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Progrés récents dans la physique des systemes
désordonnés™)

Par Gérard Toulouse, Laboratoire de Physique de 'E.N.S.,
24 rue Lhomond, 75231 Paris Cedex 05

(6. I'V. 1984)

Résumé. Des progrés récents dans la compréhension physique de la théorie de champ moyen
des verres de spin permettent de dégager des concepts de portée trés générale: brisure d’ergodicité,
répartition des états stables dans I’espace des phases, fluctuations sur le désordre. Ces outils théoriques
se prétent bien a I’analyse des simulations numériques.

Introduction

Le lecteur soucieux de trouver des informations générales sur la physique des
verres de spin (historiques, revues expérimentales et théoriques) est invité 2
consulter les références [1, 2, 3].

La théorie de champ moyen

Il a fallu quelque quinze ans (de 1960 a 1975 environ) pour établir sur des
bases solides et non ambigués une théorie de champ moyen des verres de spin. La
définition, qui sert de référence de nos jours, est fondée sur le modéle de D.
Sherrington et S. Kirkpatrick (SK), qui est la version a longue portée du modele
initialement introduit par S. F. Edwards et P. W. Anderson [4]. Ce modéle repose
sur ’hamiltonien trés simple suivant:

#*=—Y J;SS. (1)
(if)

On a N sites (1<i=<N), sur chaque site i un spin S; (pour simplifier, on se
restreindra ici a des spins d’Ising, pouvant prendre les valeurs +1), des interac-
tions d’échange J;; sur chaque liaison (ij). Par hypothese, les interactions J; sont
considérées comme des variables aléatoires indépendantes. Chaque site interagis-
sant avec tout autre, on a un modele a portée infinie. Cet hamiltonien simplissime
contient bien les deux ingrédients essentiels: frustration et désordre.

Le programme consiste a faire d’abord la moyenne thermodynamique sur les
spins (a distribution {J;;} donnée) puis a effectuer la moyenne sur le désordre des
interactions. En bref, il faut calculer Log Z, ou Z{J;}= Tre ®¥*; la barre signifie
une moyenne sur la distribution des Jj;. W

*)  Conférence prononcée le 6 avril 1984 lors de la réunion de la Société Suisse de Physique 2
Berne.
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L’astuce des répliques

Mais ce qu’on arrive a calculer, c’est Z", c’est-a-dire la valeur moyenne de la
fonction de partition pour n répliques, non couplées, du systetme. On emploie
donc I'astuce, dite des répliques,

_ Z"~1
Log Z=lim , (2)

n—0 n

ou I'on fait tendre, en fin de calcul, le nombre n vers zéro.

Sous cette forme, la moyenne sur le désordre s’effectue aisément et le
probléme se raméne a la recherche de I’extremum d’une certaine fonction G{q.g},
ou I=sa,B=<n, avec oo =0, qga = Gus.- Autrement dit, G est une fonction de
n(n—1)/2 variables. Evidemment, a la limite n — 0, ce nombre passe par des
valeurs négatives. . .

Dans la solution SK originelle, la recherche du col dans I'espace des {q.3}
€tait restreinte a la premiére diagonale, ce qui présupposait que les répliques
¢taient indiscernables: q.,; =g, pour tout couple (af). Hélas, la solution ainsi
obtenue exhibait, a basse température, une entropie négative, ce qui est inaccept-
able pour des spins d’Ising.

La brisure de symétrie des répliques

Ainsi s’imposait la nécessité de la brisure de symétrie des répliques (symétrie
de permutation), c’est-a-dire la recherche de cols en dehors de la premiére
diagonale, dans I’espace des variables {q.g}.

