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Lower bounds for zero energy eigenfunctions
of Schrodinger operators')

By W. O. Amrein, Département de Physique Théorique,
Université de Geneve, 1211 Genéve 4, Switzerland,

A. M. Berthier, Département de Mathématiques, UER 47,
Université de Paris VI, F-75230 Paris Cédex 05, and

V. Georgescu, Department of Fundamental Physics, Central In-
stitute of Physics, Bucharest, Romania

(2. XII. 1983)

Abstract. Let g be a non-zero solution in L%R"), n=2, of (~A+ V)g =0. If the potential V
vanishes rapidly enough at infinity, then g cannot decay (in the L?-sense) more rapidly than any power
of |x], i.e. [x|Ng¢ L%(R") for some finite N.

1. Introduction

A non-relativistic quantum mechanical particle moving on a line in a potential
V cannot be bound at zero energy if V is such that

jm(l + x| V)] de<es,

In other words the equation —¢"+ Viy =0 has no non-zero solutions that are
square-integrable over the real line R. If R is replaced by (0, «) for example, the
same is true; more precisely, if [; r|V(r)| dr <, there are no zero energy bound
states in the | = 0 partial wave subspace of a three-dimensional quantum mechani-
cal system in the spherically symmetric potential V(r) (see e.g. [1], Chapters
XVII.1 and II.1 respectively).

In the latter case one may however have zero energy bound states in the
higher order partial wave subspaces (I = 1), even if V has finite range (see [2],
footnote on page 80 for a square well, [1] or [3], Remark 11.17(c) and Problem
11.11 for more general cases). The intuitive reason for this is roughly as follows: if
1>0, then the effective potential is V(r)+ (I + 1)r > which, at large r, is roughly
I(I+1)r * under the above assumptions on V; hence, if the particle has zero
energy, it sees a wall of infinite extension of the form cr ? (¢>0) which can
produce a bound state?) (no tunnelling is possible).

b Research supported in part by the Swiss National Science Foundation and by C.N.R.S. (L.A.
213).

%y Notice that 7 r - cr 2 dr =, so that the centrifugal part of the effective potential does not satisfy
the condition needed for proving the non-existence of zero energy bound states.
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The zero energy bound state eigenfunctions in the [-th partial wave subspace
of L?*(R?) are known to behave like r ' ' as r — oo, This is strikingly different from
the exponential decay of eigenfunctions belonging to strictly negative eigenvalues:
if A <0, (A+ V) =A¢ and ¢y € L*([R?) and if V decays sufficiently rapidly, then
le“ ;<= for each k <|A|'2. The purpose of our paper is to prove quite
generally (i.e. in n=2 space dimensions and without assuming spherical sym-
metry) that zero energy bound states are weakly localized in the sense indicated
above: if V satisfies suitable decay conditions and if e L*(R") is such that
(=A+ V)¢ =0, then there is a number N <o« such that ||(1+ |x|)N|l;>=2=, i.e. ¢
cannot decay faster (in the L*-sense) than some negative power of |x|. This
follows from a more general result which we state and prove in the form of a
theorem in Section 3. The proof makes heavy use of an inequality involving the
Laplacean that we established in a previous paper [4].

2. Notation and preliminary results

We use the following notation: the symbol x is used for vectors in R", n =2.
Weset r=|x|,d;,=d/ox; (j=1,...,n),V=grad=(9;,...,9,), 08, =2/ xr ' 9, and
A=3%",a7. We shall refer to the operator (1—-A)"' acting on functions defined on
R"; it is given as the convolution operator by the Green’s function of the negative
Laplacean (one of the Bessel potentials in the terminology of [5]).

For 0=a<b=x we set Qa, b)={xecR"|a<|x|<b}. Notice that
(0, )=R"\{0}. The derivatives of locally integrable functions are understood to
be in the sense of distributions. For 1=gq=x, k=0 and integer, a =0 and
0=0(a, »), L(Q)) denotes the Banach space of g-summable functions on (2 and
H*4(€)) the Sobolev space consisting of all fe L*(Q) such that a7 - - - 3%fe L))
for all n-tuples (a, ..., a,) of non-negative integers with Y[, o; =k. We put

I Fllerac = E: o5 - - ’aﬁ"fHL“uzr (1)
ayt oy, =k

If q=2, we use the simpler notation H*(}) = H**(Q). Finally we write |||, for
the norm in L®R") and ||, for that in H*9(R"), and we denote by
HE4R"\{0}) the set of functions fe H**(R") that have compact support in
R"\{0}.

The proof of our theorem is based on the Sobolev imbedding theorem and on
the following known results that we announce as Propositions 1,2 and 3.

Proposition 1. If 1<q<wx, then (1—-A)"' defines a bounded invertible
operator from L4(R") onto H>*(R"). In particular, if f,Afe LY(R"), then?®) fe
H>*4(R") (see [5], Theorem V.3).

