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Twistor geometry

By P. M. van den Broek, Department of Applied Mathematics,
Twente University of Technology, P.O. Box 217,
7500 AE Enschede, the Netherlands.

(24. VI. 1983. rev. 6. V. 1984)

Abstract. The aim of this paper is to give a detailed exposition of the relation between the
geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose;
no use has been made of differential geometry and cohomology.
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0. Introduction

Twistor space provides an alternative geometry for the geometry of Min-
kowski space. In order to give an idea of the physical motivation for Penrose’s
development of twistor theory I will quote the first three alineas of Penrose’s
contribution to the International Congress of Mathematicians held in 1978
(Penrose 1978):

““This century has seen two major revolutions in physical thought. The first of
these, relativity, uprooted earlier ideas of the nature of time and space, and
provided us with our present picture of the world as a real differential manifold of
dimension four, possessing a pseudo-Riemannian metric with a (+——-) signature.
The second revolution, quantum theory, altered our picture of things yet more
radically than did relativity — even to the extent that, as we were told, it became
no longer appropriate to form pictures at all, in order to give accurate representa-
tions of physical processes on the quantum scale. And, for the first time, the
complex field C was brought into physics at a fundamental and universal level, not
just as a useful or elegant device, as had often been the case earlier for many
applications of complex numbers to physics, but at the very basis of physical law.
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Thus, the allowable physical states were to form a complex vector space, in fact a
Hilbert space. So, on the one hand, we had the real-manifold picture of space-time
geometry, and on the other, the complex vector space view, according to which
geometrical pictures were deemed inappropriate.

This conflict has remained with us since the conceptions of these great
theories, to the extent that, even now, there is no satisfactory union between the
two. Even at the most elementary level, there are still severe conceptual problems
in providing a satisfactory interpretation of quantum mechanical observations in a
way compatible with the tenets of special relativity. And quantum field theory,
which represents the fully special-relativistic version of quantum theory, though it
has had some very remarkable and significant successes, remains beset with
inconsistencies and divergent integrals whose illeffects have been only partially
circumvented. Moreover, the present status of the unification of general relativity
with quantum mechanics remains merely a collection of hopes, ingenious ideas
and massive but inconclusive calculations.

In view of this situation it is perhaps not unreasonable to search for a
different viewpoint concerning the role of geometry in basic physics. Broadly
speaking, ‘‘geometry’”’, after all, means any branch of mathematics in which
pictorial representations provide powerful aids to one’s mathematical intuition. It
is by no means necessary that these “pictures’” should refer just to a spatio-
temporal ordering of physical events in the familiar way. And since C plays such a
basic universal role at the primitive levels of physics at which quantum
phenomena are dominant, one is led to expect that the primitive geometry of
physics might be complex rather than real. Moreover, the macroscopic geometry
of relativity has many special features about it that are suggestive of a hidden
complex manifold origin, and of certain underlying physical connections between
the normal spatio-temporal relations between things and the complex linear
superposition of quantum mechanics.”

The idea behind twistor theory is to put the null lines of Minkowski space,
being the world lines of non-interacting zero mass particles on the foreground
instead of the space-time points. These space-time points then become derived
objects; the basic quantities are the twistors. One of the advantages of this
approach is that when the theory is quantized, the space-time points become fuzzy
and the concept of null direction remains well-defined, in contrast to the conven-
tional theory where the points remain well-defined and the null cones become
fuzzy. Twistor space is the complex vector space C* equipped with a Hermitian
form of signature 0; the corresponding projective space PC? is called projective
twistor space. Null lines in Minkowski space correspond to null elements of PC>.
This correspondence between Minkowski space and twistor space, called Penrose
correspondence (Penrose 1967), will be the subject of this paper. By this
correspondence physical problems in Minkowski space are transferred into prob-
lems of several complex variables on twistor space. Twistor theory provides a link
between physics and complex manifold theory because in many cases the field
equations of physics reduce to Cauchy Riemann equations, and therefore the
solutions can be represented entirely in terms of complex manifolds, holomorphic
vector bundles or cohomology classes on open complex manifolds with coefficients
in certain holomorphic vector bundles. The most striking result of this approach
was the solution of the Yang-Mills equations on S* by Atiyah, Hitchin, Drinfeld
and Manin (1978). Twistor theory also appears to be the natural framework for
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the description of massless free fields (Eastwood, Penrose and Wells Jr 1981) and
of self-dual Einstein manifolds (Penrose 1976).

In Section 1 we recall briefly the concepts of Minkowski space, Lorentz group,
SL (2, C), spinors and the interrelations between these. In Section 2 twistors are
introduced, and a certain subset of them, the null twistors, are interpreted as null
lines in compactified Minkowski space. In Section 3 we give interpretations of
general twistors as Robinson congruences in compactified Minkowski space and as
null planes in compactified complexified Minkowski space and show how the
interpretations are related. In Section 4 we discuss how the conformal group acts
on twistor space. In Section 5 massless free fields are briefly discussed.

1. Minkowski space, Lorentz group, SL(2, €), spinors and all that

The real Minkowski space M is the real manifold R* equipped with a scalar
product

Xy =guX"y" (1.1)
where the metric tensor g,, is given by
1 0O 0 0
O -1 0 0
BZ1o 0 -1 o0 (12)
O 0 0 -1

and where. the usual summation convention over repeated indices is used. If
llx—y|I* (=(x—y) - (x—y)) is positive, zero, or negative then x and y are said to
be timelike separated, null separated, and spacelike separated, respectively. If x
and y are null separated then they can be joined by a light signal; note that the
velocity of light is taken equal to 1. The Lorentz group L is the group of linear
mappings A from M onto M which preserve the scalar product:

(Ax)-(Ay)=x-y Vx,ye M (1.3)
If (Ax)* = A" x" then Ae L if and only if

Bu A A% = 8oo (1.4)
Taking determinants of both sides of this equation gives

det A==+1 VAelL (1.5)

Taking p =0 =0 in equation (1.4) gives

IA%|l=1 VAeL (1.6)

The elements A € L with det A=1 and A°,= 1 form a subgroup L, of L of index 4
which is called the restricted Lorentz group.

The group SL (2, C) is the group which consists of the 2 X2 complex matrices
with determinant equal to +1. This group is intimately related to L,, as we will
see.

Let H(2) denote the group of complex 2X2 Hermitian matrices. Let
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o, (n=0,1,2,3) be the elements of H(2) defined by

»7h 1) o750 o

(1.7)
-5 o) e ml )
2B\ o/ TPTRL -1
For each x e M we define A, € H(2) by
. 1 (x°+x® x'+ix?
A’c_xo-”_ﬁ(x‘—ix2 x°~x3) (1.8)

This defines a linear 1-1 correspondence between M and H(2). By inspection we
find that

Ix||*=2 det A, (1.9)
and
x-y=det(A,+A,)—det A, —det A, (1.10)

Let UeSL (2,C) and A, € H(2). Then UA,U" € H(2), where U" is the Hermitian
conjugate of U; so there exists a x'e M with UA, U= A .. So U defines a linear
mapping A(U) from M onto M by x—x'= A(U)x. This mapping is a Lorentz
transformation; this follows immediately from the equations (1.3) and (1.10). By
inspection we see that

AHA(UY=AUUY  VYUU eSL(2,0) (1.11)
and
A1) =1 (1.12)

where 1 and 1 are the unit elements of SL (2,C) and L respectively. It is easy to
check that

AU)=AU)YeU=zU (1.13)

(see Appendix A).