Il est commode de représenter un point dans cet espace par une matrice
(symétrique, a éléments diagonaux nuls). Apres diverses tentatives intéressantes
(A. Blandin, M. Gabay, T. Garel; A. Bray, M. Moore) mais non couronnées de
succes parce que ’espace variationnel choisi était trop petit, c’est G. Parisi qui a
eu I'idée de considérer I’ensemble des matrices hiérarchiques, illustrées sur la Fig.
1 par un exemple simplifié. Nous appelons une telle matrice hiérarchique, parce

0 qidi ¢1id 2 9
@ 0:!di @i @ 4@ a
4 a0 4 e @ @ @
a1 4 EQ() 0:d: 4 q2 a2
1ugh = |rmmmmmnnnd bisscmis s e
2 42 42 420 do!do G
42 42 42 Qq» i G O éﬁh __5!1__
a: 4> 42 Q> i-zl-lnﬂq-l_-g"(-)" o ~
@2 4 4 G4 G :q O
Figure 1

Représentation d’une matrice hiérarchique, pour n = 8. De telles matrices hiérarchiques constituent
I'espace variationnel, au sein duquel G. Parisi a trouvé la solution au probléme de brisure de symétrie
des répliques.
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Figure 2
La matrice de la Fig. 1 peut étre considérée comme engendrée par un arbre. La valeur de I’élément de
matrice q,g est donnée par le premier ancétre commun de « et B. Ainsi, par exemple: q34= q,,
dsg =4y, 926 =4d2; 9o =41 > q2-

que les répliques peuvent étre placées aux extrémités d’une structure en arbre, la
valeur de I’élément de matrice q,; étant alors déterminée par le premier ancétre
commun a « et B (en utilisant une analogie évidente avec un arbre généalogique).
Voir Fig. 2.

Puis on laisse le nombre de branchements croitre indéfiniment, avant de faire
tendre n — 0, et on appelle x(q) la fraction des paires de répliques (af) telles que
d.g <q. Les calculs variationnels indiquent alors que I’extremum de la fonction G
est obtenu pour une matrice {q,z} paramétrée par une fonction x(q) ou, de
maniere équivalente et consacrée par I'usage, par une fonction q(x).

Une fonction d’ordre

L’allure de la fonction q(x) ainsi obtenue est esquissée sur la Fig. 3, pour
deux valeurs de la température, en-dessous de la température de gel T,. Dans la

q
1 b sommm s s A
PRS-
/ :
7 !
/ :
/ |
/ '
i |
/ \
0 1 X
Figure 3

Allure schématique de la ‘fonction d’ordre’ q(x) pour deux valeurs de la température T. En trait plein:
T=<T, en tirets: T=0. T, est la température de gel. Par définition, 0=x=<1, O0=q=<1.



462 Gérard Toulouse H. P. A.

phase paramagnétique (T>T,), la fonction q(x) est constante (et identiquement
nulle, en 'absence de champ magnétique).

Se pose alors la question de la signification physique de cette ‘fonction
d’ordre’ q(x). On peut montrer que la valeur maximale de q(x), celle qui est
atteinte sur le plateau: qu,, est précisément égale au parametre d’Edwards-—
Anderson:

1
A = dea = L (S (3)

qui mesure le ‘gel’ des spins. Mais quel est le sens physique de la variable x?

Comme la solution de Parisi passait avec succes les tests de stabilité et les
confrontations avec I’expérimentation numérique, la question a été posée avec de
plus en plus d’insistance, au fil des ans.

Une fonction de probabilité P(q)

Une premiere idée, assez naturelle, consiste a esquiver la question, en
essayant de se débarrasser de x. On définit:

P(q) EE (4)
dq

Parce que q(x) est monotone non décroissante, P(q) est positive. De plus
P(q) est automatiquement normalisée, [ P(q) dq=§,dx =1, puisque x varie
entre 0 et 1. Et comme les quantités physiques font intervenir q(x) sous la forme
d’intégrales, celles-ci s’expriment en terme des moments de la fonction P(q), qui a
toutes les bonnes propriétés d’une fonction de probabilité.

On a ainsi déplacé la question qui devient: quel est le sens physique de cette

fonction de probabilité P(q)?

