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Localisation of states in quantum mechanics

By D. B. Pearson, Department of Applied Mathematics,
University of Hull, England

(22. XII. 1983)

Abstract. A theory is presented to describe the possible simultancous localisation of states, to
arbitrary accuracy, in position and total energy H = H,+ V, where V is locally singular and decays at
infinity. The theory is entirely time-independent: that is, the time evolution of states in such potentials
is not considered. Examples of localising potentials in this sense are relatively simple, and may be
written down in closed form.

1. Introduction

In Quantum Mechanics, the Heisenberg uncertainty principle gives an abso-
lute limit to the degree to which states may be localised simultaneously in position
and momentum. One mathematical expression of this limit to localisability lies in
the fact that E, y, E, s, is compact, for any pair of finite intervals X,, 2. (Here
E, « denotes the spectral projection of the self-adjoint operator T associated
with the interval X.) This compactness implies that the norm of E, s E, s,
converges to zero as the lengths of X,, X, approach zero. Indeed, an estimate of
this norm may be used to derive a lower bound for (6x)(6P). (Here 8T denotes
the uncertainty, in a particular state, of the observable corresponding to T.)

This paper is devoted to exploring the possibility of localising states simul-
tancously in position and total energy H by means of a localising potential V(r)
which decays at infinity but which is locally singular. For simplicity, we shall
suppose that V is locally regular away from the single point r=0; this condition
could be relaxed to allow, for example, bounded singular surfaces.

As a measure of the degree to which states may be localised, we shall
consider the function of energy y(A) defined by

y(A) = !]zm}) |Eim<rEir <l

e ()

’

where we shall show (Theorem 1) that y(A) is always 0 or 1 at a given energy A. If
v(A) =0, A 1s called a regular point (Section 3), and if y(A)=1, A is called a
singular point. Section 4 is devoted to abstract characterisations of regular and
singular points, and of their distribution. It is shown in particular (Corollary 1 to
Theorem 5) that the localisation implied by the existence of singular points
manifests itself in a very clear violation of the uncertainty relation between
position and total energy, and that this can happen for potentials which may be
written down quite easily in closed form.
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A subsequent paper will deal exclusively with short range potentials, and will
provide a complete characterisation in that case of the types of localisation which
can occur, together with an analysis of the consequences for Scattering Theory.

2. Mathematical preliminaries

Let H, be the unique self-adjoint extension, in L*(R?), of —A, the negative
Laplacian defined on C§(R?). Let V be a real potential which is locally square
integrable away from the single point r= 0, and assume that V approaches zero in
the limit || — o, (It is sufficient to assume that V = V,+V,, where, for any R>0,
V, and V, are respectively square integrable and bounded in the region |r|> R,
with lim|,|%,, VL(I'):O.)

Define H =—A+V with domain Co@®\{0}), and let H be a self-adjoint
extension of H. If H is not essentially self-adjoint, the definition of H will involve
boundary conditions at r=0, but we shall not need to consider these boundary
conditions explicitly.

Locally, away from r=0, the domains D(H,), D(H), of H, and H look the
same. Let p(r) be a non-decreasing function, infinitely differentiable for 0 =r <oc,
such that p(r) =0 for all r sufficiently small, and p(r) =1 for all r sufficiently large.
We shall use the same symbol p for the function p(lr]) as for the operator, in
L*[R?), of multiplication by p([r]). Then fe D(H)=> pfe D(H,). Thus pD(H)<
D(H,), and similarly

pD(Hy) = D(H),  pD(Hy)< D(H,), pD(H)< D(H).

It is often useful to note that, for example, (Hy+ 1)pEy. s is bounded by the
closed graph theorem, where % is a finite interval and E;_s is the spectral
projection of H associated with the interval 2.