If U is varied continuously until it reaches 1, A(U) varies continuously to
reach 1. From the equations (1.5) and (1.6) and the definition of L, it thus follows
that A(U) € L,. The image of SL (2, C) under A is equal to L,. This last statement
is nontrivial; a proof can be found in Halpern (1968). So U—A(U) is a
homomorphism of SL (2,C) onto L, with kernel {1, —1}. This homomorphism is
given explicitly by

[A(U)]*, = Tr[o,Uo,U"] (1.14)

(see Appendix B).

It is assumed that the reader is familiar with theory of tensors. A tensor ¢ of
order n+m has n contravariant (upper) indices and m covariant (lower) indices
which take the values 0,1,2,3. Under a restricted Lorentztransformation s
transforms into ¢’ according to

Ve = AT, A, s A (AT (A, (AT g2 (115)

m
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The raising and lowering of tensor indices is done as usual with the metric tensor,
so we have e.g.

U, = 8" (1.16)

In the sequel we denote a tensor of order n+m by g g, so this symbol stands
for the whole tensor, not just for one particular component. The same remark will
hold for spinors. Tensor indices will always be Greek letters, spinor indices will be
Latin letters.

The concept of spinors is defined in analogy with the concept of tensors; the
spinor indices will take only 2 values and there are four types of indices. A spinor
£° transforms under a restricted Lorentz transformation according to

£a= U, g (1.17)

where U e SL (2,C) and is related to the restricted Lorentz transformation by the
homomorphism discussed above. Since U is defined up to a sign we see that,
strictly speaking, we should identify spinors which differ from each other by a
sign. _

A spinor £¢ where a dot has been placed over the index, transforms
according to

g4 =0%¢ (1.18)
where U is the complex conjugate of U. A spinor &, transforms according to

£a=(U "’ (1.19)
and a spinor &; according to

£:= (07" (1.20)

Spinors with any number of indices, dotted or undotted, may be defined by the
requirement that they transform in the same way as products of one-index spinors
with the same indices.

One easily verifies that the operations of addition (of spinors with the same
indices), multiplication and contraction (over a pair of one upper and one lower
index, both dotted or both undotted) are spinor operations. The skew-symmetric
Levi-Civita symbol

0 1)
ah: "
£ E.ab (_1 0 (1.21)

is a spinor which is invariant under restricted Lorentz transformations and is used
to raise and lower spinor indices:

‘Ea = gbeba (1 223)
ga — eab‘sb (122b)

We now introduce the “mixed quantity” a2, which is a spinor (with respect to the
indices ab) and a tensor (with respect to the index w). In some particular frame
the components of o” are defined to be the matrix elements of the matrices o,
defined in equation (1.7). _

In Appendix C we will show that aﬁ" is invariant under restricted Lorentz
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transformations. Let ¢* be a tensor. Then a spinor §“5 may be defined by
contraction of the tensor ¢* and the mixed quantity o&:

gaﬁ _ o;‘fc[;“ (1.23)
Raising and lowering indices gives
Lab = T as¥, (1.24)

In this way to each tensor there corresponds a spinor where for each tensor index
there is a couple of one dotted and one undotted spinor index:

(Esi =gt oot T (1.25)

The inverse of this equation is

T LN L R L ¢ By (1.26)
(see Appendix C).
In Appendix D we state and prove a number of useful properties of spinors
and of the correspondence between spinors and tensors. See also Pirani (1965). A
geometrical interpretation of a spinor is given in Appendix E.

I1. Null twistors and null lines

Let &£ be a lightray in Minkowski space, i.e. a null straight line consisting of
the points {x* +Ay* | A eR} where x* is a real vector and y*is a real future-
pointing null vector.

According to the Theorems 3 and 9 of Appendix D the vector y* determines
a spinor 7% up to a phase factor by

y* = almm® (2.1)

Since £ determines y" up to a positive constant, £ determines w® up to a
complex constant. The vector x* determines the spinor x® by

xH = O.:Bxab' (2.2)
Define the spinor o by
W = ixaﬁﬂt_’ (23)

This spinor is independent of the choice of x* on £, since if x*eX then
x* = x* + Ay* for some A €R, thus £*° = x** + A7%7® and therefore x**m; = £,
So the null line £ determines up to a common complex factor the two spinors w*

and ;. The spinor pair

L=(0"m) (24)
is called a twistor. From this twistor the null line & is obtained as the set of
solutions x* of the equations (2.2) and (2.3). This is proved in Lemma 1 of

Appendix F. For any two twistors L = (w®, ;) and X = (&% m,) we define their
twistor product by

(L, X) = @, + mal* (2.5)
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A null twistor is a twistor for which (L,L)=0. The twistors form a four
dimensional complex vector space which is called twistor space and is denoted by
T. The subset of null twistors is denoted by T°.

A projective twistor is an equivalence class of non-zero twistors which are all
proportional to each other. The equivalence class which contains the twistor L
will be denoted by L. The set of projective twistors is called projective twistor
space and is denoted by PT. A projective null twistor is an equivalence class of
null twistors. The subset of PT consisting of projective null twistors is denoted by
PT®. Two projective twistors L and L' are said to be orthogonal (denoted by
L-L=0)if (L,L')=0 for each L €L and each L'eL’. Since each null line in M
determines a twistor up to a complex factor, it determines a projective twistor
uniquely. In turn, this projective twistor determines the null line uniquely.
However, not all projective twistors correspond in this way to null lines. We have
already seen that the spinor 7, in equation (2.1) must be different from zero. In
fact, we have the following theorem:

Theorem 2.1. The equations (2.1), (2.2) and (2.3) provide a one-to-one
correspondence between the null lines in M and the projective null twistors with

Wa%o

So except for the demand that o, # 0 a projective twistor must be a projective null
twistor if it corresponds to a null line in M. The proof of this theorem is an
immediate consequence of the lemmas we prove in Appendix F: a null line
determines a projective twistor which is a projective null twistor (Lemma 2) and
has m,#0; for each projective null twistor with m,# 0 the equations (2.2)
and (2.3) have a real solution x* (Lemma 3) and so the complete solution of (2.2)
and (2.3) is a null line (Lemma 1).
We continue with another important theorem:

Theorem 2.2. Let &£, an £, be two nonparallel null lines in M. Let the
corresponding projective twistors be L, and L, respectively. £, and £, meet each
other if and only if L, and L, are orthogonal.

