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Localisation of states in quantum mechanics

By D. B. Pearson, Department of Applied Mathematics,
University of Hull, England

(22. XII. 1983)

Abstract. A theory is presented to describe the possible simultaneous localisation of slates, to
arbitrari accuracy, in position and total energy H Hü+ V, where V is locally singular and decays at

infinity. Hie theory is entirelj time-independent; thai is, the time evolution of states in such potentials
is not considered. Examples of localising potentials in this sense are relatively simple, and may be
written down in closed form.

1. Introduction

In Quantum Mechanics, the Heisenberg uncertainty principle gives an absolute

limit to the degree to which states may be localised simultaneously in position
and momentum. One mathematical expression of this limit to localisability lies in
the fact that Ev.i, E,,^, is compact, for any pair of finite intervals -£,,22. (Here
E,, v denotes the spectral projection of the self-adjoint operator T associated
with the interval X.) This compactness implies that the norm of £I£v£|1EÏ!
converges to zero as the lengths of H., £2 approach zero. Indeed, an estimate of
this norm may be used to derive a lower bound for (8x)(8P). (Here 8T denotes
the uncertainty, in a particular state, of the observable corresponding to T.)

This paper is devoted to exploring the possibility of localising states
simultaneously in position and total energy H by means of a localising potential V(r)
which decays at infinity but which is locally singular. For simplicity, we shall

suppose that V is locally regular away from the single point r 0; this condition
could be relaxed to allow, for example, bounded singular surfaces.

As a measure of the degree to which states may be localised, wc shall
consider the function of energy 7(A) defined by

•y(A)= lim ||EW<RE|H M<e||,

F—0

where we shall show (Theorem 1 that y(A is always 0 or 1 at a given energy A. If
y(A) 0, A is called a regular point (Section 3), and if 7(A) =1, A is called a

singular point. Section 4 is devoted to abstract characterisations of regular and
singular points, and of their distribution. It is shown in particular (Corollary 1 to
Theorem 5) that the localisation implied by the existence of singular points
manifests itself in a very clear violation of the uncertainty relation between
position and total energy, and that this can happen for potentials which may be
written down quite easily in closed form.



308 D. B. Pearson H. P. A.

A subsequent paper will deal exclusively with short range potentials, and will
provide a complete characterisation in that case of the types of localisation which
can occur, together with an analysis of the consequences for Scattering Theory.

2. Mathematical preliminaries

Let H() be the unique self-adjoint extension, in L2(U3), of ^A, the negative
Laplacian defined on CÒ(IR3). Let V be a real potential which is locally square
intégrable away from the single point r 0, and assume that V approaches zero in
the limit |r| —»oo. (It is sufficient to assume that V Vs+ V,, where, for any R>0,
Vs and V£ are respectively square intégrable and bounded in the region |r|>R,
with limwtatatatata.. V, (r) 0.)

Define H -A+V with domain COARTO}), and let H be a self-adjoint
extension of H. If H is not essentially self-adjoint, the definition of H will involve
boundary conditions at r 0, but we shall not need to consider these boundary
conditions explicitly.

Locally, away from r 0, the domains D(H0), D(H), of H0 and H look the
same. Let p(r) be a non-decreasing function, infinitely differentiable for 0<r<o°,
such that p(r) 0 for all r sufficiently small, and p(r) 1 for all r sufficiently large.
We shall use the same symbol p for the function p(|r|) as for the operator, in
L2((R3), of multiplication by p(|r|). Then /g D(H)=> p/e D(H0). Thus pD(H)<=
D(HQ), and similarly

pD(H0)i=D(H), pD(H0)<=D(HQ), pD(H)^D(H).
It is often useful to note that, for example, (H0+l)pEHeX is bounded by the
closed graph theorem, where S is a finite interval and EHe2 is the spectral
projection of H associated with the interval S.