We shall make considerable use of compactness. The fact that E,-gEjy .5 1S
compact (even Hilbert-Schmidt), where E.r denotes multiplication by the
characteristic function of the ball |r| <R, implies that limg_.o [|Ey<rEn,sll =0, so
that states cannot be localised simultaneously in position near r=0 and in kinetic
energy.

For Im z #0, we have the identity

p(Hy—z) '=(H-2z) 'p=(H—-z) '((Hy, p]+ Vp)(Hy—2) ".

Using [Hy, p]=—Ap —2i (Vp) - P, with P = momentum operator, one verifies that
[Hy, p] (Hy—z) ' is compact. Since Vp is nonsingular, Vp(Hy—z) ' is also
compact. Hence p(H,—z) '=(H—2z) 'p is compact. Taking norm limits, for
different z, of this result, it follows that

pd(Hy) —d(H)p

is compact for any ¢ € Cj(R).

From the corresponding result with V=0, we know also that
pd(Hy) — d(Hy)p is compact, and hence so i1s (¢(H)— p(Hy))p.

The method of Dirichlet decoupling ([1], [2], [3]) has previously been used to
study the effect of local singularities of the potential. We shall denote by H,, the
operator —A+ V with Dirichlet boundary conditions at the surface of the sphere
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|r| = L, and with the same boundary conditions at r=0 as for H. Then Hp is a
self-adjoint operator in L*(R?®) which “decouples” the regions |[f] <L and |r|> L.
We shall denote by H, the operator —A+ V acting in L?(B), where B is the ball
Ir| < L, with Dirichlet boundary conditions at |¥| = L and again the same boundary
conditions at r=0 as for H. Then H, is a self-adjoint operator in L*(B), and may
be thought of as the part of Hp which acts in L*(B).

Lemma 1. For Imz#0, (H—z) '—(Hp—2z) " is compact.

Proof. Let py(r) be a smooth, non-increasing function such that p,=1 for
O=r=L/3 and py=0 for r=2L/3. Let p.(r) be a smooth, non-decreasing
function such that p..(r)=0 for 0=r=<2L and p.(r)=1 for r=3L. Define corres-
ponding multiplication operators pg, p.. With r=r|, and set p, =1—py—p... Then
pr. localises near |r| =L, and

PL(H_Z)'I:PL(H()_Z)"'I(HO_Z)P(H“Z)_l (1)

where p is smooth, non-decreasing, with p =0 near r =0 and p =1 on the support
of p.. On the r.h.s. of (1), (Hy—z)p(H—z) ' is bounded (closed graph theorem)
and p, (Hy—z) ' is compact. Hence p, (H—z) ' is compact. Moreover, (Hp —
z) 'p. is compact. (For the part of this operator in |r|<L use local domain
properties together with the compactness of the resolvent of —A with Dirichlet
boundary conditions at |r| = L. For the part in |r|> L use local domain properties
together with the compactness of the resolvent of —A with Dirichlet boundary
conditions at |r|= L and at r=4L, acting in L? of the region L <|r|<4L.)
Writing

(H-z)"'=(Hp~2) '=p.(H-z) '=(Hp—2)"'p.
+(1-p )(H-z) '=(Hp—2z) '(1-pp),
it remains only to prove compactness of
po(H—2)"'=(Hp —2) " pg
and of

p(H-2)"'~(Hp—2) 'p..

But this follows as for the proof in the case of the operator p(Hy—z) '—
(H - z) 'p, using commutation relations for H and Hp, with p, and p.. and noting
that locally H and H, have the same domains away from |r| = L. Hence the result.

A final technical result which we shall need i1s as follows.

Lemma 2. In L*(B), where B is the ball |¢| <L, let D denote the set of elements
belonging to D(H,; ) which have compact support in |r|<L. (Such elements are of
the form (1—p)f for some fe D(H, ), where p(r) is smoothly non-decreasing with
p=0 near |[r|=0 and p=1 near [¢|=L.) For A€R, let P, denote the projection
onto the closure of (H, —A)9.