The proof is given in Appendix G.

A 2-dimensional complex subspace of T is called a plane. Two planes who
have only the zero twistor in common are said not to intersect. Two nonequal
intersecting planes have a line in common; a line is a 1-dimensional complex
subspace of T and thus a projective twistor completed with the zero twistor. Now
let x* be some fixed real vector and consider the set of twistors (w?® ;) who
satisfy equation (2.3). These are just the twistors which determine null lines
through x*, and so they are null twistors. They form a plane in T °. Let this plane
be denoted by P(x"*) - P(x*) obviously does not intersect the plane m, =0.

Theorem 2.3. All planes in T° who do not intersect the plane , =0 are equal
to P(x*) for some x" € M.

The proof is given in appendix H.

Theorem 2.4. The planes P(x*) and P(y*) intersect if and only if x* and y*
are null separated.
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Proof. P(x*)N P(y*) consists of those twistors determining null lines through
both x* and y*. If x* and y* are not null separated such twistors do not exist and
P(x*) and P(y*) do not intersect. If x* and y* are null separated but not equal
then there is a unique null line through both x* and y* and thus P(x*) N P(y*) is
a line.

Let M denote the set of all planes in T°; M is called compactified Minkowski
space. M may be identified with the subset of planes P(x") of M. Note that M has
a conformal structure, i.e. a null structure, but no metric: points of M have null
separation if and only if the corresponding planes intersect. So M is obtained from
M by adding to M one single point I (the plane =, =0) and the set of points
which have null separation with I. Geometrically this means that M consists of M
and a lightcone added at infinity.

The concept of null lines may be extended from M to M by the definition that
a null line in M is given by the set of all planes in T° which pass through a given
line; so the null lines in M are in one-to-one correspondence with the projective
null twistors. Two null lines meet if there is a plane in T containing both the
corresponding projective null twistors. Theorem 2.2 may now be extended as
follows:

Theorem 2.5. Two null lines in M meet if and only if the corresponding
projective null twistors are orthogonal.

The proof is given in Appendix 1.

To sum up, the correspondence, called Penrose correspondence, between M
and T° is as follows: There is a one-to-one correspondence between the points x*
of M and the planes P(x*) in T°. Null separated points correspond to intersecting
planes. There is a one-to-one correspondence between the null lines £ in M and
the projective null twistors L(¥). Intersecting null lines correspond to orthogonal
projective null twistors. Finally

x* e LSL(L) < P(x*) (2.6)

III. Non-null twistors

In this section we will give two geometrical interpretations of non-null
twistors: as Robinson congruences and as null planes in compactified complexified
Minkowski space, and examine the relationship of the two interpretations.

Robinson congruences
We start with a theorem:
Theorem 3.1. Let L be a projective twistor and let x* be a point in M, with the

restriction that if L corresponds to a null line in M, x* does not lie on this null line.

Then there is exactly one null line through x* whose projective null twistor X
satisfies L - X =0.

The proof is given in Appendix J.
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Let L be a projective null twistor corresponding to a null line & in M. & is
determined completely by the system of all null lines which meet it. The system of
null lines corresponds to the system of projective null twistors X which satisfy
L - X =0. This system of null lines is called a congruence since through any point
x" € M not lying on &£ there is exactly one null line of the system, according to
Theorem 3.1. This concept may be generalized for non-null twistors.

The Robinson congruence for a non-null projective twistor L is the congru-
ence of null lines corresponding to the projective null twistors X with L-X=0.
According to Theorem 3.1 there is exactly one null line of the Robinson
congruence through any point x* of M.

The Robinson congruence can be described geometrically as follows. Con-
sider a spacelike hyperplane S in M with x° constant. At each point of S the null
line of the Robinson congruences is projected orthogonally into S. This gives us a
vector field in S. This vector field in tangent to a system of circles on a nested
system of coaxial circular tori. On each torus the circles link once through the
torus and once about it. This system is completed by a circle which is the limiting
member of the tori and a straight line through the centre of this circle and
perpendicular to its plane. For a picture, see Penrose (1975), page 291.

Null planes in compactified complexified Minkowski space

Complexified Minkowski space M¢ is the complex manifold C* with scalar
product

Zy ZZ:gp.vzliLZ; (3.1)

where g,, is given by equation (1.2). Let (0“, ;) be a twistor with m, # 0.
As in the previous section we consider the equations

x* = cr&,;x“ﬁ (32)
and
w?® = ix®m (3.3)

with the difference that now x" is complex. These equations do _have solutions;
for instance, let £ be a spinor with &%, = —i then x3° = w®"® is a solution,
Suppose that x""+ x{" is also a solution. Then x{°m, —0 From Theorem 4 of
appendix D it follows that x{® = A*#w" for some spinor A®. We obtain:

Theorem 3.2. The general solution of equation (3.3) has the form

x® = x84 %P A arbitrary. (3.4)

This solution corresponds to a plane in M°. The difference of any two vectors of
this plane is a null vector; such a plane is called a null plane. From the previous
section we know that this null plane intersects M if and only if (w?, 7;) is a null
twistor. A null plane which has the form of equation (3.4) is called an «a-plane. A
B-plane is a null plane of the form

x% = x84 papb A’ arbitrary. (3.5)

Note that the complex conjugate of an a-plane is a B-plane and vice-versa. In
Appendix K we will show that each null plane is either a a-plane or a 8-plane.
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Suppose the equation
£ = ix®ng (3.6)

b as equation (3.3). Then

£ =[x+ \%m®]my  forall A® (3.7)

has the same a-plane as solution for x*

Then 7°ny =0, so m; = ¢, for some ceC.

It follows that (£ n,) and (w? m,) belong to the same projective twistor.
Since to each «a-plane corresponds a projective twistor (to the «-plane of
equation (3.4) corresponds the twistor (iz§"m;, m;)) we have established the
following theorem:

Theorem 3.3. The equations (3.2) and (3.3) provide a one-to-one correspon-
dence between the a-planes in M¢ and the projective twistors with m,# 0.

The set of twistors (w?®, m;) who satisfy equation (3.3) for some fixed x* € M¢
form a plane (2-dimensional complex subspace) in T, denoted by P(x*). Analog-
ous to Theorem 2.3 we have

Theorem 3.4. All planes in T who do not intersect the plane w, =0 are equal
to P(x") for some x" € M°.

The proof is given in Appendix L.
Analogous to Theorem 2.4 is

Theorem 3.5. The planes P(x*) and P(y") intersect if and only if x* and y*
are null separated.

Proof. If x* and y" are null separated but not equal there is a unique
a-plane through both x* and y*. This is proved in Theorem 2 of Appendix K.
The rest of the proof is analogous to the proof of Theorem 2.4.

Let M denote the set of all planes in T ; M€ is called compactified complexified
Minkowski space. M“ may be identified with the subset of planes P(x") of M°.