We shall make considerable use of compactness. The fact that E^rE^-^ is

compact (even Hilbert-Schmidt), where EW<R denotes multiplication by the
characteristic function of the ball |r|<R, implies that limR_ta,0||E|,.|<;REHoF;i|| 0, so
that states cannot be localised simultaneously in position near r 0 and in kinetic
energy.

For Im z^O, we have the identity

p(Ho-z) '-(H-2) 'p=(H-z) 1([H0,p]+Vp)(H0-2r1.
Using [H„, p] —Ap - 2i (Vp) • P, with P momentum operator, one verifies that
[H0, p] (HQ— z)' ' is compact. Since Vp is nonsingular, Vp(HQ— z) ' is also
compact. Hence p(Ha-z) l — (H — z) lp is compact. Taking norm limits, for
different z, of this result, it follows that

pd»(H0)-cMH)p

is compact for any cpeCÒ(M).
From the corresponding result with V 0, we know also that

pcp(Hn) — 4>(H0)p is compact, and hence so is (cp(H) — cp(H0))p.
The method of Dirichlet decoupling ([1], [2], [3]) has previously been used to

study the effect of local singularities of the potential. Wc shall denote by HD the
operator -A+ V with Dirichlet boundary conditions at the surface of the sphere
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|r| L, and with the same boundary conditions at r 0 as for H. Then HD is a

self-adjoint operator in L2(IR3) which "decouples" the regions |r|<L and |r|>L.
We shall denote by HL the operator -A+ V acting in L2(B), where B is the ball
|r| < L, with Dirichlet boundary conditions at |r| L and again the same boundary
conditions at r 0 as for H. Then HL is a self-adjoint operator in L2(B), and may
be thought of as the part of HD which acts in L2(B).

Lemma 1. For Imz^O, (H-z)1 — (HD — z)1 is compact.

Proof. Let p0(r) be a smooth, non-increasing function such that p0= 1 for
0sr<L/3 and po 0 for r>2L/3. Let px(r) be a smooth, non-decreasing
function such that Ptao(r) 0 for 0<r<2L and px(r) l for r>3L. Define
corresponding multiplication operators p0, p^ with r |r|, and set pL 1 — p0 —pœ. Then
pL localises near |r| L, and

pL(H-2) ,=pL(H0-2)1(H0-2)p(H-2r1 (1)

where p is smooth, non-decreasing, with p 0 near r 0 and p 1 on the support
of pL. On the r.h.s. of (1), (H0- z)p(H - z)'1 is bounded (closed graph theorem)
and pL(H0 — z)"1 is compact. Hence pL(H — z)1 is compact. Moreover, (HD —

z)_1Pl 's compact. (For the part of this operator in |r|<L use local domain
properties together with the compactness of the resolvent of -A with Dirichlet
boundary conditions at |r| L. For the part in |r| > L use local domain properties
together with the compactness of the resolvent of -A with Dirichlet boundary
conditions at |r| L and at r 4L, acting in L2 of the region L<|r|<4L.)

Writing

(H-z),-(HD-z)l pL(H-z)-l-(HD-zrlpL
+ (l-pr.)(H-2) 1-(HD-2r,(l-pL),

it remains only to prove compactness of

p0(H-2r1-(HD-2)1p0
and of

p=0(H-z)1-(HD-2)-,p»-

But this follows as for the proof in the case of the operator p(H0-z)-1-
(H—z) 'p. using commutation relations for H and HD with p0 and p^ and noting
that locally H and HD have the same domains away from |r| L. Hence the result.

A final technical result which we shall need is as follows.

Lemma 2. In L2(B), where B is the ball |r| < L, let % denote the set of elements
belonging to D(HL) which have compact support in |r|<L. (Such elements are of
the form (1-p)/ for some feD(HL), where p(r) is smoothly non-decreasing with
p=0 near |r| 0 and p l near \r\ L.) For AgIR, let P(x) denote the projection
onto the closure of (HL-X.)3l.

