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Synergetik - Die spontane Entstehung von
Strukturen in der belebten und
unbelebten Natur

Von Hermann Haken. Institut für Theoretische Physik.
Universität Stuttgart. Pfaffenwaldring 57, D 7000 Stuttgart 80

(14. X. 19S3)

In meinem Beitrag möchte ich einige Grundideen der Synergetik darlegen.
Nachdem ich hierüber zwei wissenschaftliche Bücher und ein populärwissenschaftliches

Buch veröffentlicht habe, ist cs natürlich unmöglich, dieses schon sehr
angewachsene Gebiet hier einigermaßen umfassend darzulegen. Ich hoffe aber,
daß wenigstens einige der Grundtendenzen deutlich werden.

Wie wir weiter unten sehen werden, befaßt sich die Synergetik mit der
Auffindung allgemein gültiger Prinzipien. Zweifellos gibt es in den
Naturwissenschaften zwei Strömungen, eine die nach derartigen allgemeinen Prinzipien
sucht und eine zweite, die sich für die spezifischen Eigenschaften eines jeweiligen
Systems interessiert. Zuweilen halten die Vertreter der jeweiligen Richtung ihre
eigene Denkrichtung für die wichtigere. Ich selbst vertrete den Standpunkt, daß
beide Richtungen notwendig sind und sich in einer sehr schönen Weise ergänzen
können.

Lassen Sie mich aber nun nach diesen Vorbemerkungen zum Thema meines
Vortrags kommen.

Die Welt, in der wir leben, besteht aus den verschiedensten Strukturen und
Formen. Viele dieser Strukturen, wie Häuser. Maschinen, Gemälde, sind von
Menschenhirnen erdacht und von Menschenhand geschaffen. Daneben hat die
Natur selbst, ohne jegliches menschliches Zutun, eine Reihe von Strukturen
hervorgebracht. Richten wir unsere Teleskope in die unermeßlichen Weiten des
Weltalls, so erblicken wir dort die Spiralnebel mit ihren wohlstrukturierten
Spiralarmen. Aber auch auf unserer Erde gibt cs eine Fülle von Strukturen, etwa
die durch ihre gleichmäßige Symmetrie bestechenden Schneekristalle. Die Natur-
und Pflanzenwelt überrascht uns immer wieder durch ihre zum Teil oft skurrilen
Formen, wie etwa dem Kugelauge einer Tropenfliege, das dem Tierchen eine
vollendete Rundumsicht gewährt (Abb. 1). Dabei fällt auch die Feinstrukturierung
des Auges auf.

Nachdem cs sich bei all diesem um materielle Gebilde handelt, sollte das
Auftreten dieser Strukturen durch die Gesetze der Physik erklärbar sein. Hätte
man aber noch vor ca. 20 Jahren einen Physiker gefragt, ob er denn in der Lage
sei, das Auftreten dieser Strukturen wenigstens im Prinzip erklären zu können, so
hätte cr wohl nein sagen müssen. In der Tat gibt es physikalische Gesetze, die wir
in unserem täglichen Leben leicht bestätigen können und denen das Auftreten
von Strukturen direkt zu widersprechen scheint. Bringen wir einen heißen Körpci
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Abbildung 1

Das feinstrukturierte Kugelauge einer Tropenfliege, das dem Tierchen eine fast perfekte Rundumsicht
ermöglicht.

und einen kalten Körper zusammen, so gleicht sich die Temperature aus, der
Körper wird lauwarm. Der umgekehrte Prozeß, daß ein gleichmäßig warmer
Körper sich spontan an einem Ende erhitzt, am anderen Ende abkühlt, wird
hingegen nie in der Natur beobachtet

Ein weiteres Beispiel liefert ein mit Gasatomen gefülltes Gefäß, das mit
einem zweiten leeren Gefäß in Verbindung gebracht wird. Zieht man die
Zwischenwand zwischen beiden Gefäßen heraus, so erfüllt das Gas praktisch
gleichmäßig das gesamte Volumen. Der umgekehrte Prozeß, daß sich die
Gasatome von allein wieder in einem Teil des Gefäßes versammeln, wird nie
beobachtet. Es handelt sich hier um Prozesse, die nur in einer Richtung verlaufen
und daher, wie bekannt, als irreversibel bezeichnet werden.

Im letzten Jahrhundert ist es dem genialen österreichischen Physiker
Boltzmann gelungen, eine Erklärung für die Irreversibilität zu finden. Dabei
verknüpfte er den schon vorher von Clausius eingeführten Begriff der Entropie
mit der Zahl der Möglichkeiten, mit der mikroskopische Zustände realisiert
werden können, wie dies an folgendem Beispiel erläutert werden kann. Denken
wir uns zwei Kästen, auf die vier Gasatome, die von 1-4 numeriert sind, verteilt
werden können.