Points of M have null separation if and only if the corresponding planes
intersect in a line. The concept of a-plane may be extended to M® by the
definition that a a-plane in M€ is given by the set of all planes in T which pass
through a given line; so there is a one-to-one correspondence between the
a-planes and the projective twistors.

The Penrose correspondence between M and T is thus as follows: There is a
one-to-one correspondence between the points x* of M° and the planes P(x")
in T. Null separated points correspond to intersecting planes. There is a one-to-
one correspondence between the a-planes A in M and the projective twistors
L(A). Finally,

x*e ASL(A)c P(x*) (3.8)

Relationship between a-planes and Robinson congruences

For each projective twistor L we now have two geometrical interpretations:
an interpretation as an a-plane A in M and an interpretation as a congruence R
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of null lines in M. The relationship between these two interpretations is as
follows: each B-plane which intersects both A and M intersects M in a null line
which belongs to R, and through each null line of R goes a B-plane which
intersects A. This will be proved in Appendix M.

IV. Conformal transformations on twistor space

In the previous sections we introduced twistors as structures in compactified
Minkowski space M. We used a fixed origin and frame. The result however is to
be interpreted as independent of this origin and frame. In this section we will
examine what happens to twistor space when we apply a transformation to M
which leaves its null structure invariant. The group of these transformations of M
is called the conformal group and is denoted by C. It has the coset decomposition

C=Cy+pCy+1tCy+ ptC, 4.1)

where C, is the normal subgroup of C consisting of the conformal transformations
which are continuously connected with the identity transformation,
p denotes space inversion and t denotes time inversion. Since null lines are
transformed into null lines by a conformal transformation, projective null twistors
are transformed into projective null twistors. It is shown in Penrose (1967) that
Robinson congruences are transformed into Robinson congruences. So to each
conformal transformation there corresponds a transformation of T which leaves
T? invariant. The transform of L under a conformal transformation is denoted by
L. So we have

L-L=02L-L=0 (4.2)

If L, and L, correspond to null lines which meet each other, then also the null
lines corresponding to L; and L, meet each other. So

L-L,=0oL,-L,=0 (4.3)

if L,-L,=L, L, =0, according to Theorem 2.5. This implies, as was shown in
Penrose (1967), that equation (4.3) holds for every L, L, ePT.

Let G be the group of transformations of PT preserving orthogonality. We
have found a homomorphism from C into G. Actually, C and G are isomorphic,
since for every ge G a corresponding conformal transformation can be con-
structed: let x* be a point in M and take two null lines through x* then g
transforms these null lines into null lines which intersect in a point x*. This point
x* is independent of the choice of null lines through x* and the mapping x* > x*
is a conformal transformation. So we have found that the group of transforma-
tions of M preserving its null structure is isomorphic to the group of transforma-
tions of T preserving orthogonality. The connection between these groups is given
by equation (2.3), the equation which gives the connection between null lines in
M and projective null twistors. For each h € C we have a transformation T(h) of
PT:

L—L=T(h)L (4.4)

but since we prefer to work with T rather than with PT we would like to consider
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a corresponding transformation U(h) of T:

L—L=U(h)L (4.5
The condition U(h) must satisfy is

UM)L=T(h)L VLeT (4.6)

but this equation does of course not determine U(h) uniquely. So we have a
freedom in our choice of U(h). If U(h) satisfies equation (4.6) it is said to induce
T(h).

A transformation U of T is called semilinear if

UAL+ L) = {A)UL+L(wW)UL'  VYLL'eT,VA peC (4.7)

where the mapping {:C—C is given by

LA)=A VaeC (4.8)
or by
LM=X  VAeC (4.9)

It is clear that each semilinear transformation U of T induces a transformation of
PT. We have the following theorem:

Theorem 4.1. Each transformation T of PT which preserves orthogonality is
induced by a semilinear transformation U of T. If U, and U, are two semilinear
transformations of T which both induce T then U,= AU, for some AcC. The
semilinear transformations U of T which induce transformations of PT which
preserve orthogonality are those which satisfy

(UL, UL")=C¢Z(L, L") VL,L'eT. (4.10)

where C is a real constant.

This theorem is the application to twistor space of a general theorem first given i
van den Broek (1983) which is a generalisation of a famous theorem of Wignel:"
which is well known in quantum mechanics.

If U is a semilinear transformation of T the set {AU | A € C, A # 0}, denote
by U, is said to be a ray of semilinear transformations. So Theorem 4.1 says tha
for each Te G there is a unique ray of semilinear transformations of T whic
induce T and that there is a one-to-one correspondence between G and the ray
which satisfy equation (4.10). Let G denote the group of these rays, then G i
isomorphic to G and C. G has, analogous to equation (4.1), a coset decomposition

where G, is the subgroup of G which is isomorphic to C, and consists of the rays
whose elements satisfy equation (4.10) with C positive and ¢ satisfying equation
(4.8). The coset representatives A and B may be chosen such that they contain
elements A and B respectively which satisfy

(AL, AL")=—(L,L") VL, L'eT (4.12)
(BL,BL')=(L', L) VL,L'eT (4.13)
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The group of semilinear transformations U which satisfy
(UL, UL")=(L, L") VL, L'eT (4.14)

and which have determinant equal to one is SU (2, 2). Each ray U € G, contains 4
elements of SU (2, 2), say U, iU, —U and —iU. So there is a 4:1 isomorphism

SU (2,2) =5 C, (4.15)

In the literature this isomorphism is usually introduced via the two 2: 1 isomorph-
1ISms

SU (2,2) —>S0 (2, 4) — C, (4.16)

Now we will derive explicitly for each conformal transformation the correspond-
ing transformation of twistor space. For C, these results are first given by Klotz
(1974), for pt by Penrose (1967) and for p and t by van den Broek (1983). Let a
conformal transformation:

x* > x* (4.17)
be given, then we have to find a semilinear transformation U of T such that

(i) Ueg@G, i.e. U satisfies equation (4.10)
(1) if L =(w? ;) is a null twistor and if x* is a point of the corresponding

null line:

w® = ix®m (4.18)
then, if UL = (@°, 7,), x* is a point of the transformed null line:

@ = ix . (4.19)

Note that (ii) determines U on T ° only; the extension to T then being determined
by (i). Consider first restricted Lorentz transformations

Xt =A"x" (4.20)

In this case the transformation of twistors follows immediately from the transfor-
mation of the spinor components (equations (1.17) and (1.20)):

®* =Q%w" (4.21a)
e =(Q "o, m; (4.21)

where Q belongs to SL(2,C) and corresponds to A in the way discussed in
Section 1.
Next consider the translations

£ = xt £ q# (a* real) (4.22)
The corresponding twistor transformation is given by
®* = w* +ia®m (4.23a)

Tg = Ty (4.23b)
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It is easily verified that this transformation is semilinear and satisfies equation
(4.10), and that equation (4.19) follows from equation (4.18).
For the dilations

x* =cx* (c>0) (4.24)
the corresponding twistor transformation is given by

=V (4.25a)

. 1

Ta = 7= Ma (4.25b)

as can also immediately be verified.
The accelerations

x* —3a*x x"
1—ax”+3(a,a”)(x,x?)