Then, if X is any finite interval with A not in the closure of 2, Ey .s(1—P,)) is
compact.
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Proof. Define py as in the proof of Lemma 1. Then
(Hp — )\)POEH,,ez_Po(HD "f\)EH,,ez = —(Apo+2iVp, - P)PIEH,,ez (2)

where py(r)e C5(0, L) and p,=1 on the support of Vp,. Using the facts that
(Ho+ 1)p, Eyy, s is bounded and (Apy+2i Vp, - P)(Ho+1) ' is compact, we see
that the r.h.s. of (2) is compact. Projecting equation (2) onto the subspace of
L*(R?) corresponding to L*(B), we have that

(Hx. —A )p()EH[_eE - pO(HL —A )EH.,ez

is compact. Now the range of pyEy s is contained in %, so that (1-P,,)x
(H;, — MpoEy, cx = 0. Hence {(1—Py))poEy, .x(H. —A)}* is compact. Since A is
not in the closure of 3, the restriction of H; —A to the range of Ey .y is an
operator with a bounded inverse, so that Ey .sxpo(1—P(,)) is compact.

The conclusion of the lemma now follows from the observation that
Ey, .s(1—py) is compact. (Local domain properties plus compactness of the
resolvent of —A with Dirichlet boundary conditions at |r| = L.)

Remark (i) The orthogonal subspace to (H; —A)9 consists of those fe L*(B)
which satisfy both the equation (—A+ V)f = Af and the boundary condition for H;,
(equivalently H) at r=0. Thus (1— P,,,) is the projection onto such f.

Remark (ii) The condition that A not lie in the closure of ¥ is intended to rule
out the cases where A is a limit point of eigenvalues, or an eigenvalue of infinite
multiplicity. These cases can indeed occur for Hamiltonians of the generality
considered here.

3. Localisation of states; regular and singular points

As a measure of the degree to which states can be localised simultaneously in
position (near r=0) and total energy H, we define, for finite intervals 3 of energy,
the function y(X) by

v(2)= ,l{‘_rﬂj “E]rIfRE!fc 1“ (3)

If we are to consider localisation at a single energy A rather than a range of
energies 2, we define

y(A) = ,l;i_rﬂy |Ei<rEj 1<l 3y

e—0

where Ey;_, <. is the spectral projection of H associated with the interval (A — &,
A +¢). The limits (3), (3)" always exist and in (3)" the y(A) is independent of the
manner in which the limits are taken. (This follows from the fact that

y(A) = Af;fo ”E||-I<REIH —M<en-)

>0

Clearly in each case 0=+ =1. It is sometimes convenient to replace E; _, -,
in (3)' by a smooth function of H. Define a function ¢, (x), infinitely differentiable,
increasing in the interval [A —2¢, A — €] and decreasing in [A + &, A +2¢], such that
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b, (x)=1 for [x—A|=e and =0 for |x —A|=2¢&. Then
Xe (X) = . (X) = x5, (x),

where yx, is the characteristic function of (A — &, A + ). It follows from (3)' that we
also have

yA) = lim [[Ej-péb, (H))]. 4)

£ —0

The following lemma shows that localisation in position may be replaced by
localisation at large kinetic energy.

Lemma 3. For finite intervals X,

y(X) = ALillll |Efi,~mEncsl- (5)

Proof. In (5), Eyy -.n is the spectral projection of H, for the interval (M, =).
Let y'(X) be the limit on the r.h.s. of (5). We show first y<+'; then y=+'.
(1) y=v": We have

Elri-c: REHL).', = Eirl<REH“>MEHEE + EIri<REH(,<MEHEZ' (6)

Given  8>0, choose M such that |Ey-mEncs/|=y'+8.  Then
limg g |Ei<r Eri,<mll = 0 by compactness, so that applying the triangle inequality
to (6) we have

Y — I‘{'E}) “E|r|<REHeZ’” = ‘Y’ + 0.