Dann gibt es offenbar nur eine Möglichkeit, diese Gasatome in den linken
Kasten zu sperren, dagegen gibt es sechs Möglichkeiten, diese gleichmäßig auf die
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beiden Kästen zu verteilen. Nach Boltzmann strebt in einem abgeschlossenen
System der Gesamtzustand einem solchen Zustand zu. bei dem die größte Zahl
von mikroskopischen Zuständen realisiert wird. Im vorliegenden Fall wäre dies
die gleichmäßige Verteilung der vier Kugeln auf die beiden Kästen. Dieses
Prinzip ist in praktischen Fällen durch bestimmte Ncbenbedingungen, wie etwa
Konstanz, der Energie etc., noch zu verfeinern. Es drückt aber schon in dieser
Form den entscheidenden Sachverhalt aus. Wie kann cs nun trotz dieses Prinzips,
nach dem die Strukturlosigkeit immer größer werden sollte, doch zur Strukturbildung

kommen?
Bevor ich zu meinem eigentlichen Thema, nämlich der Strukturbildung in

biologischen Systemen oder allgemeiner in offenen Systemen der Physik, Chemie
und Biologie zu sprechen komme, muß ich hier auf eine bestimmte Art der
Strukturbildung hinweisen, bei der keinerlei Widerspruch mit dem
Boltzmann'schen Prinzip auftritt. Es handelt sich hierbei um abgeschlossene
Systeme, die sich aber etwa noch in einem Temperaturgleichgewicht mit ihrer
Umgebung befinden können. Hier können sich aufgrund anziehender Kräfte
Teilchen zu einem Molekül oder einem Kristallgitter zusammenfinden, wobei also
eine wohlgeordnete Struktur entsteht. Hierbei handelt cs sich aber um tote
Strukturen. Die Strukturbildung kommt hier zustande, indem man die
Temperatur absenkt.

Im Hinblick auf die anderen Vorträge sei darauf hingewiesen, daß auch
derartige 'tote' Strukturen reichhaltige Erscheinungen aufweisen können und die
Forschung hier, insbesondere bei Strukturen, die nur teilweise geordnet sind,
noch voll im Fluß sind (vgl. insbesondere den Vortrag von Dc Gennes im
anorganischen und von Kellenberger im organischen Bereich, sowie den Vortrag
von Fraucnfelder, der sich sowohl mit dem anorganischen als auch dem organischen

Bereich befaßt.)
Kehren wir aber zur Frage der Strukturbildung in offenen Systemen zurück,

womit sich ganz allgemein die Synergetik befaßt. Das Wort ist aus dem Griechischen

genommen und bedeutet soviel wie Zusammenwirken oder, in unserem
Zusammenhang, Lehre vom Zusammenwirken. In vielen Bereichen der
Wissenschaft bestehen die Untersuchungsobjekte ja aus sehr vielen Einzelteilen und
man hat dann zu verstehen, warum diese Einzelteile von sich aus. d.h. in
sclbstorganisierter Weise, zusammenwirken und dabei deren Zusammenwirken
reguliert, ja in der Biologie oft sinnvoll, erscheint. Wir haben uns nun die Hragc
vorgelegt, ob das Zusammenwirken vieler Einzelteile allgemeinen Prinzipien
unterliegt, wobei die Einzelteile ganz verschiedener Natur sein dürfen, wie etwa
Atome, Moleküle, Lichtteilchen, Zellen, ja sogar Tier- oder Menschengruppen.
Eine derartige Fragestellung mag auf den ersten Blick unsinnig erscheinen, gerade
wegen der so unterschiedlichen Art der Einzelsystcmc. Wir haben aber gefunden,
daß sich doch derartige Prinzipien auffinden lassen, wenn wir die Fragestellung in
einer bestimmten Richtung einschränken. Wir fragen nämlich nach dem
Wirksamwerden solcher Prinzipien, wenn sich im makroskopischen Bereich das System
qualitativ oder, präzise ausgedrückt, strukturell ändert. Um diese Begriffe zu
erläutern, will ich ein Beispiel aus der Biologie nehmen.

Abb. 2 zeigt den Sonnenfisch und den Igelfisch. Wie der berühmte schottische

Biologe D'Arcy Thompson Anfang dieses Jahrhunderts fand, kann der eine
Fisch in den anderen durch eine einfache Verzerrung eines Koordinatennetzes
übergeführt werden. Auge geht dabei in Auge über. Kiemen in Kiemen. Flosse in
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Abbildung 2
Nach dem schottischen Biologen d'Arcy Thompson lassen sich Sonnenfisch und Igelfisch ineinander
durch eine einfache Verzerrung eines Koordinatensystems überführen.