7=

(a* real) (4.26)

correspond to the twistor transformation
&% = w® (4273)
o = Mo+ iQpaw” (4.27b)

One easily verifies that this transformation is semilinear and satisfies equation
(4.10). To show that equation (4.19) is applied by equation (4.18) requires in this
case some algebra, which is given in Appendix N.

Since each conformal transformation belonging to C, can be written as a
product of restricted Lorentz transformations, translations, dilations and accelera-
tions we have now established the correspondence between C, and G,,.

Consider pt, the inversion of space and time:

L (4.28)
It is obvious that the corresponding twistor transformation is
0= - (4.29a)
2 S (4.29b)

This transformation satisfies equation (4.12), so the coset AG, of equation (4.11)
corresponds to the coset ptC, of equation (4.1).

Consider finally the conformal transformation
x* =(i(),il’ i2’ 2'3)___(_x0, _xl’ x2, _x3) (4.30]

This transformation is the time inversion t together with a rotation through =
around xZ-axis. It is straightforward to verify that the corresponding twistor
transformation is

W =w (431&)
Ta =Ty (4.31b)

This transformation satisfies equation (4.13), so the coset BG, of equation (4.11)
corresponds to the coset tC, of equation (4.1). Herewith the correspondence
between C and G has been established.
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V. Massless free fields

Now that we have finished our exposition on the geometries of twistor space
and Minkowski space we will end this paper with a comparison of the description
of massless free fields in both geometries. In the space time formalism the
massless free fields are symmetric spinor fields satisfying a differential equation:

Vadvad(b =( (51)
Vas..c =0 (5.2)
Vb ap...c =0 (5.3)

Here V* is the spinor which corresponds to the tensor 8*.

A free massless field of positive frequency with helicity n is described by
equation (5.1) if n =0, by equation (5.2) if n >0 and by equation (5.3) if n <O0.
The number of indices of ¢ is equal to 2 |n|. The equations with n = =5 are the
Dirac-Weyl neutrino equations, and the equations for n=+1 are Maxwell’s
equations.

In the twistor formalism the massless free fields of helicity n are holomorphic
functions on twistor space which are homogeneous of degree —2n—2. The
differential equation has been absorbed into the geometry! The corresponding
spinor field is obtained via a contour integral. If f(L) is such a function, and if
n =0 then this contour integral is given by

bas..o(x*) =£ wamy -+ Wf(ix g, m,) A (5.4
where
Am =7, dm* (5.5)

and the contour I lies in the plane corresponding with x*, avoids singularities of f
and varies continuously with x*.

Appendix A

Theorem. Let U and U’ be elements of SL (2,C). Then

UAU =UAU" VA e H(2) (A1)
if and only if U=+U’

Proof. Tt is clear that equation (A.1) follows from U= +U’. Suppose U and
U’ satisfy equation (A.1). Let V=U""'U, then VAV'= A for each A e H(2).

Taking A equal to the unit matrix gives VV'=1, so V'=V~! and we have
VA = AV for each A € H(2). Taking A equal to o5 gives

(Un 912)(1 0)_(1 0)(U11 UIZ)
Va1 U/ N0 —1 0 —1/\vy; v



444 P. M. van den Broek H.P.A.
or v, = v,, = 0. Taking A equal to o, gives
(v“ 0)(0 1)_(0 1)(0“ 0 )
0 wvy/\1 0 1 0/\NO0 vy
from which it follows that v,, = v,,.

VeSL(2,C)—>det V=1-vi,=1>0v,,=¢21-V=+1-U=xU" QED

Appendix B

Theorem. Let U belong to SL (2,C) and let the Lorentztransformation A be
defined by x'™ = A" x" where UA,U' = A, and A, =x"o,,. Then

A¥, =Tr (o, Ua,U"). (B.1)

Proof. From

Tr(o,0,)=38,, (B.2)
it follows that

Tr (o, A,)=Tr(o,x"a,) = x*. (B.3)

Let x* be the vector whose p-th component equals 1 and whose other compo-
nents are 0. Then

Ay =0, (B.4)
x' =A%, (B.5)
and thus

A" =Tr(o,A)=Tr (o UA, UHY=Tr (o, UO'pr). QED

Appendix C

Let the matrices o* be defined by
UZb = gullecaedboid (C 1)

Note that this definition is consistent with the rising and lowering of the mixed
quantity o%"

Lemma 1. o4, =0 (C.2)
Proof. Straightforward verification.

Lemma 2. ¢%,0% = 8%, (C.3)
o;‘boff = Scaadb (C.4)

where 8%, and &°, are the usual Kronecker delta symbols.

Proof. Straightforward verification.
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We want to show that the mixed quantity 0',‘15, whose components are in some

frame defined to be the elements of the matrices o, is invariant under restricted
transformations. This will be achieved once we have proved the following
theorem:

Theorem 1. Let A be a restricted Lorentztransformation and let U be an
element of SL (2,C) corresponding to A via the 2—1 homomorphism of L, and
SL (2,C). Then

o= U U, ol (C.5)
Proof. From Lemma 1 it follows that equation (1.14) can be written as
A%, = ot U0t UY,

Multiplying both sides with A "o and using equation (C.4) gives

A¥ Ao =AU, 02U, (C.6)
so equation (C.5) is proved if we show that
A* Aol =o (C.7)

and this equation is an immediate consequence of equation (1.4).
Theorem 2. Equation (1.26) follows from equation (1.25).

Proof. Immediate consequence of Lemma 2.

Appendix D. Spinor algebra

Theorem 1. Raising and lowering a pair of dummy spinor indices produces a
sign change.

Proof. Tt is sufficient to show that £n, = —§,m°. From the equations (1.21)
and (1.22) we obtain

fu'ﬂa = Eabghncsca = gbncabc = fb"’lh QED
Theorem 2. Two spinors £* and n® are proportional if and only if £°n, =0.

Proof. It follows from theorem 1 that if £ and m“ are proportional then
£%m, = 0. It is straightforward to check that

e+ g%g® + g2gb =, (D.1)
Contracting with &7, gives

£gn® —£m® + £ = 0. (D.2)
If £n° =0 then

gonb = goye (D.3)

from which it follows that ¢£€* and n* are proportional.
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Theorem 3. The spinors £€“ and m“ have the property
g8 =7’ (D.4)
if and only if £€* =e'"n® for some phase factor e*.

Proof. It is clear that (D.4) holds if £€*=e*n®. Since n,m* =0 (Theorem 2)
contraction of equation (D.4) with n, gives

n.£°E" =0 from which it follows that £ = 0.
Now theorem 2 says that n, and &£“ are proportional, and from equation (D.4) it
follows that the factor of proportionality should have modulus unity.

Theorem 4. If the spinors p,“’; and 1, have the properties =0 and m; # 0
then w“® = A*w® for some spinor .