Proposition 2. Let n =2, pe(n/2, ] with p=n—2. Set w =2 —n/p. Let q and
s satisfy

1 1 1
S=—e 2)
P q S

l=g=2=s<ox,

¥ Write f=(1-A)"Y(f—Af).
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Let I',,={k+n—3/2—n/s|k=1,2,3,...}). Then there is a finite constant C,
depending only on n, p and s, such that

lr“flle> = C e Afll (3)

for all vel,, and all fe H-4R"\{0}). If p ==, the inequality (3) holds with C
replaced by 2v~'. (See [4], Theorem 1 and proof of Theorem 2.)

Proposition 3. Let R >0 and Q= (R, =), and let «=0. Then f e H*(Q) >
rf e H*(Q)).

Proof. Clearly multiplication by r “ defines a bounded operator in L9((}),
since R >0 and a =0. This proves the assertion for k = (0. Next notice that
ar “f=raf—axr * °f. (4)

I

Hence fe H*(Q) > r “fe H"(€)). The proof for k> 1 is similar. W

3. Lower bounds for zero energy eigenfunctions

We now state and prove our principal result.

Theorem. Let n=2, R,€[0,x) and set o, =Q(R,,*). Let V:Q,—C and
assume that there is a number p €[1, o] such that p>n/2 and p=n—2 and such
that r* """V e L"(€),). Suppose g H'(£),) is such that Ag is a function and

[(Ag)(x)|=|V(x)||g(x)| a.e.on €. (5)

Then, if r'ge L*(€,) for each T <, one must have g =0 (in the L>-sense).

Remark. (a) If p=o, the condition on the function V means that
|x|? | V(x)|=const<<e, i.e. V(x) should decay at least as rapidly as |x| > for
|x| = oc. If p<<c, the condition on V means that

d"x
J [P V(x)|P —— < o0,
(o J

i.e. r’V(x) must tend to zero in an LP-sense as |x| — . Of course local
singularities of V are allowed, and for n =2, 3, 4 the result is very natural.

(b) Let V:R" —R be such that (1+r)*""?VeL"R") for some pe(n/2,x]
with p=n—2. Then H=-A+V is self-adjoint in L*(R") on the domain {fe
H'(R") | Hf € L*([R")}. If zero is an eigenvalue of H, then any associated eigenvec-
tor g has the following property: there is a number N << such that ||r"™f|| - = .
(To see this, it suffices to notice that an eigenvector g corresponding to the
eigenvalue zero satisfies (5) with the equality sign.)

Proof. (1) We first fix s and ¢ satisfying the hypotheses of Propositions 1 and
2. It suffices to choose the number s; q is then defined by g '=p '+s .

If p>2, we take s =2. If p=2 (which is possible only for n =2, 3), we define
s by s '=3/4—(2p) '—(2n) '. The assumptions made on p imply that s €[3, )
in the second case and that 1<q =min {2, p} in both cases.

We set w =2—n/p and choose a number R € (R,, ®) as follows. If p=cc, we
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take R=R,+1; if p<ex, we let C=C(n,p,s) be the constant appearing in
Proposition 2 and take R so large that C |[|[r* V|| «am» <3, Which is possible by
the hypothesis made on V. We set =R, ) and A =||r* V|| sq)-

The Sobolev imbedding theorem ([6], Theorem 5.4 and Corollary 5.16)
implies that, if p>n/2 and q and s are as above, one has the following
imbeddings: H'(Q)< L*(Q) and H*(Q)< L°(€2); here X< Y means that each
£eX is also an element of Y and that there is a constant k = kxy such that
l€lly =« ||éllx for each &€ X.

(ii) Let m e C*([R") be such that 0=nm=1, n(x)=0 if |x|=R and n(x)=1
if |[x|= R +1. Assume that g satisfies all the hypotheses stated in the theorem and
set g, =mg. We shall show that r"g,, r” Ag, and each component of r"Vg, belong
to L4(R") for each TeR.

The first assertion follows from the Holder inequality and the hypothesis that
r'ge L*(Q) for all 7: if me(2,] is defined by m '=q ' —3, then

lIrgcllee <llrglleae =lr "l I "gll 2w <o
Next we observe that
r' Ago=mr" Ag+2r"(Vn) - Vg+r7(An)g. (6)
Since g and the components of Vg are in L) and Vn, An have compact

support, the last two terms on the r.h.s. of (6) are in L*(R") (remember that

q =2). We denote by B. the sum of their L-norms and then have by the Holder
inequality:

Ir™ Agollee =|lIr” Aglle«ey + B: =|Ir* Vlloa IIr gl + B-- (7

In view of the last statement in (i), this leads to the following two inequalities, in
which A is the number defined in part (i) of the proof and k,, K, are finite
constants depending on the values of the subscript(s):

lr™ Agollee =Ax lIr' gl + B (8)
lr™ Agollia =Akgs IF" " gollrza + A [l (1 =) gllxy + B,
= /\qu “rT——ugO"Hz'“ +AYTKS ng"H'(ﬂ) + B’n (9)

where vy, =[|r" * (1 —n)||L-q) <.