Since 8 was arbitrary, this yields y=vy'.

(i) y=+": Define as before a multiplication operator p with p(r)=0 for
small r and p(r)=1 for r=R, with R sufficiently small that ||(1—-p)E,s||=v+8.
Then ”EH“>MEHGS.H‘<— y+o+ “EH(,>MPEHG}_'”, where we have

”EH“‘-AIPEH( 1” = ”EH(,“-]W(H() ot 1)"1(H0+ UPEur:“

S“EH(,>M(H()+ 1)‘_1H x||(Ho+ 1)PEHe£"
=const(M+1)'—=0 as M-,

Hence v’ =limp .o |[Efy=mEnesl|=v +8. So y'=v, and we have finally y'=1.
Taking a second limit we also obtain, from (3),

yA) = lim [EyomEp yiel <

£—0

where again the manner in which the limits are taken is immaterial. We now have
our first basic result on localisation.

Theorem 1. For any given A, y(A) is either 0 or 1.

Proof. Let p be a monotonic multiplication operator as before, vanishing
near r=0, with p=1 for large enough r. Suppose that p has support in [1, ).
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Define ¢.(H) as in (4). Then E,.,p =0. Moreover
Elr|<1d)£ (H)pEH0<M = E|.-L<1{P¢e (HO) — ¢, (H)p}EHO-:M

is compact, by compactness of the operator in curly brackets. On the other hand,
(1-p)Ey,<pm is compact, and hence

Ey<19.(HEg, <m (8)
1s compact. Now write, for R<1,
EIri<R¢E(H) = E|r|<R{E|r1<1¢§(H)EH(,<M}
+ EIrI<R{EIr1<l EHQ<M}Q’)3(H)EHU>M
W Elr|<REH¢,>M(b§(H)EHO>M' 9)

The terms in curly brackets are compact, and give norm convergence to zero
when we take the limit R — (0, so that

lim ||Ejg<rde(H| = Epi>mde(H) Epggomall = | Enigombe (H)|. (10)

Now take the limits ¢ — 0, M — o, using (4) (with ¢2 for ¢,), and (7) with
E;y_x <. replaced by ¢, (H). Then (10) gives y(A)=(y(A))?. But certainly y(A)=
(v(A))?, since 0=+vy(A)=1. So y(A)=(y(A))?, and the result follows.

Corollary. Let P, be any projection commuting with H, such that

‘!er(]) ”Etr|>RElH~—M<£(1—PO)"——'O: (11)

for some (equivalently all) R>0. Define yo(A) by
Yo(A) = Ilzi_r{%) “Elr!<RElH-.\|<sP0” (12)

e—0

Then, for any given A, y(\) is either O or 1.

Proof. Use the identity (9) with ¢,.(H) replaced by ¢.(H)P,. (Analogous
results to, e.g., (7), may be proved for vyg(A).) On the r.h.s. of this modified
identity write, for the first term,

E]rl<1‘b§(H)POEHU<M = {Elr|<ld)z(H)EHu<M}
- E|rl<ld)§(H)(1 - Po){(l - p)EH‘,<M}
- Elﬂ<1¢§(H)(1 - PO)pEH0<M-

Operators in curly brackets are compact, so that proceeding as before we
obtain

lim [|Ej<r?(H)Pol| <||Epyni2(H) Po Eyy ol

it Hd’g(H)(l - PO)pEH0<M”

where by (11) the second norm on the r.h.s. goes to zero in the limit £ — 0. Take,
then, the successive limits € — 0, then M — o, and y,=<1v§ as before, from which
the result follows.
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Definition. A is a regular point if y(A)=0, and a singular point if y(A)= 1.

A similar result to Theorem 1 holds for intervals.

Theorem 2. Let X =[a, b] be a finite interval, and suppose that a and b are
regular points. Then y(2)=0 or 1, with y(X)=0 if and only if X contains no
singular points.

