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Infrared regularization of supersymmetric
quantum electrodynamics

By J. Grinberg,”) Département de Physique Théorique,
Université de Geneve,7) 1211 Geneve 4, Switerzerland

(15. XII. 1983)

Abstract. We have treated the off-shell IR divergences of this supersymmetric gauge theory by
introducing a mass parameter u, which preserves a modified gauge invariance but breaks softly the
supersymmetry. We have shown by explicit one-loop’s computation that certain Green’s functions of
gauge-invariant operators are independent of the parameter p.

1. Introduction

It is known that infrared divergences (IR divergences) appear in supersym-
metric (SUSY) gauge theories because of a non-integrable singularity of the gauge
superpropagator at the origin of the momentum space. In SQED - an extension of
ordinary QED -the problem was first solved by giving a mass to the vector
superfield, which takes the place of the photon field in QED. (Ref. 4).

The non-abelian case is being treated presently (Ref. 8) such divergences — at
least in a pure Yang-Mills model, Ref. 8 —have been removed by using an IR
regularization which breaks explicitly and softly the supersymmetry but preserves
the gauge invariance. The validity of that regularization has been demonstrated
for all orders of the perturbation theory through modified Slavnov identities.
Furthermore, it was shown that the final quantities —i.e. Green’s functions of
gauge-invariant operators did not depend on the SUSY breaking parameter.
Instead, such a general argument has not been found yet for the abelian case.

Our purpose is to test the IR regularization mentioned above in a SQED
model by computing up-to-second-order contributions to the Green’s functions of
the gauge superfields’ strength (The SUSY extension of the F,, tensor of QED),
and to show that the same regularization works equally well, at least up to second
order diagrams.

For conventions and notations, see appendix.

2. A supersymmetric extension of QED (SQED)

This model, presented by Wess and Zumino (see Ref. 2), is built up from
three superfields belonging to several representations of a graded (super) group.

*)  Work presented for the ‘Diplome de Physicien’ examination at the University of Geneva, 1983.
) Present address: Echeverria 4481, 1430 - Capital, Argentina.
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It contains a vector supermultiplet V, which may be expanded in powers of
the Grassmann variables 6 and 6 as:
V(x, 6, 0) = C(x)+ Ox(x) +500M(x) + 360M(x)
+ 50000, (x) + X (x) 666
+3A(x)006 + 10000D(x)

and two chiral conjugated supermultiplets S, and S , which may be expanded, in
the chiral representation, as:

SAx,0,0)=A (x)+ 0 (x)+00F (x)
and

S(x.0.0)=A (x)+ 0 (x)+00F (x)

Under a local (infinitesimal) gauge transformation, we have 8V = i(A — A) and
d8S. = FigAS .. A being a chiral superfield. The invariant action is given by:

Iy ZJdSH”VVy+Jd\4e“S~§.+e N §)-ﬂhn{JdSSHS¥jd§§};}

where the Lagrangian is integrated over the Grassmann space using, respectively,
a chiral (dS). an antichiral (dS). and a vectorial (dV) measure.
W is a gauge-invariant quantity defined as:

W = DDD*V

D* and D" may be regarded as covariant derivatives. l
In order to define the SUSY propagators, we must add a gauge- hmdkmg}
term, given by: 1

F“:jdVDDVEDV

It may be shown, using either an argument about the residuum’s sign of the |
Gireen’s functions, or by analogy with QED, that the antichiral superfield DDV’
contains a set of ghost fields, re. fields defining negative norm states. .

The action is completed with source terms J and J, which are respectively
vector and chiral superfields.
[t 1s relatively easy to derive a local Ward identity of the U(1) group:

ED DDV-'-4DDJ+ (Q J.=J.84)
¥ 8
which implies that the ghost field DDV (as well as DDV, taking the correspond-
ing conjugate equation) behave as free fields, i1.e. can be decoupled from the
physical sector of Fock space. This fact is every important to define, at least
formally, a unitary § matrix acting on that subspace.

The vector superfield propagator in momentum space is given by (Ref. 4):

,0,v0,k

(T(V(k, 8)V(—k, 6:))) =~=

= [4(1 - )+ (1+a)8%,k?]