Flosse. Dabei bleibt aber die Struktur als solche erhalten. Wir haben hier ein
Beispiel struktureller Stabilität vor uns. Im Sinne eines Mathematikers hätten wir
hier nur eine einzige Fischsorte vor uns. Die Entwicklungsbiologie liefert uns
dagegen eine Fülle von Beispielen, wie immer wieder strukturelle Änderungen
auftreten, was am Beispiel der Entwicklungsstadien eines Molches gezeigt sei
(Abb. 3). Hier unterscheidet sich eine Entwicklungsphase von der nächsten durch
deutlich erkennbare makroskopische strukturelle Merkmale, etwa dem Auftreten
von immer neuen Einschnitten.

Wenn wir strukturelle Änderungen untersuchen wollen und die ihnen
zugrundeliegenden allgemeinen Prinzipien, so ist es sicherlich unklug, mit den
schwierigsten Problemen, nämlich denen der Biologie, zu beginnen. In der Tat
können wir selbst sehr leicht eine Reihe von Phänomenen in der unbelebten
Natur beobachten, bei denen Strukturen spontan entstehen. Beispiele hierfür sind
Wolkenstraßen am Himmel. Ein damit verwandtes Beispiel ist die sogenannte
Benard-Instabilität, bei der eine Flüssigkeit von unten erhitzt wird und sich dann
hexagonale Zellen ausbilden, in deren Zentren die Flüssigkeit nach oben steigt,
um abgekühlt an den Rändern der Sechsecke wieder hinabzusinken.

Auch in der Chemie werden spontan Strukturen gefunden, etwa bei der
Belousov-Zhabotinsky-Reaktion, wo sich Spiralwellen bilden und nach außen
laufen. An dieser Stelle will ich nun zeigen, daß unsere oben geäußerte Behauptung,

daß sich allgemeine Prinzipien bei der Ausbildung von Strukturen finden
lassen, durch bekannte Analogien unterstützt wird.

Hierzu führe ich als Beispiel den Schleimpilz an, dessen Entwicklungsstadien
in Abb. 4 dargestellt sind. Im ursprünglichen Stadium leben die einzelnen
amöbenartigen Zellen auf einem Untergrund. Wird die Nahrung dieser Zellen
knapp, so versammeln sich diese, wie auf ein geheimes Kommando hin, an einem
bestimmten Ort, häufen sich dort immer mehr an und bilden durch Zelldifferenzierung

schließlich den eigentlichen Schleimpilz. Uns interessiert hier nur die
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Abbildung 3

Rntwicklungsstadien eines Molches.

Frage, woher die Zellen es überhaupt wissen, daß sie sich an einem bestimmten
Ort versammeln müssen. Dieses Problem ist von Biochemikern und Biologen
aufgeklärt worden.

In unserem Zusammenhang ist nur interessant zu wissen, daß die Zellen
zyklisches Adenosinmonophosphat (cAMP) erzeugen, dieses im Untergrund
diffundiert und andere Zellen zu einer erhöhten cAMP-Produktion anregt, wenn
diese von diesem diffundierenden cAMP getroffen werden. Aufgrund des

Wechselspiels von Produktion und Diffusion von cAMP kommt es zur Ausbildung
von Spiralwellen, die genau die gleiche Form haben, wie sie bei der chemischen
Reaktion in der unbelebten Natur auftreten.

Die Analogien zwischen unbelebter und belebter Natur können noch weiter
getrieben werden. So kann man auch in der unbelebten Natur Entwicklungsstadien

bei der Ausbildung von Strukturen beobachten. Bringt man z.B. eine
Flüssigkeit zwischen zwei koaxiale Zylinder, von denen der innere rotiert, so

ergeben sich folgende Erscheinungen. Bei einer kleinen Rotationsgeschwindigkeit
des inneren Zylinders folgt die Flüssigkeit in konzentrischen Stromlinien. Von
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Abbildung 4
Entwicklungsstadien des Schleimpilzes.

einer bestimmten Rotationsgeschwindigkeit an jedoch bewegt sich die
Flüssigkeit in periodischen Abständen nach außen, so daß sich ein Bild ergibt, als
würde die Flüssigkeit sich würstchenförmig um den inneren Zylinder lagern. Bei
noch höheren Umdrehungsgeschwindigkeiten setzt jeweils schlagartig eine immer
komplizierter werdende Bewegung dieser Rollen (Würstchen) ein, etwa in der
Form von Oszillationen, die schließlich in einen sogenannten turbulenten oder
chaotischen Zustand übergehen.