Proof. Define a smooth function ¢, (x), increasing in [a — &, a] and decreasing
in [b,b+¢€], such that ¢ =1 for xe[a, b] and ¢, =0 in the complement of
(a—e€,b+e). Then . differs from the characteristic function of [a, b] only on
(a—€e,a)U(b, b+ ¢), and since a, b are regular points this implies

ll_m” iIE\rL<’.f¢(El{{,); . (H)|[=0.

R —0
As in the proof of Theorem 1, E, ¢, (H)Ey, 5, 1s compact, so that, for fixed g,

S |Eje<rie (H) Eyjy =l = 0.

Combining these two results gives

,Liir}) ||Eir1<REr-1czEH..«:M“ =0.

The proof that y(2)=0 or 1 now proceeds as for Theorem 1, starting from (9)
with everywhere ¢, (H) replaced by Ep «.

Now suppose 2 contains a singular point A. Then y(X)=vy(A)=1, so that
y(Z)=1.

On the other hand, suppose y(2) = 1 but that X contains no singular point. In
that case, if 2,=[a,(a+b)/2] and Z,=[(a+b)/2, b], then either y(Z,)=1 or
v(2;) =1, since y(2;) = v(X,) =0 would imply y(X) = 0. Proceeding to subdivide
the interval, we can construct a sequence {X, } of intervals, converging on a single
point A, such that (X, )= 1. We have, then, y(A)=1 for this limiting point, in
contradiction with our assumption. Hence y(2)=1& 3 contains at least one
singular point, and the proof is complete.

Corollary. With the same assumptions as for the Theorem,

(i) y(2) =0 E, _rE;. s is compact (R>0).
(i) Ep-r(H—2z) ' is compact (Im z# 0)&there are no singular points.

Proof. (i) If E-rEy. s is compact, we immediately deduce y(2)=0. Con-

versely, suppose y(2)=0. For 0<<R <1, one may use local domain properties to
show that Eg - Ey. s 1s compact. Hence

Ey<1Enes = Erc<1Exes + E<rEnes

and 1s the sum of a compact operator and an operator norm convergent to zero. It
follows that this operator is compact, and similarly for E,-gE.s.

Sia - " i " 1

(ii) Use Eger(H—2z) ' =limpy_ o EpjwrEjpjers(H—2)

Remark. Notice that (i) the set of singular points is closed, and (i1) each
singular point A belongs to o (H).
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To verify (i), observe that if A is a regular point, ||E,. oF i y-cll<3 for R, ¢
sufficiently small. Hence, for any fixed A'e (A —e, A +e), YAV =|E, cEy 2o <
3. 50 that y(A") = 0. Thus regular points form an open sct, and the result follows.

To verity (1), observe that if A¢ o (H) then Eyp -, 1s compact for small &,
and it follows that A is a regular point.

4. Characterisation of singular points
[t 1s simplest to characterise the negative singular points, and we have

Theorem 3. The set of negative singular points is o (HYN (=, 0),

Proof. We have seen that singular points belong to o (H). It remains to
prove that A e o (H), A <0, = A is a singular point.

Construct an orthonormal sequence {f, } of vectors, such that E,, .01,
0. (Thus cach f, has H-spectral support contained in [A —(1/n), A +(1/n)].) If A is
an cigenvalue of infinite multuplicity, et {f,,} be orthonormal sequence of cigen-
vectors.  Otherwise, choose  spectral supports for  different o to be non-
overlapping.)

Find & ¢ Cy(R) with & (A) =1 such that the support of ¢ is contained in
(—=,0). Now pd(H,) —d(H)p is compact. But o(H,) = [0, %), so that pdh(H) is
compact on taking adjoints.

Since f,, — 0 weakly, we have pd(H)f, — 0 strongly. But (d(H)— 1)f, — 0
strongly. Hence pf,, — 0 strongly.