The 1/k? factor vields, when calculating the Green's functions, to IR divergences,
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1.e. to integrals of the type

k-l
p being the external momentum, which manifestly present a non-integrable
singularity at the origin.

3. SQED (u?)

From part 2, it is clear that an IR regularization, independently of a UV
renormalization, is required for defining Green’s functions.

We will build up a massive™) SQED model in which the supermultiplet is no
longer a superfield, i.e. an explicit and soft SUSY’s breaking, but we will redefine
the gauge transformations in order to preserve the gauge invariance.

The new field V is defined from the vector superfield as follows:
V=V(+u), u=ul6,0) =530 (3.1)

u being a real parameter. In fact, we have generalized the wave function

renormalization. X
The new local (infinitesimal) gauge transformation & is defined by:

5V=8V=i(A—A) and &S,=TFigAS. (3.2)
From (3.1) and (3.2) it is clear that:
- 1 a a
oV = oV (3.2")
1+u

because u is a gauge-invariant parameter. Recalling the fact that (8%)" =0 for
n>1, we obtain that

SV=(1-uw)éV=01-1u%0% 8V (3.3)

The new gauge-invariant action reads:

leV = 2[ dSW“V:/" + J dv(€“\754 §+ + 6_'"\)5,_5—-)

—4m{jdss.s_+‘[d§sis‘}; W* = DDD"V (3.4)

It is clear that, as long as SV =8V and SSi: 8S.,
Slev = SFINV:O

As before, we must add a gauge-breaking term:

2 s

64

*) As long as the matter’s fields S, and S_ are concerned.
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We have not written it in terms of the new field V, because it would have
cancelled the effect of the w’ regularization, as it will be shown later.

The main problem that we have found throughout the calculation is that the
field V is ‘partially’ supersymmetric, not allowing us to use the powerful
superfield’s technic, so we had to consider the single components (the x-functions
in the development on powers of 8 and 6). If we develop W, we obtain:

W, =DDD,V = -2A.+260%(e D' —a"4v,,) —2i0%c ", 9 A" (3.6)

with A'=A+ic" a5, D'=D+&’C and v,, =d,0,—d,v,. As long as D =
D +2u>C is the only new component which differs from the old ones, the only
component to be taken into account for the calculation of Green’s function
will be D'=D+0°C+2u>C. In fact, it is known that all the other quantities
which are present in W, —such as A" and v,, —do not lead to IR divergent
Green’s functions, at least up to second order diagrams.

A very important question to be taken into account is whether a ‘good’
broken Ward identity may be found. We had demonstrated that the identity
found in our case leads to the existence of decoupled ghost fields.

In fact, the (infinitesimal) variation of the action (3.4) and (3.5) may be
written as: |

S =8N v +Tp) =80,

which is, by definition, equal to

ij dSAwgf~ij dSAw, I (3.7)]
On the other hand, we have that |
o . 8F J ( sl . 31‘“) _[ _(n_ ] - 51‘“)
'=1dVéV—_—+ — to0S. |+ rme t =
) jd SVSV dS\| oS, 55, oS 5S dS\ &S. 55, oS 55

(3.8)

(the other terms cancel between them).

Recalling the fact the dV =d*xd*0 and dS =d*xd*# and the equivalence
between d?6 and DD, (3.8) becomes:

~ (.. 8F

o DD( V—)

j S o sV
and using (3.2) and (3.2"),

. __ , af} J _ { , ,_af}
= _ 1. 2n4 Bt S 1. ..2n14 R
SFWJ‘dSDD{( 1426 )'Asv dSDDA(1-3u26 ):/\BV

Using the fact that A commutes with 6 and is cancelled by the DD operator due
to his chiral character, we can establish that:

. ST
ng:DD{(l—%uze“) }

sV
_ o o )
= DD[(l —3un?6*) ={DD, DD}V] (3.9)
(84 "
) & ] S

w, = DD——igS. +igS ——
5 sv Brss T "®-5s
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Using the definition of {DD, DD},*) we find that
32 e
— DDV