Then, if 2 is any finite interval with A not in the closure of 2, EH.ej;(l-P(x)) is

compact.
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Proof. Define p0 as in the proof of Lemma 1. Then

(HD-A)p0EHtajeS-po(HD-A)EHDta-2= -(Apo + 2iVp0 • P)p1E„i:>eï (2)

where Pi(r)e CÔ(0, L) and pr^l on the support of Vp0. Using the facts that
(H0+ l)piE,litF± is bounded and (Ap0 + 2i Vp0 • P)(H0+1) ' is compact, we see
that the r.h.s. of (2) is compact. Projecting equation (2) onto the subspace of
L2(R3) corresponding to L2(B), we have that

H, - A )p0EHl<=v - Po(HL - A )EH| s2

is compact. Now the range of paEH[t,± is contained in 3), so that (l —P(x,)x
(H, - A)p0EHi. ^ 0. Hence {(l-P(x1)poEH|^i;(HL-A)}* is compact. Since A is

not in the closure of 2, the restriction of HL— A to the range of EHl£s 's an

operator with a bounded inverse, so that EH|eSp0(l — P<X)) is compact.
The conclusion of the lemma now follows from the observation that

Ehl<=s(1 —Po) >s compact. (Local domain properties plus compactness of the
resolvent of —A with Dirichlet boundary conditions at |r| L.)

Remark (i) The orthogonal subspace to (HL - \)3) consists of those fe L2(B)
which satisfy both the equation (-A+ V)/ A/ and the boundary condition for HL
(equivalently H) at r 0. Thus (1-P(XI) is the projection onto such /.

Remark (ii) The condition that A not lie in the closure of 2 is intended to rule
out the cases where A is a limit point of eigenvalues, or an eigenvalue of infinite
multiplicity. These cases can indeed occur for Hamiltonians of the generality
considered here.

3. Localisation of states; regular and singular points

As a measure of the degree to which states can be localised simultaneously in
position (near r 0) and total energy H, we define, for finite intervals 2 of energy,
the function y(H) by

7(2) Kirn||Ew.RE„,v|| (3)

If we are to consider localisation at a single energy A rather than a range of
energies 2, we define

7(A) linni ||Ew<RE|H_xl<J (3)'
R—.Q
e-*0

where E|Hta^X|<e is the spectral projection of H associated with the interval (A-e,
A + e). The limits (3), (3)' always exist and in (3)' the 7(A) is independent of the
manner in which the limits are taken. (This follows from the fact that

7(A) inf ||E|r|<RE|„ taX|<e||.)
R>0
e>0

Clearly in each case 0g=7<1. It is sometimes convenient to replace EÌH^KÌ<E
in (3)' by a smooth function of H. Define a function </>e(x), infinitely differentiable,
increasing in the interval [A -2e, A-e] and decreasing in [A + e, A +2e], such that
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d>e(x) l for |x-A|<e and =0 for |x-A|>2e. Then

Xe(x)-Zd>e(x)-<X2eW.

where x* 's ,ne characteristic function of (A - e, A + e). It follows from (3)' that we
also have

7(A) Rim||E|r|<R<MH)||. (4)

The following lemma shows that localisation in position may be replaced by
localisation at large kinetic energy.

Lemma 3. For finite intervals 2,

7(2) lim ||EHn>ME,„ v||. (5)

Proof. In (5), EHu>M is the spectral projection of H0 for the interval (M, ^).
Let 7'(2) be the limit on the r.h.s. of (5). We show first 7^7'; then 7^7'.
(i) 7 < 7': We have

E\,\^rEH( ï E^rE-j^mEh^ + t|r|<RCH(p<M£-H(s2. (O)

Given 8>0, choose M such that \\EHo>MEhl€X\\<y' + S. Then
limR_0 ||Ew<R£Ho<M|| 0 by compactness, so that applying the triangle inequality
to (6) we have

7 lim ||E|r|<REHe2|| < 7' + 8.