Since the support of 1—p can be taken to lic in an arbitrarily small
ncighbourhood of r— 0, we see that the sequence {f,} asymptotically localises in
position ncar r=0. Clcarly the scquence also localises in energyv at A, and 1t
follows that y(A)=1.

USS

Remark. Once can define y(A) for A *~ by

y(=%) = lim 1 ST S| -

AN

It may be shown that y(-%=)=0 or 1, with v(—>=) 0 if and onlv if H s
semi-bounded. One can also sct

v = lim By e Byl (13Y
R--0 :
K

It 1s not clear, in this case, whether always y(=)=0 or 1. However, one can
show that if there are no (finite) singular points then either y(-=) =1 or
y(+%)=1. In this sense, if we extend the notion of singular points to include
A ===, then H always has singular points (which may be infinite). For most
Hamiltonians considered in scattering theory one has A = + % as the only singular
point.

A characterisation which applies also to positive singular points is as follows.

Theorem 4. The set of (finite) singular points is . (H, ).

eSS
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Proof. Define ¢.(H) as in equation (4). Lemma 1 implies that ¢, (H)—
¢, (Hp) 1s compact. We have, then, from equation (4),

Y(A) = !lein‘l” |E - rd. (Hp ). (14)

& —()

(Thus H and Hj, have the same singular points.) Since H, is the part of Hp in
L.*(B), where B is the ball [r| < L, it follows from (14) that

Ep<rE, —r<ell- (14)

v(A) = lim |
R0

g0

(i) Consider first the case where A is an eigenvalue of H,. with infinite
multiplicity. Then certainly A € o, (H; ), and we have to show y(A) = 1.

Define a smooth, non-decreasing multiplication operation p on L*(B), with
p=0near r =0 and p=1 near r = L. Then pE,; .-, is compact, and as in the
proof of Theorem 3 we can show that an orthonormal sequence {g,} of eigenvec-
tors with cigenvalue A localises asymptotically near r=0. Hence y(A)=1 as
required.

(11) Now supposec cither that A is not on eigenvalue of H,, or that A is an
cigenvalue of finite multiplicity. Let P denote the projection onto the eigen-
space, with P*" =0 if A is not an eigenvaluc.

Since P™' is compact,

lln] “Eir‘-«"'_ I(':I':‘i'fl A.-.",_-P[A J“ - ()’
R—0 ' ™ - |
v ()

so that (14)" gives

Y(A) = ,Li']_}) ”P‘.Iri-'REIH. Aiv-.;-(l”Pm)H- (15)
&)

But Eg-rEj, s, is compact, and s—lim, . Ey, . (1-P™") =0, so that

(1-P*)|=0.

b

lim ”F:.— -!\‘I{”l Ao
e '

Equation (15) now implies that

Eiry aen (1= PR,

v(A)=lim |
R—0

£—0
and it follows casily that
y(A) =1 Aeo(H)).

We now introduce some turther definitions which will allow us to study more
closely the distribution of singular points.
For given L >0, define & as in Lemma 2, and for any A € R define B(A, L) by

BA, L) = inf [[(H, — M) /If] (16)

Since, locally in \ff<<L, H and H, have the same domain, we could equivalently
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Write

BA, L) = inf [I(H =M flIAIFIl, (16

where 9 is regarded now as the subset of L*[R?) consisting of those fe D(H)
having compact support in |r| < L.

[t is casy to verify that (1) B(A, L) i1s monotonic non-decreasing as L
decreases, (ii)

‘B(Ah Iﬁ)—B(Az,L)ISIAl_/\z\. (17)
We now define B(A) by
B(A) = ,limUB()\, L), (18)

allowing always the possibility B(A) = +=,
We now have

Theorem 5.

(1) B(A)=0& A is a singular point.

(11) B(A) is the distance from A to the nearest singular point; in particular
B(A) ==& there are no (finite) singular points.