Zum Abschluß dieser Beispiele möchte ich noch an ein System erinnern, das
für uns historisch von Bedeutung war, da wir mit seiner Hilfe auf die allgemeinen
Prinzipien gestoßen sind. Es handelt sich hierbei um den Laser, jene noch relativ
neue Lichtquelle, die ja heutzutage in aller Munde ist.

Ein Laser besteht aus einem aktiven Material, etwa einem Rubinkristall, der
stabförmig ist und an dessen Enden zwei Spiegel befestigt sind. Der Laser wird
von außen her, z.B. durch Licht, angeregt und kann dann das ihm eigentümliche
Laserlicht erzeugen. Um den Unterschied zwischen dem Licht von Lasern und
dem gewöhnlicher Lampen zu erläutern, denken wir uns die Atome des Lasermaterials

im Bohrschen Atommodell dargestellt. Durch das von außen regellos
auftreffende normale Licht werden die einzelnen Atome angeregt, wobei deren
Elektronen nun auf einer höheren Bahn umlaufen. Von dort aus fallen diese
regellos auf die tiefere Bahn hinunter, wobei sie jedesmal einen Lichtwellenzug
erzeugen, ganz ähnlich als würde man Kieselsteine unregelmäßig ins Wasser
werfen, wobei unkorrelierte Wasserwellen entstehen. Im Laser hingegen entsteht
eine gleichmäßige Sinuswelle. Diese kann nur dadurch Zustandekommen, daß die
Elektronen in einer völlig korrelierten Weise jeweils vom angeregten in den
Grundzustand übergehen.

Um das Erstaunliche an diesem Phänomen besonders deutlich werden zu
lassen, wollen wir ein anthropomorphes Bild benutzen. Wir stellen dazu die Atome
durch kleine Männchen dar, die mit Stöcken im Wasser eines Kanals herumstochern.

Das Wasser des Kanals stellt dabei das Lichtfeld dar.
Bei der Lampe stoßen die Männchen ihre Pflöcke unabhängig voneinander in

das Wasser, wobei eine unregelmäßige Wasseroberfläche entsteht. Dies entspricht
dem inkohärenten Licht einer Lampe. Um die Verhältnisse beim Laser
nachzuahmen, müssen die Männchen ihre Stöcke völlig gleichmäßig in das Wasser
stoßen. Im menschlichen Leben ist ein derartiges Verhalten leicht zu erklären.
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Hinter den Männchen steht ein Capo, der jeweils ruft: jetzt, jetzt, jetzt. Bei den
Laseratomen ist natürlich niemand da, der diese Befehle erteilt, so daß es sich
hier tatsächlich um eine Art der Selbstorgan isation handelt.

Im folgenden möchte ich nun einige grundlegende Ideen erläutern, wie
derartiges selbstorganisicrtes Verhalten verstanden werden kann. Hierzu will ich
in zwei Schritten vorgehen. Zuerst qualitativ, sodann in einer mathematisch
präzisen Weise.

Für die qualitative Erläuterung nehme ich als Beispiel das Entstehen von
Flüssigkeitsrollen bei der Bewegung einer Flüssigkeil, die von unten her erhitzt
wird. Hierzu stütze ich mich auf eine etwas zu stark vereinfachende Darstellung,
die aber doch das Wesentliche zeigt. Wird eine Flüssigkeit von unten her erhitzt,
so dehnen sich die unteren Flüssigkeitselemente aus. Sie werden spezifisch
leichter und möchten nach oben steigen. Dem wirkt die spezifische Schwere der
kalten Flüssigkeitsschicht, die sich noch oben befindet, entgegen. Es ist gewissermaßen