La réponse est venue au cours de I’an passé [5, 6]: la fonction P(q) est la
probabilité pour que deux vallées, prises au hasard, aient un recouvrement
(overlap) égal a q. Plus précisément, on a:

P(q) =Y W.W,8(q—q*), (S)

s,s’

ou s (et s’) est un indice repérant les différentes vallées (états stables ergodique-
ment séparés), W.=e "'T/Z est le poids statistique (de Boltzmann) de la vallée s
(par définition Y. W, = 1) et ¢* est le recouvrement des vallées s et s’ défini par:

ss’ __ _1_
= §<si>s<s.->s'. (6)

Géométrie dans I’espace des phases

Les notions précédentes prennent un sens remarquablement simple et
naturel, en terme de géométrie dans I'espace des phases. L’espace des phases,
pour un ensemble de N spins d’Ising, est un espace a N dimensions: une
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configuration des spins est représentée dans cet espace par un point de
coordonnées (S;), i=1 a N. Plagons-nous maintenant dans le cas d’un verre de
spin @ T<T,. Il existe, dans I’espace des phases, un ensemble de vallées s
séparées par des barriéres infinies. La distance entre deux vallées s et s
(c’est-a-dire le nombre de spins qu’il faut renverser pour passer de ’'une a I'autre)
est naturellement reliée au recouvrement q* (plus petite la distance, plus grand le
recouvrement), qui n’est rien d’autre qu’un produit scalaire dans ’espace des
phases. Enfin, chaque vallée est pondérée par un poids statistique W;: a basse
température, ce poids est essentiellement le volume du bassin attracteur de la
vallée s.

On voit donc que la fonction P(q) est un concept trés général pour les
systetmes multi-états (hydrodynamique, automates, mémoires, structures
amorphes, probléemes d’optimisation, configurations de macromolécules, especes
biologiques, etc. . .). Ces systémes sont caractérisés par un ensemble de configura-
tions possibles (espace des phases) et un sous-ensemble de configurations stables.
Deés qu’on a défini des poids et des distances (ou recouvrements), on peut définir
une fonction P(q), qui décrit la répartition des configurations stables dans 1’espace
des phases.

Un critere général de transition

Dans le cadre de la physique statistique, la notion de fonction P(q) est
évidemment utilisable pour toute transition de phase. De maniere générale, pour
un systeme magnétique homogeéne ou inhomogene, on montre qu’on peut définir
une fonction ¢(u) telle que:

N 1
@ ={exp (1 3 501)) = [ P@re™dq )
i=1 2 0

ou la moyenne thermodynamique (- - ), est prise pour deux répliques réelles et
non couplées du méme systéme, I'une avec spins S et I’autre avec spins o, dans les
notations ci-dessus. Par cette formule, la fonction P(q) peut étre obtenue sans
connaissance préalable de la décomposition en vallées.

On obtient ainsi un critére trés général pour I'existence d’une transition de
phase, qui se traduit par une non-analyticité de

w(u)zg,i_rpm%LDg¢(u) en u=0.

Lorsque /(u) est analytique, elle peut se développer en puissance de u, de la
maniere suivante:

2
W(u) = u<q>+“3 N(gD + -+ -, (8)

ou (q) et {(g*). sont les deux premiers cumulants de la distribution P(q). Ceci
implique que (g?). est d’ordre N, c’est-a-dire que la fonction P(q) se réduit a
une fonction delta (une seule vallée). Une transition de phase se produit lorsque
{(q*). n’est plus infinitésimal: alors (u) n’est plus analytique en u=0, et la
fonction P(q) ne se réduit plus a une seule fonction delta (multiplicité de vallées).
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Dans le cas de transitions ordinaires (par exemple, ferromagnétiques), la
fonction P(q) est constituée de plusieurs fonctions delta. Dans le cas des transi-
tions verre de spin, la fonction P(q) comporte une composante continue, qui
apparait bien comme une signature de la brisure de symétrie des répliques, si on
se reporte a la formule (4) et a la Fig. 3.