Proof. (1) Suppose B(A)=0. Then 3 a normalised sequence {f,} of vectors,
asymptotically localised near r =0, and such that s —lim,, .. (H —A)f,, = 0. For any
a >0, we have

i 1
|E;u f\L'.:-ufn”S;H(H - )\)fu” — 0,

so that the sequence localises asymptotically at energy A. Hence y(A)=1; we
prove the converse as part of (it).

(1) Supposc B(A)=>0. Given £ >0, arbitrarily small, find L. (depending on €)
sufficiently small that 8(A)>2¢ and

I, Jfl =@ e lifl, (19)

for all fe 2. From now on, L will be fixed. Then

HEm, Al<BIA) 2!—‘(Hf. "A)f||S(B(A)429)l|E!H, A<B(A) L-fl
B(N)—2¢ B
B¢ IH =M, (20)

for all fe%. Hence the restriction of Ejy yjcpn 2. 0 (HL —A)% has norm
strictly smaller that 1.
Now define P, as in Lemma 2, and we have shown that

”E‘H, A=BIN) 2Pl < 1. (21)

[.cet X be any subinterval of (A —B(A)+ 2, A+ B(A)—2¢) not containing A in its
closure. Then (21) implies

|Eg<rEn, cxPalll<1,

=(B\)—2¢) |Ifll=
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whereas Lemma 2 implies
llzl—n-}) “Eil'|<REHLe);(1 - P(M)H —0.

Combining these results, we have, then

lim B cll <1

It follows that limg .o ||Eg<rEn,.s<1, and that the interval (A —B(A)+2e,
A+ B(A)—2¢) can contain no singular point (of Hp, and hence of H). (The
possibility that A itself might be singular can be ruled out, by applying the same
argument to a point A’ very close to A, and using the fact that, from (17) in the
limit L — 0, B(A) is continuous.)

Since € was arbitrary, the nearest singular point to A is at distance at least
B(A). We have verified in particular that A is singular implies B(A) =0, completing
the proof of (1).

It remains to show that there is a singular point within, say, distance
B(A)+2¢e of A. Suppose again B(A)>0.

Let {g,} be a normalised sequence asymptotically approaching r= 0, such that

I[(H—-Mg.ll=B(A)+e. (22)
Then

1
”EIH —Al=>B(A )+2sf~’.n“ Sm ||E|H—A|>B(A)+2e (H —A )gn “

B(A)+2e
We cannot have limg_o ||Ejqj<rEjf-aj=gn+2:l =0, since this would imply, for n
large enough,

“gn” = ”E\H“AISB(,\)+2egn + E!H-—)\1>B(A)+2egn” < 1'

So, by Theorem 2, [A —B(A)—2¢, A + B(A)+2¢] contains a singular point for any
€ >0, and this completes the proof.

Corollary 1. Suppose H | C; (R*\{0}) is essentially self-adjoint. Let A be a
singular point. Then 3 a normalised sequence {$,} in Cg([R>\{0}) such that the
support of @, is contained in |r| <1/n, and such that s —lim,,_... (H—A)¢, =0.

(That is an asymptotically localising sequence can be found of C§ functions,
such that the uncertainty in H approaches zero.)

Proof. Let p, be smooth, non-increasing, with p,(r)=1 near r =0 and p,(r)=
0 near r=1L.

Given fe 9, 3 sequence {,}e Cg(R*\{0}) such that ¢, — f and Hy,, — Hf.
(Strong limits.) Using the commutation relation of H with py, one also finds
(Hpo)Y,, — Hpof. 1t follows that equation (16)' may be replaced by

B, L) = inf (H- Nl
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where @' is the set of infinitely differentiable functions having compact support in
0 <|r| < L. The result then follows from the fact that B(A)=0.

Corollary 2. Suppose 3 no solution in L*(B) of the equation (—A+ V)h = \h,
such that the boundary condition at v=0 is satisfied. Then A is a singular point.