Since ge H'(Q), the inequality (8) and Proposition 3 imply that r* Ag,c
LY(R") for T=pu; in particular Ag,e L4(R"). By Proposition 1, we then have
go€ H*([R").

Next we notice the identity

Argo=r"Ago+270,(r" 'go)+(nT—7Hr 2g,. (10)
Since |8,fll.« =||flligra =|flligz«> (10) leads to
NArTgc”L" 5“"T Ago“u 5 2|T| ”"T_lgoum-u +(n |T| + 72) ”"Tﬁzgouu- (11)

Hence, if 7=<7,=min{u, 1}, we have Ar'g,e L*(R"). Together with Proposition 1,
this implies that r"'g,e H>*(R") for 1 <1,.

This last inclusion may now be combined with the inequality (9) to deduce
that r" Ag,e L(R") for r=7,+pu, and (11) then implies that Ar"g,e L(R") if
=21, Hence, by Proposition 1, r"g,e H**(R") for T<=27,. By iterating this
procedure one obtains that Ar'g,e L*(R") and r'g,e H**(R") for all TeR.
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Finally we have for each 7 €R (see (4)):

”’-r ajg()”L“ S”aergO”L“ + |T| llr’"’gollx_u
=||rgollgza + 7| “rTglgnllL" =00,

(iii) We now show that g(x) =0 for |x|> R + 1. For this, we let 86 € C3(R") be
such that 8(x)=1 if |x|=1 and 6(x)=0 if |x|=2. For a>0 we define 6, by
0,(x)=60(x/a), and we set & =|||V8|||, -, 5" =]|A6]|, -. We observe that

o' 5"
|(VG(, )(x)l S—a—, (A6, )(x)l SP Vx eR". (12)
The identity
A6,8,= 0, Agy+2(V6,) - Vg, +(A6,)g (13)

and a similar identity for 9,6,g, imply that 6,g,€ H>*(R"\{0}). By setting f = 6,8,
in (3) and using (13) and (12) one finds that, for vel',,:

1

’ v+ 28’ v+ 6 v+
“”'eago“u =C ||r “0, Ag()“l.." +—a— C ”’ o Vgo“m +? C “" LLgo“L"- (14)

Remembering that r* Ag,, r° Vg, and rg, are in L9(R") for each p €eR, one may
take the limit a — o in (14) (by using for instance the dominated convergence
theorem) to obtain the inequality

Ilr"g()l|1_* =6 “"Hu Ago“t_"a vel,. (15)

The r.h.s. of (15) may be majorized by using the inequality (7), with 7 = v + u. We
note that B, satisfies B, =(R+1)"c(n, g), where c(m, g) is a finite number that
does not depend on 1. We also have, as in (9), that

P glle s =P golles + (R +1)" Igllescay =IIr"golle« + s (R +1)" |1l -
Consequently we obtain that

Ir*oll» = CA [Irgoll, » + CAr (R +1)" gl + Ce(m, g)(}R +1)77E, (16)
If p<<cc, we have CA <3, and (16) implies that, for v eI’,,:
Ir“gllLs 1000 = golle sy = €1 (R, m, g)(R +1)%, (17)

where ¢, is a finite number independent of v. If p =, one may replace C by 2v ™"
in (14)-(16) and obtains the validity of (17) for all veI',, N[4A, «).

Now assume that ||gl|, 2r 110y 7 0. Then, as v — o (v el,,), the Lh.s. of (17)
grows faster than (R +1)", i.e. (17) is violated for v large enough. Hence we must
have g =0 on (R +1, x).

(iv) To show that g=0 on ,=((R,,>), it suffices to notice that
q=2p/(p+2), so that one may apply the unique continuation theorem proved in
[4] (see [4], Theorem 2). W

Additional remarks

(a) It is interesting to point out that A. Hinz recently obtained upper bounds
for zero energy eigenfunctions that have the form of a negative power of |x|, see

[7].
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(b) One may ask to what extent our condition ||r* /P V||, » <= is optimal. For
p =<, it requires that |V(x)|=cr 2. The following example shows that one may
have exponentially decreasing zero energy eigenfunctions for potentials V tending
to zero at infinity but doing so more slowly than r 2: if —Ag+ Vg=0, then
V = Ag/g. By taking g of the form g(x)=exp[—¢(r)], one obtains

Vx)=le'(NP—e"(r)—(n—1Dr '¢'(r).

If for example ¢ is a smooth function that is constant near r =0 and equal to
r*,0<a <1, near infinity, then ge L*(R"), hence it is a zero energy bound state
eigenfunction, and V(x) decays at infinity like r *"**. This gives a class of smooth
potentials that decay like r ®?,0<B <2, and give rise to zero energy eigenfunc-
tions that decrease more rapidly than any negative power of |x|.

Note. This paper is an elaboration of one of the results announced in [8].
After submission of the paper for publication, our attention was drawn to Ref. [9]
which contains various L? lower bounds for eigenfunctions of Schrddinger
operators, in particular a theorem of the type of that given here.
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