Since 5 was arbitrary, this yields y<-y'.
(ii) 72=7': Define as before a multiplication operator p with p(r) 0 for

small r and p(r)=l for r>R, with R sufficiently small that ||(1 - p)EH^-s\\-Sy + 8.

Then \\EHi)>MEHc±\\<y + 8 + \\EHi^MpEHei:\\, where we have

IIEh^mPEh, v|| ||EI,„ta.M(H()+ 1) l(H0+ l)pEHrv||

<||EH(^M(H0+1) l\\x\\(H0+l)pEHeT\\

<const(M+l) '^0 as M^^-.
Hence 7'= limM.ta.,œ ||EHo>M£He2||<7 + ô. So 7's7, and we have finally 7'= 7.
Taking a second limit we also obtain, from (3)',

7(A) lim ||EH(i>ME|H X|<e|| (7)
M"--X
F-—0

where again the manner in which the limits are taken is immaterial. We now have
our first basic result on localisation.

Theorem 1. For any given A, 7(A) is either 0 or 1.

Proof. Let p be a monotonie multiplication operator as before, vanishing
near r 0, with p l for large enough r. Suppose that p has support in [1, °°).



312 D. B. Pearson H. P. A.

Define cpe(H) as in (4). Then Ew<1p=0. Moreover

E|rKi<MH)pE„o<M -Ew<1{p4)e(Ho)-c/)F(H)p}E„ü<;M

is compact, by compactness of the operator in curly brackets. On the other hand,
(l-p)EH(,<M 's compact, and hence

Elti^cpe(H)EHa<M (8)

is compact. Now write, for R <1,
E|r|<R<^)F(H) E|r|<R{Ew<;1-^e(H)EHo<:M}

+ Ew<R{Ew<1EHo<M}(/)(,(H)EH()>M

+ E|r|<REHo>M4»2(H)EHü>M. (9)

The terms in curly brackets are compact, and give norm convergence to zero
when we take the limit R —»0, so that

Um ||Ew<R<M(H)||^||£I^>M^î(H)EHl>M|| WE^^cp^Wf. (10)

Now take the limits e —»0, M—>°°. using (4) (with cp2. for cpE), and (7) with
E|h-xi<p replaced by cpe(H). Then (10) gives 7(A)<(7(A))2. But certainly 7(A)>
(7(A))2, since 0<7(A)<1. So 7(A) (7(A))2, and the result follows.

Corollary. Let P0 be any projection commuting with H, such that

lim ||E|rl>RE|H-x|<e (1 - P0)|| 0, (11)
e—»0

for some (equivalently all) R>0. Define 70(A) by

7o(A) hm ||E|r|<RE|H_x|<eP0|| (12)
1.-.0

Then, for any given A, 70(A) is either 0 or 1.

Proof. Use the identity (9) with d>r(H) replaced by d.r(H)P0. (Analogous
results to, e.g., (7), may be proved for 70(A).) On the r.h.s. of this modified
identity write, for the first term,

E|,|<xsf>E(H)P0EHo<M {E|r|<1t^)E(H)EHo<M}

- EW<14>2(H)(1 - P0){(1 - p)EHo<M}

-E|r|<1^,2(H)(l-P0)pEHo<;M.

Operators in curly brackets are compact, so that proceeding as before we
obtain

lim ||Elrl<R^2(H)P0|| < ||EHü>m4>2(H)P0E„ü>m||

+ ||4.2(H)(l-P0)pEH(,<M||

where by (11) the second norm on the r.h.s. goes to zero in the limit e —> 0. Take,
then, the successive limits e —>0, then M—»°c, and 70<7q as before, from which
the result follows.
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Definition. A is a regular point if 7(A) 0, and a singular point if 7(A) 1.

A similar result to Theorem 1 holds for intervals.

Theorem 2. Let 2 [a, />] be a finite interval, and suppose that a and b are
regular points. Then 7(2) 0 or 1, with 7(2) 0 if and only if 2 contains no
singular points.