so, als wollte eine Menschenmenge von unten nach oben steigen, eine
andere von oben nach unten. Im menschlichen Bereich kann cs hierbei sehr
schnell zu völlig ungeordneten Bewegungsabläufen kommen. Anders macht es die
Flüssigkeit. Durch kleine Schwankungen etwa des Wärmestroms testet sie
verschiedene Geschwindigkeitsverteilungen aus, wie dies in den Abb. .S und 6
dargestellt ist. Dabei stellt sich heraus, daß eine Bewegungsform für die
Flüssigkeit in einem Sinne, der auch noch mathematisch präzisiert werden kann,
günstiger ist als eine andere. Diese Art der Flüssigkeitsbewegung setzt sich
gegenüber anderen immer mehr durch und zieht auf diese Weise immer mehr
Flüssigkeitsteilchen in ihren Bann. Diese spezielle Flüssigkeitsbewegung tritt im
Sinne der Synergetik als Ordnungsparameter auf, die die Teilsysteme - um wieder
einen terminus technicus zu verwenden - versklavt. Dies wird besonders deutlich,
wenn man in die Flüssigkeitsbewegung, die sich bereits eingestellt hat, Tinte
einspritzt. Man sieht dann, wie diese nach kurzer Zeit in die allgemeine kollektive
Bewegung der Flüssigkeit hineingezogen wird und diese dann mit vollzieht. Wie
wir inzwischen an zahlreichen Beispielen zeigen konnten und auch noch in diesem
Vortrag in den Grundzügen mathematisch begründen werden, tritt dieses Prinzip
von Ordnungsparameter und Versklavung immer wieder auf. Bei der Bildung
dynamischer Strukturen setzen sich bestimmte Bewegungsformen durch. Sie
treten als Ordnungsparameter auf, die dann die Untersysteme im Sinno der
Synergetik versklaven.

^
A

Abbildung 5

Links: schematische Darstellung einer Geschwindigkeitsverteilung in einer von unten erhitzten
Flüssigkeit rechts: die maximale vertikale Geschwindigkeit wächst für diese Konfiguration im I-aufc
der Zeit an.
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Abbildung 6
Eine andere kollektive Geschwindigkeitsverteilung, die, wie rechts im Bild gezeigt, im Laufe der Zeit
wieder abklingt.

Um die Begriffsbildungen der Synergetik in eine präzise Form zu gießen,
muß ich mich der mathematischen Formulierung bedienen, wobei ich wegen der
Kürze der mir zur Verfügung stehenden Zeit die von uns entwickelte Methode
nicht in voller Allgemeinheit darstellen kann. Die mathematische Beschreibung
erfolgt durch bestimmte Variable, deren Bedeutung in der linken Seite der
nachfolgenden Tabelle aufgeführt ist.

Die Variablen

Beispiele für deren Bedeutung
Zahl von Molekülen
Dichte
Geschwindigkeiten
elektrische Felder
Zahl von Zellen
Aktivitäten von Neuronen
monetäre Flüsse etc.
Zahl von Tieren etc.

(chemische

Reaktionen
Kristallwachstum
Flüssigkeiten
Plasmen, Laser
Morphogenese
Nervennetze
Wirtschaftsvorgänge
Ökologie

In der rechten Spalte stehen Probleme, bei denen diese Variablen Verwendung

finden. Die Liste dieser Beispiele ist natürlich nicht vollständig, sondern soll
nur einen Eindruck geben, wie verschiedenartig die Bedeutung der verwendeten
Variablen sein kann. Diese Variablen bilden einen Vektor (q{,q2- • ¦), den wir
durch q abkürzen. Handelt es sich um Systeme, die im Ort ausgebreitet sind, wie
etwa Flüssigkeiten oder Nervennetze, so wird diese Variable neben der Zeit auch
noch vom Ort x abhängen. Zur weiteren mathematischen Behandlung der
Systeme stützen wir uns, im modernen Sprachgebrauch, auf eine Reihe von
'Paradigmen'.
1) Evolutionsgleichungen
Wir wollen untersuchen, wie sich die von uns betrachteten Systeme im Laufe der
Zeit entwickeln, d.h. evolvieren. Dies wird durch Evolutionsgleichungen, die wir
gleich noch näher ansehen werden, beschrieben.
2) Instabilität
Wir interessieren uns für solche Situationen, in denen ein System seinen alten
Zustand verläßt und in einen neuen übergeht. Z.B. geht die ruhende Flüssigkeit
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in einen neuen Bewegungszustand über. Das alte System wird im Sinne einer
mathematischen Behandlung instabil, und wir haben Kriterien aufzustellen, wann
eine solche Instabilität eintritt.
3) Das Versklavungsprinzip
Werden Systeme instabil, so wird die Bewegung der Teilsysteme von nur wenigen
kollektiven Variablen bestimmt. Die Variablen der Teilsysteme werden im Sinne
der Synergetik von den sogleich zu besprechenden Ordnungsparametern
versklavt.