44

DD(2/a{DD, DD}V) = —
Furthermore, we have that:
6*{DD, DD}V = 6*{DD, DD},.V = 8D"¢*

with D"=D-0C and DD(6*D"(x))=—46>D" (in the chiral representation).
Then (3.9) becomes:

" 32 s 32
w,['= —— 0O DDV +— §*u2D"
(84 (64
Taking into account that DDV =-2M-260A—60*D"—2i d*v,), with \"=
A —io* d,x, we find the following equations:

" 64
valﬂ ﬁ“i:DM (3.12)
5 64
Wgrlf, :';D A" (3.13)
5 32 64
w,Lg ==+ p2)D" - i— Oa*n, (3.14)
(03 84

Using the same arguments pointed out in part (2), it can be shown that the
components of the chiral superfield DDV are ghost fields. The equations (3.12)
and (3.13) as well as the imaginary part of (3.14) imply that the ghost fields M, A"
and d,v" behave as free massless fields. The real part of (3.14) implies that the
ghost field D" behaves as a free field with mass w2, i.e. all the ghost fields can be
decoupled from the physical sector of Fock space.

With the w® regularization, the Green’s function of the gauge-invariant
operator D' is no longer IR divergent. We will show that it would not be
dependent on that SUSY breaking parameter, at least up to second order
diagrams.

4. Green’s function of D’

The action given by (3.4) and (3.5) is completed with source (external) fields:
the chiral superfield Jg coupled to S, and the antichiral superfield Jg coupled to
S _. From the completed action, we can deduce the free field’s equation of the
matter’s fields:

DDS,+4mS =—Jg (4.1)
and _ ~
DDS_+4mS, =—Jg (4.2)

We make the operator DD act on the two sides of equation (4.1) and multiply

*)  {DD,DD}= -8iDé"D 9, - 160]
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(4.2) by —4m. Using the fact that
[DD, DD]S. = —(8iDa"D a, +165°)S. = ~165°S.

(because S, is antichiral, which implies also that DDDDS. =0), we obtain the
following equation for S, :

—16(* + m?)S. = ~DDJg +4mlg (4.3)
and the corresponding complex-conjugate equation for S, :
~16(0> + m?)S, = —DDJ, +4mly (4.4)

From (4.4) we may derive the propagators by taking functional derivatives:

e PN 08 (1) i
(T(S.(1)S (2))) =

= —=————=DD, §(1,2 L
1813(2) 16(0"+m”) 1 05, 2) (4.5)

and

3S.(1)  —idm 5e(1.2) (4.6)
I (2) 16(>+m?) '

where (1) and (2) are two points of Grassmann space. From (4.3) we obtain:

(T(S.(H)S ()=

(TS (DS.(2Ny = Ag ¢ = DD, 54(1,2) (4.7)

16(0°+m?>)
and

—id4m
Ay ¢ =————84(1,2 .
5516t 4+ m2) stl2) (4.8)

Furthermore, we can find the equivalent equations for the S and S superfields.
We may deduce as well that
Ag s, =Ag s =Ag g =855 =0 (4.9)
Taking into account the expression of d-functions, we obtain:
B i
16(k*—m?)
—im 5 —1im
Ag « :_—7—:;"9‘3; Az & — e
Y 16e(ki-m?) 16k —m?)

We must compute also the propagators of the component fields. In the chiral
representation, we have:

S, =A,+6y, +0°F,: S =A +6y +6°F

We obtain the following results:

(0,v0, 0,00 )k

Ax,s,:Ass e

03, (4.10)

]
Ba A =Aa i :AS,S‘IU‘,'H“J’:m
ik?
A g =hp g =g lo =5
Fo FF s‘s.| = 160k —m2)
m 5 \
Arr =Ags ru‘,'n‘_: B o | (4.11

16(k>—m?)
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In order to compute the C— D propagators, we take apart the part of the
Lagrangian involving such fields. Taking into account the properties of chiral and
vectorial measures, we find:

N o o
r(('.l’)) = 3ZJ d4x|:_D’h*‘— [)”"]+ J' d4X{€L(' [SS]64+4gDexC AA}

84

A _ _ .
= 3ZJ d“x[D’* +— D"‘]+ I d*x{e*“ (16FF + 4iy Mo,
834
+8"A 9,A —4A PP A 497 AA) +4gDe*“AA} (4.12)
We build up the I';,, matrix by taking functional derivatives; for instance
e =815, (C, D)/8C 38D and we obtain:
2(B—1 2k2(B+1)—4u? 1
32[ (Lz ) q (B 2 Hz i 4]3 ] (4.13)
2k“(B+1)—4u” 2(B—1k*+8k“u"—8u

«
It is known that in k-space ' ¢ Acp) =1 (we have taken fi=1), where A, are
the free Green’s functions of such fields. Inverting ' 5,, we find:

lﬁ((‘.l’)) o

i1 [2(8-—-»1)k“+8k2u2~8.u4 —2k2(3+1)+4u2]

32 DET L-2K*(B+1)+4pu> 2(6-1) (4.14)

A((“.D) =

with DET = —16B(k*—p?). .

If we had taken the gauge-breaking term [dVDDVDDYV instead of
§ dVDDVDDYV, we would have got a determinant proportional to k?, i.e. we
would not have removed the IR divergences.

From (4.14), we obtain the following propagators in k-space:

kM a+ 1) -2ap?

'8 ) +ie

- a—1

cC I B(kE— p)+ie

(a0 — Dk*+4p’a — 4k’ u’a
32.8(k2— w22 +is

A(.‘D =

A

(4.15)

App =1

In order to compute the free Green’s function of the D’ operator, which in
k-space is equal to D+ (2u?—k?)C, we calculate first the following quantities:

2

; P
432002 pH)+ie

<T(D’(P)D(“P))> =App + (2“«2 - pz) Acp =

p being an external momentum, and
S

- > lp
T(D' = =Acp +2ur—p®) Acc = 4.16
(T (PICEPIN = Ao + 20> =P Bce = 35070 o (410
It is interesting to point out that the last quantities do not depend any longer on
the gauge-breaking parameter «.
Finally, we find that:
2. 2 .2 .
Hp” —p7) : (4.17)

(D' 0D (P =3 5= 53
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As expected, we have removed the IR divergence. Furthermore, the free
(non perturbated) Green’s function of such gauge-invariant operator does not
depend on the SUSY’s breaking parameter w.

For computing diagrams of the D’ operator in a perturbatlon theory, we put:
(T(D'(1)D'(2)))y = (T(D:m( 1)D(2) exp i[ dvxm» (4.18)

in which Ij(’m is a free operator. £, which will be indicated at each order, is a
functional of the free fields. In order to simplify the writing, all the (0) indices will
be omitted. Usually, (4.18) holds a factor which compensates the vacuum dia-

grams, but is unnecessary to keep it as long as those diagrams will not be
considered.

At the first order of the development, we will meet the so-called tad-poles

diagrams. Once the integration over 6 and 6 has been performed, the interaction
term reads:

2
jd4 {2 C[S.(x)S,(x)]ps+4Dg?[S.(x) +(x)]e“C+§2_ C*[S_(x) - - } (4.19)
The [gri]ga tad-poles (see Fig. 1) are given by:
16ZI d*k[Ag s.(k, 6, 0)]e+=0

The contribution of the tad-poles [S.S.]so=[A.A,] is shown in Fig. 2 (the|
factor 2 coming from the two possible contractions with external fields). In the|
momentum space, we will obtain: |

ig?2.4T(D'(p)D(-p) ))jd“k(T(Ai(k) A (—K)XT(C(—p)D'(p)))
From (4.11) and (4.16) the last expression becomes:

. , .
) L ) %_. . 2 _‘_J. 4 1
L 2'4(4.32(,)2—,,2) W =g | o

Then, the tad-poles’ contribution (in fact the A, A, contribution times two) will
be:

g2(2“2_p2) Jd4k (p+k)2_m2
(4.32(p* — ™)’ D

where D, stands for ((p+k)*—m?)(k*—m?). Indeed, the last integral is UV
divergent, so the present result must be taken formally, until the UV renormaliza-
tion will be performed.