Proof. Define a smooth function if/e(x), increasing in [a - e, a] and decreasing
in [/>,/- + .?], such that </*> 1 for xe[a, b] and tpe—0 in the complement of
(a — e, b + e). Then «/.,, differs from the characteristic function of [a, b] only on
(a — e, a)U(i>, b + s), and since a, b are regular points this implies

lim||Elr|<R(EHe2-^(H)|| 0.

R—0

As in the proof of Theorem 1, E|r|<1i/.e(H)EHo<M is compact, so that, for fixed e,

Rim||Elr|.tataR^(H)EM,.M||-0.

Combining these two results gives

lim ||E|r|<REH<=2EHii^M|| 0.

The proof that 7<2) 0 or 1 now proceeds as for Theorem 1, starting from (9)
with everywhere 4>e(H) replaced by EHfv.

Now suppose 2 contains a singular point A. Then 7(2) S: 7(A) 1, so that
7(2) 1.

On the other hand, suppose 7(2) 1 but that 2 contains no singular point. In
that case, if 2, [a, (a + />)/2] and 22 [(a + />)/2, />], then either 7(2,)= 1 or
7(22)=1, since 7(2]) 7(22) 0 would imply 7(2) 0. Proceeding to subdivide
the interval, we can construct a sequence {2,,} of intervals, converging on a single
point A, such that 7(2,,)= 1. We have, then, 7(A) 1 for this limiting point, in
contradiction with our assumption. Hence 7(2)=1<£>2 contains at least one
singular point, and the proof is complete.

Corollary. With the same assumptions as for the Theorem,

(i) Y(ï) 0OE|r|<REHcv is compact (R>0).
(ii) E|r|. K(H-z) ' is compact (Im 2^0)<=>there arc no singular points.

Proof, (i) If £|,|<rEH(v is compact, we immediately deduce 7(2) 0.
Conversely, suppose 7(2) 0. For 0<R<1, one may use local domain properties to
show that ER<ir|<,EHrv is compact. Hence

ElrKi^H. i £r<i_t|<i£heì:"'" E^<REHe^

and is the sum of a compact operator and an operator norm convergent to zero. It
follows that this operator is compact, and similarly for E|r|<REHeS.

(ii) Use ErKR(H-z) ' =limMta^ E,,,. RE|„|.vM(H-2) '.

Remark. Notice that (i) the set of singular points is closed, and (ii) each
singular point A belongs to tr^H).
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To verify (i), observe that if A is a regular point, ||Erl RE|M K f||<2 for R, e

sufficient K small. Hence, for am fixed A'g (A — e, A + e), 7(A')^||E|r REn A J|<
2, so that 7.A') 0. Thus regular points form an open set, and the result follows.

To verify (ii), observe that if A $É «t^J H then Ell( X|. is compact for small e,
and it follows that A is a regular point.

4. Characterisation of singular points

It is simplest to characterise the negative singular points, and wc have

Theorem 3. The set of negative singular points is .r^J H) fl x, 0).

Proof. Wc have seen that singular points belong to trcss(H). It remains to
prove that A (Tess(H), A<0, =^-A is a singular point.

Construct an orthonormal sequence {/„} of vectors, such that /. M x .,,/,,,/„
0. (Thus each f„ has H-spectral support contained in [A (1/n), A +( 1/n)].) If A is

an eigenvalue of infinite multiplicity, let {/„} be orthonormal sequence of
eigenvectors. Otherwise, choose spectral supports for different n to be non-
overlapping.)

Find </> c C(',([R) with <7>(A) 1 such that the support of é is contained in
(-^-,0). Now pcp(H0)-cp{H)p is compact. But <r(H0) |0. >). so that pd>(H) is

compact on taking adjoints.
Since /"„—»0 weakly, wc have pd>(H)f„-^0 strongly. But (</,.//) l)/„-*0

strongly. Hence pf], —>0 strongly.
Since the support of 1 p can be taken to lie in an arbitrarily small

neighbourhood of r 0, we sec that the sequence {/„) asymptotically localises in
position near r~0. Clearh the sequence also localises in energy at A, and it
follows that 7<A) 1.