Le grand avantage de cette formulation est qu’il n’est pas nécessaire de
connaitre a I'avance l'ordre pour décrire la transition, au contraire d’une ap-
proche a la Landau. On a remplacé la connaissance préalable de la brisure de
symétrie par la considération de deux répliques réelles, voir la formule (7). D’ou
un critere tres général qui permet d’englober a la fois les transitions ordinaires a
la Landau, avec brisure de symétrie simple, et les transitions du type verre de
spin, sans brisure de symétrie simple.

Deux surprises

Pour revenir au modele SK, telle était donc la situation au début de I'été
1983: par une procédure (I’astuce des répliques), qui n’était au départ ni
mathématiquement orthodoxe ni physiquement sensée, on avait abouti a une
solution en terme d’une fonction P(q) dont la signification physique était enfin
comprise mais qui ne levait qu'un coin du voile.

Depuis lors, deux surprises de taille sont apparues, qui ont permis d’accéder a
une réelle compréhension physique d’ensemble du modéle.

La hiérarchie des vallées

La premiére surprise est la découverte de la propriété d’ultramétricité [7].
Malgré ce nom un peu intimidant (en provenance de la topologie et de
I'arithmétique), il s’agit en fait d’une notion trés simple. Si on choisit trois points
au hasard dans un espace ordinaire, on construit ainsi un triangle quelconque. Or
si on choisit trois vallées au hasard dans I’espace des phases du modele SK, on
obtient toujours soit un triangle isocele aigu (avec deux cOtés égaux et un
troisieme plus petit), soit un triangle equilatéral. Un espace qui possede cette
propriété est dit ultramétrique. Plus précisément ici, si les recouvrements deux a
deux des trois vallées sont appelés (q,, g2, q3), on démontre que:

P(q., 92, 95) = 3{P(q,)P(q2)0(q; — q») 8(q>— q3) + permutations}
'*'%P(Ch)x(ch) 8(q:—q») 8(q.—qa). (9)

Le mystére de cette topologie de I’ensemble des vallées s’éclaircit si 'on
admet que ces vallées sont engendrés par un processus continu de bifurcations
(multifurcations méme) lorsqu’on abaisse la température, et si I’on fait I’hypothese
que le recouvrement de deux vallées est déterminé par le premier ancétre
commun. On peut se représenter I’arbre des bifurcations, pour un échantillon
donné, de la maniére schématique esquissée sur la Fig. 4. Il saute aux yeux qu’un
tel arbre ressemble beaucoup a I'arbre de la Fig. 2 (pourvu qu’on remplace les n
répliques, n—0, par I’ensemble infini des vallées): on commence a discerner ainsi
ce qui se cachait sous l'arbre de Parisi (cet arbre est régulier parce qu’il
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Figure 4
Allure trés schématique de la cascade continue de bifurcations qui engendre ’ensemble des vallées
lorsque la température diminue. Pour T>T,, dans la phase paramagnétique, il n’y a qu’une vallée.
Pour T<T,, dans la phase verre de spin, il y a ergodicité brisée et une multiplicité de vallées.

correspond a une moyenne sur tous les échantillons). En vérité, il est facile de se
convaincre qu’un ensemble, engendré par un arbre de cette maniere, possede la
propriété ultramétrique.

La meilleure facon de visualiser cette ultramétricité consiste a se placer de
nouveau dans I’espace des phases et a regrouper en amas de voisinage toutes les
vallées dont les recouvrements deux a deux sont supérieurs a une valeur q
donnée. Quel que soit g, on obtient toujours des amas disjoints (alors que, dans
un espace ordinaire, on obtiendrait des sphéres qui se chevauchent). En effect,
pour un ensemble engendré par un arbre, la procédure revient a couper I’arbre a
une certaine hauteur, ce qui détache des branches disjointes. La structure
hiérarchique des amas ainsi obtenus est schématisée sur la Fig. 5.

Figure 5
Structure hiérarchique (ultramétrique) des amas de voisinage dans I’espace des phases. Les plus petits
amas (en trait plein) contiennent des vallées dont les recouvrements deux a deux sont supérieurs a q,;
Les amas en tirets correspondent & des recouvrements >q,; les grands amas en trait plein a des
recouvrements >q, (q,>q,>qs). Ceci est trés schématique: 'important est que les amas ne se
chevauchent pas.