~ Proof. Let m* be a spinor with the property m,7“ = 1. Define A® by A% =
" n;. Then

[w = AP )m; =0 (D.5)
and

= At ng = g — et = 0. (D.6)

m
Since any spinor &; is a linear combination of m; and m; we conclude that
‘Lali_/\awl’} =0. (D7)

Theorem 5. To a contraction of two tensors corresponds the spinor who is the
contraction of the spinors who correspond to the original tensors.

Proof. Straightforward consequence of lemma 2 of appendix C.
Theorem 6. The spinor g**? corresponding to the metric tensor g*” is given by
gebed = gacgbd (D.8)
Proof. According to theorem 5 the spinor form of x* = g""x, is
R o i (D.9)
and from equation (1.22) it follows
x% = gacghdy (D.10)

This proves the theorem.

Theorem 7. The vector x* is real if and only if the corresponding spinor x* is

Hermitian, i.e. its components satisfy x®® = x"“.

Proof. If x" is real then
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Theorem 8. The vector z* is a null vector (i.e. z,z* =0) if and only if the
corresponding spinor z% is equal to A\*w® for some spinors A* and =°".

Proof. If z% = A%w® then z,z* = 2,42 = A;mAw® = 0. If z,z* =0 then
Zalizab — ZCdEcanBZab — 2(200211 _ 201210) =0.

Let the spinor 7, be defined by its components in some particular frame
according to

me=—2%; mwi=2z%. (D.11)
One verifies easily that z“‘;m; =0. If m; happens to be zero, one may take
me=—z"'"1; mi=2z" (D.12)

Except when z* =0, is which case the theorem obviously applies, we have found
a spinor m, which satisfies z**m; =0 and m;# 0. From theorem 4 it follows that
z% = A" for some spinor A

Theorem 9. The vector y* is real, null and futurepointing (¢° >0) if and only
if the corresponding spinor ¢*® can be written as

v = ¢’ (D.13)

for some spinor &°.

Proof. If equation (D.13) holds then ¢* is null (Theorem 8), real (Theorem
7) and futurepointing:

. 1 _ .
U= ot E =75 (£°8°+£1¢)>0.

Now suppose that * is real, null and futurepointing. From Theorem 8 it follows
that we may write

‘!’as = A% (D.14)
From Theorem 7 we obtain
Admd = Kbaa (D.15)

Contracting this with A, gives A,#* =0, which means that A* and 7% are
proportional (Theorem 2). So

T4 =cA® (D.16)

where ¢ is a complex number. Substituting (D.16) into (DD.15) shows that ¢ should
be a real number. Now

PO = 00N = %A AP = c(AOX O+ ATAT)
and therefore ¢ >0 since ¢°>0. So we have

d]uﬁ = cAeRE, c>0 (D.17)
If we define & =cA® then equation (D.13) follows.
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Theorem 10. The tensor ¢ is real and antisymmetric if and only if the
corresponding spinor y°**“ can be written as

obed = e2%g + g9 (D.17)
for some symmetric spinor ¢*°.

Proof. Let ¢ be given by

U = oloile ™ + eMe) (D.18)

It is clear that y*" is antisymmetric, and ¢*" is real since o, = o},. Now let y**
be a real antisymmetric tensor, and let

obed = Uﬁbaﬁddf” (D.19)
Then dt“";“‘i = — 4 and so we have

dlaticd — %[dlaf)cd _ dfd;ad 3 lllcﬁad _ dchuB] (D.20)
From equation (D.1) it follows

0= [£%eP 4 gPea 4 ggeP]yy b d = gacy, bod _ yabed 4 cbad (D.21)
and

0 =[ebleh + ghig® 4 gbbgd]ye a +eﬁd¢,cbab+d’cda5_wcﬁad- (D.22)

So equation (D.20) becomes
d]alﬁcd s _Q‘L[Sac(bpﬁpd a0 Sﬁdwcba;ﬁ] (D23)
Let the spinor ¢*® be defined by

S 1 (D.24)
Then

Bb = Lo PP = —Lytve = Lyt ab = pab (D.25)
so ¢“® is symmetric. Since Y* is real we have

et = F = ;:LTU St = oty = gt (D.20)
from which it follows that

d')at; :% ‘Bpap :% pt’:pa (D.27)

With (D.24) and (D.27) we can write (D.23) as
lllaf)cd - Sacd_)ﬁd + Eﬁdd)ac QED

Appendix E. Geometrical interpretation of a spinor

A spinor £¢ (not equal to zero) determines a real futurepointing null vector
uzo.g-sé:agﬁ (E.1)

according to Theorem 9 of Appendix D. All spinors which determine this vector
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are equal to &* up to a phase factor; this is an immediate consequence of
Theorem 3 of Appendix D. Let n* be a spinor with

En. =1 (E.2)
and define the vector w" by
w* = al[£°7" +nE"] (E.3)

Then w* is real (Theorem 7 of Appendix D) and w"w, = —2, so »" and ¢* are
linearly independent. Let 7 also be a spinor with

£, =1 (E.4)
and define

o* = ol £0° + 7€) (E.5)
Then

Mo —mMa) =0 (E.6)
and thus, according to Theorem 2 of Appendix D,

N =n*+ A&, AeC (E.7)
It follows that

A% = w* + (A +A)yP™. (E.8)

The plane spanned by w* and ¢* is determined uniquely bij £ and is called a
“flag” with ¢* as “‘flagpole”. Let the vector x* be defined by

x* = iot[e°n® —n°E®]. (E.9)

x" is real and x,x" = —2. From Y, 0" = Y, x"* = w,x* =0 one easily deduces that
Y*, x* and " are linearly independent. If the phase of £“ is changed:

g%, 0eR (E.10)
then

g (E.11)
and

w* — (£ 20+ 8% %) = w* cos 26 + x* sin 26. (E.12)

So by this change of phase the flag is rotated round the flagpole through an angle
26. By a change of sign (8 = ) the flag remains unchanged. So the geometrical
interpretation as flags of the spinors £ and —£¢ is the same.

Appendix F

Lemma 1. Let a twistor L = (w°, 7,) be given and suppose that the equations
(2.2) and (2.3) have a real solution x!. Then the complete real solution of these
equations is a null line. The direction of this null line is given by equation (2.1).
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Proof. Suppose that x* is also a real solution of (2.2) and (2.3). Then
Xy = x88my (F.1)

from which it follows, according to theorem 4 of appendix D that

x® — xgf=\m® (F.2)
for some spinor A“. Since x* and x{ are real, theorem 7 of appendix D gives

Aot = X (F.3)
Contracting with A, gives

A74=0 (F.4)
SO

A =cm” (F.5)

for some c €C, according to theorem 2 of appendix D. It follows that
x* —x§=cy" (F.6)

where y* is given by equation (2.1).

From equation (F.3) it follows that ¢ is real. Since y* is real and null
(theorem 9 of appendix D) the vector x* lies on the null line through x4 with
direction y*. On the other hand, it is obvious that each point of this line indeed
satisfies the equations (2.2) and (2.3).