(4.20)

—
(s, s5,]1 =
t Ceg el

Figure 1
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Figure 2

For the second order (two-legs) diagrams, the interaction term reads:

.2

’5 J d4x3$,N-,-(3)J d*x, Loy (4) (4.21)
where

Liner =gCIS, S, 1o+~ gC[S S Jp:+4gD(A, A, —A A) (4.22)

All the possible contractions are given by the diagrams shown in Fig. 3. We find
that the amputated SUSY diagrams (see Fig. 4) become:

16 j A HCT(So(p + K) S (=p — KNXT(S o (K)S (=) ysos

! (4.23)

= 1 4 0 v0,p+0 a0 p+26 o6 k
= _]—(‘j d k[e YO8 129950 12792 ]6?83 .
m

It is relatively easy to calculate the 076035 term of the exponential. It gives p*. So
(4.23) becomes:

p4
| ak - (424)

The one-loop diagrams A, and A_ (see Fig. 5) are equivalent; they yield to

Figure 3
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Figure 4

the same convolution product:

o 1
Jd"k Ay A (prk)Ay (k) (liﬁ) jw*kb— (4.25)

mn

The one-loop diagrams o, and o (see Fig. 6) are also equivalent; for cach
one of them the result is:

+2k)?
1l2JCf4k£&EJ” (4.26)

m

Finally, the diagrams F,A and F A, (see Fig. 7), which are equivalent,
yield to the following convolution product:

: 1
j d'k Ay A (p+K) AL g (k)= — ;’éz J d*k - (4.27)

Using (4.24) through (4.27) and the external propagators (4.16), the two-legs
diagrams contribution will read:

2 1 2 > B )
- 5 jd4kD—{2p4'r4y,44,u‘p“+2(2,u“»~ p7)

8(4.32(p>— )’
X[(p+2k)*—4m>]}  (4.28)

With the contribution of the tad-poles (4.20), the integrand of (4.28) becomes:

n

{8p? t 4u* 16u’°p? 8R2u” p’)pk}
m
[t is convenient to shift the internal (integration) impulsion: k = [ —p/2.
The shifted integrand is given by INV + ANTISYM, where

4p*— p)? 8(p>—2u2)pl
INV=2P B anTsym= S0 —2R0P
D..... stands for {(I+p/2)*—m*{(—p/2)*—m?} (4.29)

Figure 5
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(THE SAME SELECTION RULE FOR INTERNAL
MOMENTUM HAS BEEN TAKEN FOR ALL THE

DIAGRAMS)
82
il - = 2 =)
A1 — Ai At At At ] Ai
B = A, A, A, A, A,
F) - - 32 - - -
u
aH
euafm——
o (d,2(.4 i(ptk) (-i)k
m
M
; 242
= () 2T et Rl 10
16 D
m
R B4 kY2
D - dotsehgt
32
Figure 6
F A
+ -
F A
+ -
@ - -
Fu A

Figure 7
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We will perform an UV renormalization following the Zimmerman’s method,
i.e. subtracting to the integrand a Taylor’s development of the integrand in
powers of p, the external momentum, up to the respective degree of divergence
UV(dyy).

For the INV term (d.,v =0), we have that

1 ) 1 ‘
stmm REN D.wmm D.wmm p=0
1

4
D (lz_mz)z{(Pl)z‘"p—‘p—(lzfmz)} (4.30)
symm

For the ANTISYM term (d;,v = 1), we have that:

™ g s B [8 ( I )]
H op" \D

symm

Dsymm)REN " D, D

symm symm

p=0 p=0

o 2__4_p_2 e 2}ﬂ u[a - )]
wl)swnm {( l) 16 2 ( m ) p ap" (D - (431)

symm p=0

It can be shown that the second term of the r.h.s. of (4.31) vanishes:

[ d ( i )] e lu(l2_"12)_lv(l2_m2)
(')p D p"'-'(’_ (l2_m2)4

symm

The first term keeps his amlsymmetrlc character, then 1t will vanish if mteg,ratcd
over the momentum space, because d*k is a symmetric measure.
The renormalized (UV) Green’s function reads:

. 2¢° 4 1 2 p* pz B 52
(4.32)? jd lDwmm( m2)? {( b= 16 —gW-m )}

The IR divergence has been removed and the result does not depend any
longer on the SUSY’s breaking parameter.