4) Ordnungsparameter, Nichtgleichgewichtsphasenübergänge
In der Nähe von Instabilitäten wird das Verhalten dynamischer Systeme von
wenigen Freiheitsgraden, den sogenannten Ordnungsparametern, bestimmt. Mit
Hilfe dieser Ordnungsparameter lassen sich die Übergänge von einem
makroskopischen Zustand in den anderen in Analogie zu Phasenübergängen von Systemen

im thermischen Gleichgewicht beschreiben, wobei wir aber jetzt Systeme im
Nichtgleichgewicht im Auge haben.
5) Strukturbildung, Selbstorganisation
In der Nähe von Instabilitäten können sich Strukturen bilden oder, mit anderen
Worten, Systeme können durch Selbstorganisation bestimmte Bewegungsabläufe
durchführen.
6) Instabilitätshierarchie, Evolution
Werden äußere Parameter geändert, etwa die Encrgiezufuhr. so können mit
geänderten Parametern jeweils neue Instabilitäten auftreten. Diese bilden eine
Hierarchie. In dieser Weise können bestimmte Modelle von Evolutionsprozessen
wiedergegeben werden. Wenden wir uns nun den einzelnen Paradigmen zu.

1. Evolutionsgleichungen

Nach diesen ist die zeitliche Änderung der Variablen q, die wir mit q bezeichnen,

durch den gegenwärtigen Zustand q(x. f) des Systems bestimmt. Diese
zeitliche Entwicklung wird durch Evolutionsgleichungen der Form

q N(q, V,a,t) (1)

beschrieben. Der DifFerentinlopenitor V tritt auf. wenn räumliche
Inhomogenitäten auftreten und z.B. Diffusionsprozesse zur Folge haben, a ist
ein sogenannter Kontrollparameter, der die Einwirkung der Umgebung auf das
System beschreibt, z.B. die Energiezufuhr. Das System selbst kann noch äußeren
oder inneren Schwankungen unterworfen sein, die durch t wiedergegebene
Zeitabhängigkeit von Kräften, die auf das System wirken, hervorrufen. Im
mathematischen Sinn handelt es sich bei diesen Gleichungen um gekoppelte
nichtlineare stochastische partielle Differentialgleichungen. Ein einfaches Beispiel
hierfür ist die Gleichung

q=aq-ßq* + F(t) (2)

wobei a wieder der Kontrollparameter ist. das Glied q1 eine für synergetischc
Prozesse typische Nichtlinearität darstellt und F(t) die auf das System wirkenden
Fluktuationen darstellt. Natürlich wäre es, zumindest beim gegenwärtigen Stand
der Mathematik, ein aussichtsloses Unterfangen, die nichtlincaren Gleichungen
allgemein lösen zu wollen. Im Sinne einer strukturellen Stabilität bzw\ Instabilität.
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wie sie zu Anfang meines Vortrags an einem biologischen Beispiel demonstriert
wurde (Entwicklungsstadien des Molches), richten wir unser Augenmerk vielmehr
auf solche Situationen, in welchen der makroskopische Zustand eines Systems sich
drastisch ändert. Eine solche Änderung ist mit einer Instabilität verknüpft, die wir
nunmehr näher untersuchen.

2. Instabilität

Wir untersuchen hier solche Instabilitäten, die durch Änderung äußerer
Bedingungen, die durch einen geänderten Kontrollparameter wiedergegeben werden,

hervorgerufen werden.
Z.B. kann eine Flüssigkeit vorher in Ruhe sein, dann nach Einschalten des

von unten zugeführten Wärmestroms in einen neuen Zustand überführt werden.
Um die Stabilität des Systems unter den neuen Bedingungen zu testen, fügt man
der Variablen q„, die den Ruhezustand darstellt, eine bestimmte Auslenkung
W(x, t), die noch klein sein soll, zu. Durch Einsetzen dieses Ansatzes

q q„ + W(x,r) (3)

in die ursprünglichen nichtlinearen Gleichungenund sogenannter Linearisierung
erhält man dann eine Gleichung der Form W=LW, wobei L ein linearer
Operator ist.

Im Fall, daß q0 selbst bereits zeitabhängig, insbesondere quasiperiodisch, ist,
haben wir übrigens zu diesem Problem in letzter Zeit interessante neue Resultate
erzielen können. Ich muß mir aber im Rahmen dieses Vortrages versagen darauf
einzugehen. Im Zusammenhang mit der Thematik meines Vortrags ist für uns nur
interessant, daß W entweder im Laufe der Zeit exponentiell wachsen kann, wir
also eine Instabilität vor uns haben, oder W gedämpft ist.

Je nach räumlich vorliegender Struktur von W(x, t) kann es zu instabilem
oder stabilem Verhalten kommen. Für das Folgende wollen wir W in der Form

W eMw(x)

annehmen. Nachdem wir die verschiedenen möglichen räumlichen
Konfigurationen, die durch w(x) wiedergegeben werden, und deren positive oder
negative Wachstumsrate A. bestimmt haben, können wir uns nun dem
Versklavungsprinzip zuwenden.