Fluctuations d’échantillon a échantillon

La deuxiéme surprise est apparue lorsqu’on a considéré quatre vallées prises
au hasard (et non plus deux ou trois, comme envisagé ci-dessus). Si on sépare
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arbitrairement ces quatre vallées en deux paires, dont on dénote q, et g, les
recouvrements, on obtient:

P(q:, q2) = 3P(q,) 8(q, — q2) +3P(q,)P(qy), (10)

alors qu’on se serait attendu a un produit simple, puisque les paires de vallées
sont choisies indépendamment.

La solution du paradoxe est la suivante: la fonction P(q) dépend en fait de
I’échantillon, c’est-a-dire de la configuration des J;;, méme pour un systéeme infini.
Il n’y a pas de limite thermodynamique (N — ) unique et bien définie, pas
d’auto-moyennage sur le désordre (lack of self-averaging) [7, 8].

Autrement dit, pour un échantillon donné, il convient d’écrire P;(q) pour
bien marquer la dépendance en la distribution des J;;. On réservera désormais la
notation P(q) a la valeur moyenne de P;(q) sur tous les échantillons:

P(q) = P;(q). (11)

La formule (10) se comprend alors comme suit. Si I'on a bien factorisation pour
un échantillon donné:

P;(q1, g2) = P;(q,)P1(q), (12)
on a par contre
P(qi, q,) = P;(q:, 92) = P,(q,)P(q) # P;(q,) P;(q2) = P(q,)P(q,), (13)

la valeur moyenne du produit n’est pas égale au produit des valeurs moyennes.

Quelles sont les quantités qui fluctuent sur le désordre, en dehors de P;(q)?
On peut montrer que la susceptibilité magnétique x est aussi une quantité
fluctuante, avec:

xX2—(x)2=(gD.#0, T<T, (14)

mais I’énergie interne et I'énergie libre [9] ont de bonnes limites thermodynami-
ques.

La fluctuation de P,(q) sur le désordre signifie que, a température et champ
magnétique donnés, chaque échantillon {J} posséde sa fonction d’ordre q;(x) ou,
si I’on veut, sa fonction x,(q). La fonction d’ordre q(x), de la Fig. 3, qui intervient

dans les grandeurs physiques moyennes, est en quelque sorte la moyenne des
fonctions ¢;(x), au sens suivant:

x(q)=[ P(q) dq'zj P,(q) dq'=x,(q). (15)
0 0

Il est évidement tres tentant d’essayer de reconstituer la loi de distribution de
la fonction g;(x). Une collaboration Paris-Rome (M. Mézard, G. Parisi, N.
Sourlas, M. Virasoro) y est parvenue par un véritable tour de force.

Pour des raisons techniques, les résultats se présentent de la mani€re suivante.
Placons-nous a une valeur de q, arbitraire mais fixe, et cherchons la loi de
distribution P(x;). On rappelle que x;(q) est la probabilité pour que deux vallées
prises au hasard dans I’échantillon {J} aient un recouvrement inférieur a q.

Résultat remarquable: la loi de distribution P(x;) ne dépend que de la valeur
moyenne x (x(q)= x;(q), et non pas des paramétres extérieurs (température,
champ magnétique).
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Figure 6
Allure de la loi de distribution P(x;), définie dans le texte, pour une valeur de q telle que x(q) =0, 3.
Sachant que x; = x, on remarque que la valeur moyenne tombe dans un creux de la loi de probabilité.
La distribution refléte les fluctuations qui existent, d’'un échantillon a 'autre, dans'la répartition des
vallées dans I'espace des phases.

Cette loi de distribution a été reconstituée a partir de ses sept premiers
moments [7] et son allure est esquissée sur la Fig. 6. On note que la valeur la plus
probable est x; =0 et que la valeur moyenne x =X; tombe dans un creux de
probabilité.