It would be interesting to briefly comment the results obtained in a mode]
which was not gauge invariant.

Taking into account (3.2) for S, =8, S =0, the action given by

— —— yom 2
ZJdSW“Wa~4m[deS2+jdSSz]+IdVe”VSS+—

04

jdVDDVDDV

will not be gauge-invariant, even if we do not consider the gauge-breaking term,
because of the massive term. The contribution of first and second order diagrams
is given (at least formally, the UV renormalization has not been performed yet)
by:

2

g a4 2
_ INDEP + ANTISYM + DEP
16(d32(p7— p ) J e > ek,
where
2_ 2 8 2__2 2 k
INDEP=3®@ =H)  ANTISYM= 2@ 2Pk
Dsylnn‘l DSV’FITH
N 12 2 ) 2_ .2
DEP(m?) = 12m (26"~ )

D

symm
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The ANTISYM term will be vanished at UV renormalization as well as the
dependence on p of the INDEP term will cancel with the denominator, but it
cannot be removed — even after UV renormalization — from the DEP(m?) term.

The fact that the p-dependence is removed in a gauge-invariant model
suggests a possible link between gauge-invariance and the independence on the
regularization parameter.
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Appendix

Throughout this work we have used the metric (1,—1,—-1-1) and the 9"
operator is equivalent-in momentum space—to ik". Sometimes, the tensor
indices have been omitted. For instance:

p>=p.p*, pk = p*k, ak=a*k,

1 0 01 0 —i 1 0
Thematricescr”=(0 1),0‘:(1 O)’Uzz(i OI),G3=(O _1)mayf0rma

basis for the two-times-two complex matrices o,. ohg stands for

i

5 [O-u‘) a ]aB
The product between spinors is defined through the antisymmetric tensors £*?
and £ (g = =1, gp=e*l=—1, g=tsm=0):

WX = P X = € P
The tensor £°? may also be used to raise the indices of the o-matrices:

—paa _ _aB B

oH " =" e™ogs

The product ¢ = Y. x* is defined in such a way that
(Yx)' = dx

An important result about o-matrices:
(o"a” +o'a* )2 =2g"" 8%

We have also the following completeness relation:
Tr (o"a")=2g""

The Grassmann variables 6 and 6 are Weyl spinors. 6,, stands for 6, — 0,.
We have used some Fierz rearrangement formula:

0°0°% = —1£°P60 00" =169
000000 = 6°c*,0%6%0;0° = 1g" 0060 = 1g*6*
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0 stands for 66, 6 for 60 and 6* for 0066 =0°6". The expression 6,vy0,
(appearing in the chiral superfield propagator) stands for 6,00,— 6-00,.
The covariant derivatives DD, and D, are defined in the chiral representation by:

- 0 )
= o~ Du = -
d()rx 80(:

& e

—2ig" 6% a,

About integration in Grassmann space: an indefinite integral over a Grassmann
variable is defined as follows:

Jdnz(); Indn«—l
SO

é(n)=mn.

The volume elements in superspace are given by:

d’0 = —;d0~ d6Pe g d?0 = —1d6, doze™®
dV stands for d*xd*6, dS and dS for d*xd*0 and d*xd*6 respectively. The
operators DD =D*D, and DD = D,D* and the d’6 and d°# measures are

«

respectively equivalent. We have that:

dSf(x, 0, ) = —4| d*xf(x, 6, )|,

o o

dSf(x, 6, 8) = —4 | d*xf(x, 6, 6)|,:

o o

,

dVf(x, 8, 8)=16 | d*xf(x, 6, 6)|y:

J
About the 8 distributions:
8¢(1,2) = —40%, 8(x, —x,) = 8¢(1,2) = —162, (Fourier transform)
55(1,2) = =407, 8(x, — x2) = 65(1,2) = —46%
(in the chiral-antichiral representations)
By(1,2) =181 — dv(1,2) = {501
In the real representation we have that:
DD, 64(1,2)=8(x, — x,— 0,00, — i0,00, + 2i0,06,)
Z exp[(—6,v0,+ 0,,00,,)k]
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