Lemma 2. If the equations (2.2) and (2.3) have a real solution x*, then
L =(w® m,) is a null twistor.

Proof. Since x* is real we have x®® = x". If equation (2.3) holds then
(L, L)= %, + 0% = ixmwyi, — ix iy, = ix ey, — ix =0

Lemma 3. Let L = (w*, 7,) be a null twistor and let w,# 0. Then the equations
(2.2) and (2.3) have a real solution x*.

Proof. If L i1s a null twistor thcn
W, + 0%, =0. (F.7)

Suppose w“d, #0. Let x** be given by

- .a=b
L)
x% = ==, (F.8)
W T,
Then
___.a-b
ah WO,
IX Ty =  — =w
1TC
and
a5 —i®%w’ 0"
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So x“ satisfies equation (2.3) and x* is real according to Theorem 7 of Appendix
D. Now suppose w“w, =0. Choose a spinor £° such that

&, =i, (F.9)
Let x*° be given by

x® = 0" + @ (F.10)
Then

ix“B'rrt-, = iw“a?m, + i(55§°1'r5 ="
and

X = Gagb +wb§"’ = ybd

which proves the lemma.

Appendix G. Proof of Theorem 2.2

Suppose that &, and &, meet. Let x* be the point of intersection. Suppose
L,=(w" 7)€L, and L, =(£% n,)€L,. Then

® = ix®m; (G.1)

£% = ix%mn, (G.2)
and

x = xba, (G.3)

It follows that
(Ly, Ly) = 0%, + m,E* = ix®myi, — ix iy, =0

and so L, and L, are orthogonal.
Now suppose that L; and L, are orthogonal projective null twistors. If
(w® m,)eL, and (£9, m,) €L, then

wm, +0%m, =0 (G.4)

My + &y =0 (G.5)
and

W, + &, = 0. (G.6)
Since the corresponding null lines are supposed to be nonparallel we also have

TN, F 0. (G.7)

Consider first the case that w®#w,#0. Then a point on %, is given by equation
(F.8), and so all points of £, are given by

- a-b
a9 | Aimb AeR (G.8)

W T,
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Take

_ oM + 0 @ g

A

== d € — (G9)
1T N7 NG T,

From the equations (G.4) and (G.5) it follows that A is real. For this particular
point x* on £, define the spinor x* by

x“ = ix“n, (G.10)
It is now a trivial exercise to show that

X%, = E% (G.11)
and

XMa = € N (G.12)
Since 7, and 7, are independent, due to equation (G.7), we have

x* =& (G.13)

So x* also belongs to &,, and thus &, and &, intersect.
Now consider the case where w®m, = 0. We may choose (£%, 1;) from L, such
that

R, =i (G.14)

due to equation (G.7). From equation (F.10) it follows that &£, consists of the
points

x® = 0" + &7 + AT’ (G.15)
Take

A =—i£%7,. (G.16)
A is real according to equation (G.5). As in the previous case one shows that

£% = ix%m, (G.17)

for this particular x* on £,, and so ¥, and &, intersect.

Appendix H. Proof of Theorem 2.3

Lemma 1. Let L, and L, be two different projective null twistors. The plane
they span lies entirely in T° if and only if L, and L, are orthogonal.

Proof. Let this plane be denoted by P. Each element of P has the form
L,+L, where L,eL, and L,€L,. If L, and L, are orthogonal then (L,+L,, L, +
L,)=0 and thus P lies entirely in T". Now suppose that P lies in T° and let
L,eL, and L,eL,. Then (L,+L, L,+L,)=(L,,L,)+(L,,L,)=0 and
i(L,+iL,, L,+ilL,)=(L,,L,)—(L,,L;)=0.So(L,,L,;)=0 and thusL, and L, are
orthogonal.
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Lemma 2. Let L,=(w" 7;) and L,= (&% m,) be two linearly independent
twistors. If the plane they span does not intersect the plane x, =0 then w%n,# 0.

Proof. Let this plane be denoted by P. Elements of P are given by
(Ao + ué, Am; +un,) where A, weC. If A, +un, =0 for some A, w€C then
we must have Aw® + ué€® =0 since P does not intersect the plane yx,; =0. But then
A=wp=0since L, and L, are linearly independent. So 7, and n, are linearly
independent. From Theorem 2 of Appendix D it now follows that 7%n, #0.

We are now able to prove Theorem 2.3.

Let P be a plane in T° which does intersect the plane y;=0. Let L, =
(w? ;) and L, = (&% m,) be two linearly independent null twistors from P. Then
L, and L, are different and, according to Lemma 1, orthogonal. Lemma 2 says
that 7%n,# 0 which means that the null lines corresponding to L, and L, are
nonparallel. According to Theorem 2.2 these null lines meet. Let x* be the
intersection point. Then P(x") contains both L, and L,, and thus P(x*)=P.

Appendix I. Proof of Theorem 2.5

Suppose the null lines £, and £, correspond to the projective null twistors
L, and L,. If &, and ¥, meet then there is a plane in T° which contains both L,
and L,. If £, is equal to &, then L, is equal to L, and thus L; - L, = 0. If &, is not
equal to £, then L, is not equal to L,. Now L, - L, =0 according to lemma 1 of
Appendix H. If L, -L,=0 then the plane spanned by L, and L, lies in T°
according to Lemma 1 of Appendix H. So this plane is both an element of &£, and
of £,. So &, and &, intersect.

Appendix J. Proof of Theorem 3.1

Let L be a projective twistor and let x* be a point of M, with the restriction
that if I corresponds to a null line in M, x* does not lie on this null line. Let
(w? m,)eL and define

—a

° = w® — ix*m; J.1)

£ = ix“ng J.2)
The righthandside of equation (J.1) is non-zero, due to the restriction made
above. The projective twistor X containing (£% m,) is a projective null twistor

corresponding to a null line through x*, according to equation (J.2). Further we
have

@0 M, + €l = 0, — iTE T, = 00, — T 1, = 1%, = 0.

So L -X =0, and we have shown that at least one projective null twistor X exists
which determines a null line through x* and satisfies L - X = 0. Now we show that
X is uniquely determined. Let X be any projective null twistor with the requested
properties, and let (£¢ m,)€X. Then equation (J.2) holds and since L-X=0 we
have

0, + Tt =0 J.3)
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Substituting equation (J.2) into equation (J.3) gives

0, — im X, = (0® — ixaé'm-,)ﬁa =0. J.4)
It follows that

w® — ixm; = A7 (1.5)

for some A € C with A #0. From the equations (J.5) and (J.2) it follows that X is
uniquely determined.

Appendix K

Theorem 1. Any null plane in M€ is either a a-plane or a (B-plane.