Remark. One can define 7(A) for A y- h\

7< x) Rim||E|r| REH. J| (13)
K - ¦

It max be shown thai y( x) 0 or 1. with y(-*-) 0 tl and only tl // is
semi-bounded. One can also set

y(x) Hm ||EW<RE„ .K||. (13)'
K ¦'

It is not clear, in litis case, whether always y("^-)~() or 1. However, one can
show that if there arc no (finite) singular points then cither 7! /) 1 or
y( + x)=l. in this sense, if wc extend the notion of singular points to include
A ±30, then H always has singular points (which ma\ be infinite). For most
Hamiltonians considered in scattering theory one has A 1 '¦ as ihc only singular
point.

A characterisation which applies also to positive singular points is as follows.

Theorem 4. 7/ie ser of (finite) singular points is <r,.ss(H,
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Proof. Define c(>t(H) as in equation (4). Lemma 1 implies that cp£(H) —

cpr(Hn) is compact. We have, then, from equation (4),

7(A)=Hm||Elr|. R<fc(HD)||. (14)
e -M)

(Thus H and Hn have the same singular points.) Since H, is the part of HD in
L2(B), where B is the ball |r| </., it follows from (14) that

7<A)- hm ||E|rl. RE|H| X|<el|. (14)'
e--0

(il Consider first the case where A is an eigenvalue of H, with infinite
multiplicity. Then certainly Aeo-ess(HL), and wc have to show 7(A) 1.

Define a smooth, non-decreasing multiplication operation p on l2(B), with
p=0 near r 0 and p —1 near r L. Then (>EHi x. is compact, and as in the
proof of Theorem 3 wc can show that an orthonormal sequence {g,,} of eigenvectors

with eigenvalue A localises asymptotically near r 0. Hence 7(A)-1 as

required.
(ii) Now suppose cither that A is not on eigenvalue of H,, or that A is an

eigenvalue of finite multiplicity. Let P"" denote the projection onto the eigen-
space, with P"" - 0 if A is not an eigenvalue.

Since P'A1 is compact,

lim||Ew<RE|„, M<ePu,|| 0,
• -0

so that (14)' gives

7(A) Rim||E|r|. RE|H, x|<e(l-P(X))l|. (15)

Bui E)r|>RE|Hi X|<, is compact, and s -lim. ,0 E|H| kl. e(l P(X)) 0, so that

lim IIP, .RE1;/, A> ,(1 P'xl)||-0.
—.(1

Equation (15) now implies that

7(A) =Hm||E,H, x.,(l-P'AI)|i,

and it follows easily thai

7(A) lO A G tr^jH,
Wc now introduce some further definitions which will allow us to study more

closely the distribution of singular points.
For given L >0, define cJi as in Lemma 2, and for any AeR define ß(A, L) by

ß(A,L)=inf||(Hi -A)/||/||/||. (16)
f< j

Since, locally in |r| < L, H and H, have the same domain, wc could equivalently
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write

ß(A,L)=inf||(H-A)/||/||/||, (16)'

where 3) is regarded now as the subset of L2(IR3) consisting of those feD(H)
having compact support in |r|<L.

Il is easy to verify that (i) ß(A, L) is monotonie non-decreasing as L
decreases, (ii)

|ß(A1,L)-ß(A2,L)|<|A1 -A2|. (17)

Wc now define ß(A) by

ß(A)- lim ß(A, L), (18)
i -o

allowing always the possibility ß(A) +^.
Wc now have

Theorem 5.
(i) ß(A) - OO A is a singular point.
(ii) ß(A) is the distance from A to the nearest singular point: in particular

ß(A) '-<?> there are no (finite) singular points.