Proof. Suppose the hypothesis, and that A is a regular point. Then B(A)=>0.
In Lemma 2, we have P, = 1, so that (21) implies A ¢ o(H, ). Since (H;, — M9 is
dense in L3(B), it follows that (H, —A) " is essentially self-adjoint on (H, — A)%.
Hence (H, —A) 1s ¢.s.a. on &, But this leads to a contradiction, since elements of
% vanish near |r| = L, and infinitely many self-adjoint extensions of H, | % can be
found. It follows that A is a singular point.

Examples of localising potentials

So called “absorbing™ potentials, which in Scattering Theory may give rise to
violations of asymptotic completeness and of unitarity of the scattering operator
[4], and locally singular short range potentials for which the associated total
Hamiltonian has a spectrally singular continuous component [5], [6], are two
classes of potential which lead to localisation of states in the sense described
above. In this connection, it 1s important to recalise that there is no necessary link
between the phenomenon of localisation and ““unusual™ spectral properties of H.
For example it is known [7], at least in the one-dimensional case, that singular
spectrum of Hj, at positive energies, for a short range potential, will not generate
singular spectrum of H, despite the fact that localisation will occur for such a total
Hamiltonian. We shall deal with this point in a further publication, which will
explore the relation between localisability for H;, and H respectively, and the
consequences for Scattering Theory.

From neither of the two classes of potential mentioned above is it casy to
construct examples in closed form. To remedy this we put forward the following
example of a localising potential which, however, belongs to a different class and
is tllustrative of quite different phenomena: for 0<r<1. define u(r) by

1 1
u(r)=—sin? (—) + B,
r r
for some B>1, and for some fixed A, define V(r) (0<r<1) by
B d’u
dr?

with V(r)=0 for r>1. It 1s not difficult to check that

+ V(ru(r)= A u(r),

dt =,

! |
[ u*(t) dt == and that J -
) o u-(t)

The point of this choice of u(r) is that the differential equation —d*{s/dr* +
V(r)gr = Ao has no non-trivial solution in L?(0, 1). For such a solution would
need to be a linear combination of u(r) and u(r)j,l 1/u?(t) dt, whereas no such
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linear combination can be square integrable. By Corollary 2 (or rather a one-
dimensional statement of this result), it follows that A, is a singular point of the
differential operator —d?/dr*+ V(r) in L*0, =), and so also of —A+ V(x| in
L*(R?). '

The function u(r) in this example approaches, for large B, a function (viz.
1/r sin® 1/r) which, while non-negative, has a graph which repeatedly touches the
u = 0 axis. One can study analytically what happens to solutions ¢(r) in this limit,
for a general class of functions u(r), and finds that one is dealing, canonically, with
H;, having a limit point of cigenvalues at threshold. (In other words, A, is a limit
point of eigenvalues, and there i1s no spectrum below A,.) Further results for
potentials generated in this way will be given elsewhere.

As a final example, albeit an artificial one, of a localising potential, take
V(r) = —1/r. The restriction of ~A+ V to each angular momentum partial wave
subspace #(l, m) is then an ordinary differential operator having deficiency
indices (1, 1). In each partial wave subspace, a boundary condition at r =0 can be
found to ensure, either that a given value A, is an an eigenvalue of H, in each
subspace, or that A, 1s a limit point of such eigenvalues, as the quantum numbers |
and m are varied. This family of boundary condition will define a particular
self-adjoint extension H of —A+ V, and again H will be a localising Hamiltonian,
at energy Ay. A localising sequence of states in this instance will be characterised
by asymptotically large angular momentum quantum numbers.

The brief catalogue of various classes of localising potentials which we have
presented here is by no means a complete list of all the possibilities that may
occur. Rather I have tried to indicate a few avenues that might usefully be
explored, and to lay down in this paper the beginnings of a theoretical framework
within which such exploration might take place.
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