3. Versklavungsprinzip

Wie sich mathematisch zeigen läßt, läßt sich jede Lösung der
Ausgangsgleichung (1) als eine Überlagerung der durch die Linearisierung gewonnenen

Moden w(x) darstellen, wobei wir die instabilen bzw. stabilen Moden noch
durch die Indizes u und s unterscheiden. Wir erhalten somit folgenden
allgemeinen Ansatz für die gesamte Lösung

q(x, t) q0(x, t) + Y &«Wü(x) + Y &«ws(x), (4)
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wobei die zeitabhängigen Größen 4 und 4 noch zu bestimmen sind. Es erfordert
etwas Rechenarbeit, um zu zeigen, daß man für diese unbekannten Größen
wiederum nichtlineare Differentialgleichungen aufstellen kann, die insbesondere
die Wachstumsraten À enthalten. Das Versklavungsprinzip, das wir streng
mathematisch beweisen konnten, besagt nun, daß sich die Bewegungen der
stabilen Moden, d.h. die Größen 4 eindeutig und explizit durch die Größen 4
ausdrücken lassen,

4(0 4(4(0.'). (5)

Dieses Vcrsklavungsprinzip enthält eine Reihe bekannter mathematischer
Theoreme als Spezialfall, wie etwa das Theorem über die zentrale Mannigfaltigkeit,

das Theorem über die langsame Mannigfaltigkeit sowie adiabatische
Eliminationsverfahren. Wichtiger ist in unserem Zusammenhang, daß die Funktion

4 auf der rechten Seite von Gl. (5) nicht nur von 4- sondern noch von der
Zeit t in bestimmter Weise abhängt, um die Fluktuationen wiedergeben zu
können.

Die Größen 4 spielen die Rolle von Ordnungsparametern. Durch diese
Größen werden alle anderen 4 eindeutig festgelegt. Es ist gewissermaßen wie bei
einem Marionettenspieler, der seine einzelnen Marionetten in ihren Bewegungen
festlegt. Die Wichtigkeit dieses Theorems ergibt sich dadurch, daß in dissipativen
Systemen in praktisch allen Fällen die Zahl der Ordnungsparameter viel kleiner
ist als die Zahl der Variablen 4. die die Untersystcmc beschreiben. Z.B. gibt es
beim Laser insgesamt typischerweise 10"' Freiheitsgrade, die durch den
Ordnungsparameter auf einen einzigen Freiheitsgrad reduziert werden. Wir erhalten
somit eine enorme Reduktion der Zahl der Freiheitsgrade, wodurch es uns dann
möglich wird, auch kompliziertere Strukturbildungen mathematisch zu behandeln.
Übrigens findet auch bei kognitiven Prozessen eine enorme Reduktion der
Information statt, in Analogie zur hier vorliegenden Reduktion zur Zahl der
Freiheitsgrade.

4. Ordnungsparameter

Wie wir oben gesehen haben, sind die Ordnungsparameter als solche Variablen

ausgezeichnet, die in der Linearisierung exponentiell anwachsen würden. Da
die Bewegung aller versklavten Untersysteme durch die Ordnungsparameter
selbst festgelegt ist, können wir in den Gleichungen die Variablen 4 durch die
Variablen 4 ausdrücken. Im einfachsten Fall reduziert sich damit ein
Gleichungssystem, bestehend aus sehr vielen Gleichungen, auf eine einzige. Ein
Prototyp einer solchen Gleichung ist durch

è aÇ-f + Fit) (6)

dargestellt. Im mathematischen Sinn müssen wir nun die Lösung £(') dieser
Gleichung suchen, was übrigers, da es sich hier um eine nichtlineare stochastische
Gleichung handelt, nicht ganz einfach ist. Der Inhalt der Gleichung (6) wird aber
sehr schnell ersichtlich, wenn wir zu einem mechanischen Analogon Zuflucht
nehmen. Wir identifizieren nämlich die Variable £(t) mit der Koordinate eines
Teilchens, das sich längs der £-Achse (~x-Achse) bewegt. Um zu dieser Deutung
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zu gelangen, fügen wir auf der linken Seite dieser Gleichung noch ein
Beschleunigungsglied von der Form Masse mal Beschleunigung, m • £, zu. Wie der
Physiker weiß, lassen sich die ersten beiden Glieder der rechten Seite aus einer
sogenannten Potentialfunktion gewinnen, womit wir also die Gleichung

(mÇ+)Ç
av

'
at

+ F(t) (7)

haben. Diese läßt sich aber in einer sehr einfachen Weise deuten. Sie beschreibt,
wenigstens formal, die Bewegung eines Balles zwischen Hügeln. Im Sinne der
Physik passiert nun folgendes (Abb. 7, gestrichelte Kurve).