Proof, (i) Suppose ß(A) 0. Then 3 a normalised sequence {/„} of vectors,
asymptotically localised near r 0, and such that s-lim,,___,, (H-A)/„ =0. For any
ci >0, we have

I|E,h x|>J„N-||(H -A)/J-0,

so that the sequence localises asymptotically at energy A. Hence 7(A) 1: we
prove the converse as part of (ii).

(ii) Suppose ß(A)>(). Given e >0, arbitrarily small, find /. (depending on e)
sufficiently small that ß(A)>2t-' and

||(//( X)ß-(ß(\) e) M, (19)

for all fe3>. From now on, I. will be fixed. Then

l|E1Hl m<3,a, 2r(H, A)/||=£(ß(A)-2£)||E1H| X|<(3CX) 2J\\

<(ß(A)-2£)||/|l<ßfl(^)"2e||(H, -A)/||, (20)
ß(A)-f

for all fe3). Hence the restriction of E,Hi X;..9a] 2t to (H, -A)2> has norm
strictly smaller that 1.

Now define Pat as in Lemma 2, and we have shown that

l|E,H, XIO.A. 2fP,A,ll<l- (21)

Let 2 be any subinterval of (A —ß(A) + 2e, A + ß(A) —2e) not containing A in its
closure. Then (21) implies

l|E!r, rE„..c2P(A)||<1,
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whereas Lemma 2 implies

Rim||Ew<REHifc-x(l-P(A,)|| 0.

Combining these results, we have, then

lim ||Ew<RE„LeS||<l.

It follows that limR_0 ||£|,|<REHneS;||<l, and that the interval (A-ß(A) + 2e,
A + ß(A) —2e) can contain no singular point (of HD, and hence of H). (The
possibility that A itself might be singular can be ruled out, by applying the same
argument to a point A' very close to A, and using the fact that, from (17) in the
limit L—>0, ß(A) is continuous.)

Since e was arbitrary, the nearest singular point to A is at distance at least
ß(A). We have verified in particular that A is singular implies ß(A) 0, completing
the proof of (i).

It remains to show that there is a singular point within, say, distance
ß(A) + 2e of A. Suppose again ß(A)>0.

Let {g,,} be a normalised sequence asymptotically approaching r 0, such that

||(H-A)g„||<ß(A) + e. (22)

Then

l|E|H-M>ß(A)+2tatag,.ll— „/. : ; ~ l|E|H-xi>ß(\)+2e(H — A)g,,||
p(A) + ze

- ßiK) + e-<l.
ß(A) + 2e

We cannot have limR_ol|E|r|<RE|H-xi-sß(x)+2ell 0> since this would imply, for n
large enough,

ll&ill l|E|H-X|s0(X)+2Eg,1 + E|h -X|>ß<A)+2i.gr.ll< 1-

So, by Theorem 2, [A —ß(A) —2e, A + ß(A) + 2e] contains a singular point for any
e>0, and this completes the proof.

Corollary 1. Suppose H \ CO (1R3\{0}) is essentially self-adjoint. Let A be a
singular point. Then 3 a normalised sequence {cpn} in Cq(IR3\{0}) such that the
support of cp,, is contained in |r| < 1/n, and such that s — lim„_^,(H-A)<^n =0.

(That is an asymptotically localising sequence can be found of CO functions,
such that the uncertainty in H approaches zero.)

Proof. Let p0 be smooth, non-increasing, with p0(r) 1 near r 0 and p0(r)
0 near r L.

Given fe2), 3 sequence {^}eC0x(R3\{0}) such that ->„->•/ and Hd,n -> Hf.
(Strong limits.) Using the commutation relation of H with p0, one also finds
(Hpo)t/.,, —» Hp0/. It follows that equation (16)' may be replaced by

ß(A,L)= inf ||(H-A)4>||/||d>||,
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where 3)' is the set of infinitely differentiable functions having compact support in
0<|r|<L. The result then follows from the fact that ß(A) 0.