Fluctuations de vallée a vallée

Evidemment, ces fluctuations d’un échantillon a un autre sont liées au
phénomeéne d’ergodicité brisée, c’est-a-dire a I’existence d’une multiplicité de
vallées diverses. Ce sont les fluctuations de vallée a vallée qui sont la source des
fluctuations d’échantillon a échantillon. Il est donc intéressant de rechercher une
grandeur qui soit plus directement couplée aux effets de non-reproductibilité
(fluctuations de vallée a vallée, pour un échantillon donné).

On consideére la fonction Pj(q), qui décrit I'’environnement de la vallée s dans
I’espace des phases,

Pi(@) =2 W, 8(a—q*), (16)

ou son intégrale

x3(q) = Z W,.0(q—q*), (17)

et on s’intéresse maintenant aux fluctuations de xj sur la variable s. Le calcul
fournit en fait une moyenne (pondérée sur {W,} et sur {J}) P(X) =), W, 8(X —x*),
sous forme exacte:

(X)) '(1-X)~

P = Teora=x UE)

ou I est la fonction gamma. On vérifie bien que 3 XP(X) dX = x, x = x(q).




468 Geérard Toulouse H. P A.

Cette fonction P(X) diverge pour X =0 et 1, qui sont donc les deux valeurs
les plus probables. Physiquement, cela exprime le fait que, dans 'espace des
phases, il y a beaucoup de vallées de tres petits poids et un nombre fini de vallées
de trés grands poids. (Le contenu physique de P(X) est clarifié par I'introduction
de la variable Y =1— X, ce qui revient a raisonner en terme d’amas de voisinage
[7]; nous ne I’avons pas fait ici pour éviter de multiplier les notations). On voit
facilement que le minimum de P(X) est obtenu pour X = 1—x, si bien que, dans
le cas x =3, la valeur moyenne x correspond 4 un minimum absolu de probabilité!

Conclusions

Résumons les conclusions auxquelles nous sommes parvenus dans 1’étude de
la théorie de champ moyen des verres de spin.

La brisure de symétrie des répliques décrit un phénomeéne de brisure
d’ergodicité (multiplicité de vallées, séparées par des barriéres infinies).

La ‘fonction d’ordre’ q(x) décrit la distribution de ces vallées dans I’espace des
phases.

L’ensemble des vallées a une distribution hiérarchique (ultramétrique) et il y
a des fluctuations de vallée a vallée, et d’échantillon a échantillon, dont on a pu
déterminer les lois de probabilité.

Ces propriétés sont particulierement adaptées a une analyse par simulation
numérique, ce qui permet un test crucial et direct de la validité de la théorie, et un
moyen d’analyse des systemes plus réalistes, avec forces a courte portée.

Toute cette description est purement statique mais elle a des conséquences
dynamiques évidentes: probabilité de sauter d’une vallée a I’autre, diffusion dans
’espace des phases, temps de relaxation, rémanence.

Il est maintenant hors de doute raisonnable que la solution de Parisi du
modele SK posséde un sens physique bien précis: il reste aux mathématiciens a
donner un label d’orthodoxie a I’astuce des répliques.

Les concepts topologiques et géométriques, dégagés ci-dessus, paraissent
utiles et prometteurs pour tous les systemes multi-états (systémes frustrés en
général), présentant les propriétés de ‘diversité’ et ‘stabilité’, selon les termes de
P. W. Anderson [10]. Signalons, & cet égard, les développements récents dans le
probléme du voyageur de commerce (tours de longueur minimale passant par N
points) qui est un probléme classique d’optimisation [11].

Il semble aussi qu’une telle répartition hiérarchique d’états, et la plasticité
liée aux fluctuations sur le désordre, puissent présenter un intérét physiologique
ou informatique, dans la conception de mémoires distribuées (rappelons que, dans
le cortex, chaque neurone agit sur dix mille autres, en moyenne).

Mentionnons enfin que la notion d’ultramétricité a déja été évoquée en
taxonomie (reconstitution de 1’arbre de I’évolution, a partir des distances entre
séquences de protéines ou d’acides nucléiques) [12] [13].
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