Proof. It 1s clear from the definitions that a null plane cannot be a a-plane
and a B-plane at the same time. Let x{, x} and x5 be three non collinear points of
a null plane in M°. The null plane then consists of the points

x* =xb+A(xt—x8)+ u(xs—xb) A peC (K.1)
From Theorem 8 of Appendix D it follows that

x{8=xg"+ B’ (K.2)
x$’ = x§f+ 8" (K.3)
,Yasé_aaﬁﬁzxaqsﬁ (K4)

where none of the spinors a?, BB, Y4, 5°, x® and ¢° is equal to zero. Contracting
equation (K.4) with ¢; gives

y28 s = Bl (K.5)

If both sides of this equation are zero, then 8y = B%B =0, so 8" and B6 are
both proportional to ¢°, and thus proportional to each other:

&b = l’BB forsome recC (K.6)
Equation (K.1) may now be written as
x = xf+[Aa + pry] g° (K.7)

It follows that the null plane is a a-plane. If both sides of equation (K.S5) are
nonzero then

v* =va® forsome veC (K.8)
Equation (K.1) may now be written as
x4 x58+ a®[AB® + 8. (K.9)

It follows that the null plane is a B-plane. This proves the theorem.

Theorem 2. If x* € M and y* € M€ are different and null separated there is a
unique a-plane which contains both x* and y".
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Proof. Since x* — y* is a null vector we have from theorem 8 of appendix D

x% — yb = pag®, (K.10)
Since x* and y* are different #°# 0. The a-plane given by the points
{x®® + uom® | n® arbitrary} (K.11)

contains x* (u®=0) and y* (u*=-—A%). Suppose there is a second a-plane
containing x* and y* consisting of the points

{x® + ¢n® | €2 arbitrary} (K.12)
Then
£°0® = —rox® (K.13)

for some spmor £, smce the a- plane contams y*. Contracting this equation with
n® gives, since A® % 0, w0y =0, so w® and m°® are proportional, which means that
the a-planes are the same.

Appendix L. Proof of Theorem 3.4

Let P be a plane in T which does not intersect the plane x,=0. Let

= (w* m,;) and L, = (£ m,) be two linearly independent twistors from P. Then
mn,# 0 according to Lemma 2 of Appendix H. Define x* by

xa!; =1T: (wanﬁ__gaﬂﬁ) (L.l)

é

Then w® = ix®m; and &° = ix“En,;, so L,e P(x*) and L,e P(x"). It follows that
P(x*)=P,

Appendix M. Relationship between «-planes and Robinson congruences

Lemma 1. Let L = (w® m,;) be a non-null twistor with w,#0. Let A be the
corresponding a-plane in M and let R denote the corresponding Robinson congru-
ence of null lines in M. Then a B-plane B which intersects both A and M intersects
M in a null line which belongs to R.

Proof. If x€ AN B then
= ix8m; (M.1)

and B consists of the points |

{x3+nx® | x® arbitrary} (M.2)
for some fixed n°. Since B intersects M there is a spinor £° such that

xg’+mE" = %%+ 7 ° € (M.3)
according to Theorem 7 of Appendix D. Now B N M consists of the points

{(x8+n " + An7® | A eR}. (M.4)
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This is a null line, and the corresponding projective null twistor X has a
representative X = (%, 1) where

® = i(xg+ €8 (M.5)

We have to show that this null line belongs to R, i.e. that L - X =0. This will be
achieved if we show that

w*n, + md* =0 (M.6)
The equations (M.5) and (M.3) give

&% =—i(X5"+ A€ )M, = —i(xg" + ")y = —ixg .
From equation (M.1) it now follows that

T"ad—)d = _iXSdTIb'"a =—w’n,
and this proves equation (M.6) and thus the lemma.

Lemma 2. Let L =(w?® m,) be a non-null twistor with 7,# 0. Let A be the

corresponding «-plane in M and let R be the corresponding Robinson congru
ence. For any null line £ € R the (unique) B-plane B through £ intersects A.

Proof. Suppose £ is a null line of R corresponding to the projective twistor
X. Let x* be a point of & and let (¢% n,) belong to X. Then &£ is given by the
points

{x® + A7°n® | A eR}. (M.7)
The unique B-plane B through &£ is given by the points

{x°® + 7%0® | p® arbitrary}. (M.8)
B intersects A if and only if there exists a spinor p® such that

0® = i(x®® + 7% m;. (M.9)
Since & belongs to R we have

@, + m€ =0 (M.10)
and since x" € ¥ we have

£% = ixn;. (M.11
Substituting equation (M.11) into equation (M.10) gives, using x° = xba

(0® — ix®ms) 7, = 0. (M.12

It follows that

w®— ix“';'n-,-, =An* for some A €C. (M.13
Choose p6 such that

pPrms = —iA. (M.14

Then i(x“5+ﬁ“p5)'rr,~, = ix“Bm,%-g\ﬁ“ = w’, due to equation (M.13). So equatior
(M.9) holds for this choice of p”, so A and B intersect.
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Appendix N

In this appendix we will show that equation (4.19) follows from the equations
(4.18), (4.26) and (4.27). Substituting equations (4.26) and (4.27) into equation
(4.19) gives

wa B l xah _ %aabe&xCd
1—a.ax°! +3a.4ax4x

o [ +iagw®]. (N.1)

Multiplying this expression with the denominator of the righthandside and using
equation (4.18) gives
— acdx“ix“b'rrﬁ + iacdac"xef-x“fx“bws
= —xPayx®m —3a%x gx Yy + 3a X gx Yagx®m;.  (N.2)

This expression is proved if we prove the two following expressions:

acdaCdxe;xef X% = 2a““xcaxc‘iag,;x &b (N.3)

2a.4xx = 2x“”agﬁx &5 | g%y ;x°d (N.4)
It is straightforward to verify that

a®ay +3ia*ha,; 8°, (N.5)

and with this equation (N.3) is proved immediately.

To prove equation (N.4) we start from the real antisymmetric tensor
a*x" —a"x". According to Theorem 10 of Appendix D we can write the corres-
ponding spinor as

aaﬁxc& _ acdxal; — 8a.céb'd o SBd(bac (N 6)
Here ¢“ is given by

¢ac == %[acpxap — aai)xcb] (N.7)
according to the proof of this theorem. From Theorem 7 of Appendix D it follows
that

% = a,4x" — a"x 4], (N.8)
Combining the equations (N.6), (N.7) and (N.8) and contracting with x.; gives

xcdxcdaaﬁ _ xcdacdxaﬁ - %Sacxc& apdxpﬁ — %Sacxcdapﬁxnd

+1ebx 4a¢,x® —1ebx ja%x<,.  (N.9)
Raising and lowering indices gives
xcdxcdaal; _ xcdacdxali - %xadapdxpﬁ e %xadapﬁxpd
—1xax% +1x®a®x,;. (N.10)

Noting that because of equation (N.5) the second and the fourth term of the

righthandside are both equal to x.;x°®?a®® and that the first and the third term of

the righthandside are equal we obtain
Lxax“dx® — x.4a%4x® = —x%q_;x°° (N.11)

which is identical to equation (N.4)
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