of the function w—h(w—vu)h(w+(1—v)u).
Proof

1
[1y(0, ) =4 L dv j dw, J‘ d*w
G(v, u)

M2+(v — )+ wi+wi+wi+wi—Q2u-1)wu

(W2 —w2+(v—v)Hu’+M?—ie)?

(cf. Corollary 6.13 for u,=0). It suffices to know that
J’dw wi+wi+(v—vHu*+ M?
W= wi+(w—v)u+ M2 —ie)

which follows from 6.14a,c. qed.

550

6.18. Theorem. For |u|<M <P/2 we have the approximation

1 +oo
4 J dv J- d>w j dw,
0 G(v, u) e

2(v*—v)u? - Bty {1 (lnz—P—l)— u? ]
(W= w2+ (0— 0D+ M2—ic)? mriu 3 In g 30M?
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with an error smaller than
ut* M 2M2)
at ot
6M* P 3P

uf? 8%
Proof. By a long chain of elementary approximations (for details cf. [23]).

6.19. Theorem. For |u|<M <P we have the approximation

1 d’w 2%
—(2v—1Dwu 4]
0 o G (v,u) Wo (WZ_W8+(U—02)UZ+M2—I-8)2 9 lul

with an error smaller than
M m* M M?
1u|2 F(4w2+? F+ 4(1+ 2’772) F)
Proof. By a long chain of elementary approximations involving the explicit
shape of G(v, u). For details cf. [23].

6.20. Corollary. For |u|<M < P/2 we have the approximation
S (1 2P 5 u’
Mool0, u)= = 8’72”"2{5 (1“ M E) - 30M2}
with an error smaller than
4 ut* M
5 quz(—ﬁ*—}— (9+ Q(M, P)))
where Q(M, P) is a linear combination of M/P, M/P?, with coefficients <10.
Proof. Apply 6.19 and 6.20 to 6.17.

6.21. Theorem. For any two one-electron states ¢, Acl. & D with support in
€, 2, r <M <P/2, vacuum polarization yields

(6. A = ~ = O {j d*p d°481(Q, — Q,)(®, §*(0, — p)yod~(0, q)

@ P2 5) a(p—q)z]
x|Z (lnis+na-2)-P—4
[317(”1\/12 SREEY BT e

X Co(p—q)A)} (where a :=:—2)

o

with an error smaller than

1 r4 M
1272 (}\?Jr; 9+ Q(M, P)))\(qb, sA)|

Proof. By a straightforward application of 6.20, 6.15 and 6.6. From 6.21 we
get
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6.22. Theorem. For any two one-electron states ¢, Acl. @D with support in
K,2, r <M < P/2 Coulomb scattering together with vacuum polarization yield

(¢, (s+0)A)
.y 2
e 0 -st {J d’p d3q51(0p—9q)(¢>, 67(0, - p)yo08(0, q)

::(217)2
P? 5 —q)?
<152 (g ma=3)+ et [ -an) |

with an error smaller than

1
1272

r* M
(a2 9+ 0, PY) (4, 50

6.23. Charge renormalization and Uehling effect

The approximate result 6.22 for (¢, (s+o)A) can also be obtained by
computing (¢, sA) alone (cf. 6.6) using a ‘corrected’ form Dy(q) instead of our
Coulomb field Cy(q), namely

P? 5) a-q° ) hiq) Ze
In->+Ind4—2)+
(an n 157M?/) q*+ m? 2m)*"?

Dya):=(1-

3 3

As long as

o P? 5
C:=-—-——(l —+1 4——)>0
37 an n 3

is small (cf. 6.24) one can interpret v1—C as a renormalization factor for the
charge e. The term « - q%/15wM? gives rise to the socalled Uehling effect, a
displacement of s-levels in hydrogenlike atoms (cf. [20], pg. 327).

6.24. Charge renormalization and UV cutoff
The following choices for the UV cutoff P yield

P2
a) P=M-10% C=i(ln——+ln4~§)20.105 v1-C=0.95

3 M?
b) P=M - 10%° C =(.070 Vv1—C=0.96
c) P=M-10" C =(.035 v1-C=0.98
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