Corollary 2. Suppose 3 no solution in L2(B) of the equation -A+ V)h Ari,
such that the boundary condition at r 0 is satisfied. Then A is a singular point.

Proof. Suppose the hypothesis, and that A is a regular point. Then ß(A)>0.
In Lemma 2, we have P(A,- 1, so that (21) implies A^.r(H, Since (H, -\)3) is
dense in L2(B), it follows that (//, -A) ' is essentially self-adjoint on (H, - k)'J).
Hence (HL A) is c.s.a. on S). But this leads to a contradiction, since elements of
°J) vanish near |r| L, and infinitely many self-adjoint extensions of H, \ 0) can be
found. It follows that A is a singular point.

Examples of localising potentials

So called "absorbing" potentials, which in Scattering Theory may give rise to
violations of asymptotic completeness and of unitarity of the scattering operator
[4], and locally singular short range potentials for which the associated total
Hamiltonian has a spectrally singular continuous component [5], [6], are two
classes of potential which lead to localisation of states in the sense described
above. In this connection, it is important to realise that there is no necessary link
between the phenomenon of localisation and "unusual" spectral properties of H.
For example it is known [7], at least in the one-dimensional case, that singular
spectrum of Hn at positive energies, for a short range potential, will not generate
singular spectrum of H, despite the fact that localisation will occur for such a total
Hamiltonian. We shall deal with this point in a further publication, which will
explore the relation between localisability for HD and H respectively, and the
consequences for Scattering Theory.

From neither of the two classes of potential mentioned above is it easy to
construct examples in closed form. To remedy this wc put forward the following
example of a localising potential which, however, belongs to a different class and
is illustrative of quite different phenomena: lor 0<r<l. define u(r) by

u(r)--sin2 (-)+-¦",

for some ß> 1, and for some fixed A„ define V(r) (0<r<l) by

dh<

dr2

with V(r)^0 for r> 1. It is not difficult to check that

2 + V(r)u(r) A„u(r),

w2(()df x and that ——
•,) Jo u'(t

-dt

The point of this choice of u(r) is that the differential equation -d2dj/dr2 +
V(r)i/> A()i/. has no non-trivial solution in L2(0, 1). For such a solution would
need to be a linear combination of u(r) and u(r) J' \/u2(t) dt, whereas no such
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linear combination can be square intégrable. By Corollary 2 (or rather a one-
dimensional statement of this result), it follows that A0 is a singular point of the
differential operator - d2/dr2+ V(r) in L2(0, »), and so also of -A+V(|l|) in
L2(R3).

The function u(r) in this example approaches, for large ß, a function (viz.
1/r sin2 1/r) which, while non-negative, has a graph which repeatedly touches the
u 0 axis. One can study analytically what happens to solutions tp-(r) in this limit,
for a general class of functions u(r), and finds that one is dealing, canonically, with
Hn having a limit point of eigenvalues at threshold. (In other words, A0 is a limit
point of eigenvalues, and there is no spectrum below A0.) Further results for
potentials generated in this way will be given elsewhere.

As a final example, albeit an artificial one, of a localising potential, take
V(r) — 1/r3. The restriction of —A+ V to each angular momentum partial wave
subspace %€(l, m) is then an ordinary differential operator having deficiency
indices (1, 1). In each partial wave subspace, a boundary condition at r 0 can be
found to ensure, cither that a given value An is an an eigenvalue of HL in each
subspace, or that A„ is a limit point of such eigenvalues, as the quantum numbers /

and m are varied. This family of boundary condition will define a particular
self-adjoint extension H of A f V, and again H will be a localising Hamiltonian,
at energy A„. A localising sequence of states in this instance will be characterised
by asymptotically large angular momentum quantum numbers.

The brief catalogue of various classes of localising potentials which we have
presented here is by no means a complete list of all the possibilities that may
occur. Rather I have tried to indicate a few avenues that might usefully be

explored, and to lay down in this paper the beginnings of a theoretical framework
within which such exploration might take place.
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