Die fluktuierenden Kräfte F(t) wirken wie Fussballspieler, die den Ball
immer wieder, und zwar völlig ungeordnet, anstoßen. Der Ball rollt dann den
Hügel herunter und kommt infolge der Reibungskraft zum Stillstand. Im Mittel
bleibt der Ball aber bei £ 0, so daß hier der Ordnungsparameter praktisch
verschwindet und nur Schwankungen unterliegt, die keine makroskopische
Änderung des Systems zur Folge haben. Der für uns interessante Fall tritt auf,
wenn der Kontrollparameter a>() wird, was z.B. beim Laser der Fall ist, wenn
dem Laser genügend Energie von außen zugeführt wird. Die Hügellandschaft
wird dann zu einer verformt, die nun zwei Täler aufweist, und der Ball kann nun
eine von zwei Gleichgewichtslagen, die bei 4)^0 liegt, einnehmen. Wir werden
weiter unten sehen, daß dies mit einer räumlichen Struktur verknüpft ist.

Die Darstellung der Abb. 7 ist von solchen von Phasenübergängen von
Systemen im thermischen Gleichgewicht, etwa beim Verdampfen einer Flüssigkeit
oder beim Eintreten von Magnetismus, wohlbekannt. Hier aber haben wir es mit
Systemen fern vom thermischen Gleichgewicht zu tun, so daß hier
Nichtgleichgewichts-Phasenübergänge beschrieben werden. Von den weitgehenden

Analogien zwischen Phasenübergängen von Systemen im thermischen
Gleichgewicht und solchen weit davon entfernt, wollen wir hier die folgenden nennen.
Offensichtlich gibt es für die Kurve mit a > 0 zwei gleichwertige Minima. Diese
weisen eine Symmetrie auf, nämlich um die V-Achse. Wird nun das System von
dem Zustand a<0 in den Zustand a >0 überführt, so wird die Ruhelage bei
£ 0 instabil. Der Ball kann aber nur eine der beiden neuen Ruhelagen mit 4> ¥" 0
einnehmen. Bei der Instabilität muß also die an sich vorhandene Symmetrie

VIE

Abbildung 7

Die Potentialkurve für den Fall a<0 (gestrichelt) und für den Fall a >0 (ausgezogen).
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verletzt, d.h. gebrochen werden. Wir haben hier ein Beispiel einer
symmetriebrechenden Instabilität vor uns. Lassen wir, ausgehend vom Bereich <0, a wachsen,

so wird die Kurve für a<() immer flacher. Unsere mechanistische Deutung
zeigt aber sofort, daß damit die rücktreibende Kraft kleiner wird und die fluktuierenden

Kräfte eine immer größere Wirkung haben. Es kommt zu den sogenannten
kritischen Fluktuationen. Schließlich fällt, wenn wir a, ausgehend von a<().
anwachsen lassen, der Ball immer langsamer die Potentialkurve (die Hügel)
herunter. Wir können daher vom kritischen Langsamerwerden sprechen. Diese
Analogien lassen sich noch viel weiter ausbauen. Z.B. gibt es eine weitgehende
formale Analogie zwischen dem hier eingeführten Potential V und der freien
Energie F, wie sie in der Landau-Theorie der Phasenübergänge verwendet wird.
Auf einen ganz wichtigen Punkt muß aber hier hingewiesen werden. Die Größe
V, die auch schließlich über die Fluktuationen des Systems entscheidet, hängt von
kinetischen Koeffizienten ab, während bei der freien Energie diese kinetischen
Koeffizienten gerade herausfallen. Auf diesen fundamentalen Unterschied muß
ganz deutlich hingewiesen werden, da es immer wieder Versuche gibt, das
Entstehen dynamischer Strukturen mit Hilfe von Änderungen der freien Energie
zu beschreiben, während die detaillierte mathematische Durchführung zeigt, daß
hier ganz andere Größen, nämlich die die Dynamik wiedergeben, maßgebend
sind.

Als zweites Beispiel möchte ich nur ganz, kurz auf die von uns hergeleiteten
verallgemeinerten Ginzburg-Landau Gleichungen hinweisen. Diese haben die
allgemeine Struktur

4 (a + A)4 + I--- 4-4-4-+F(t). (8)

(A ist der Laplace-Operator).
Als drittes Beispiel sei hier nur noch verbal auf Gleichungen für zwei oder

drei Ordnungsparameter hingewiesen, die in der Lage sind, Oszillationen oder
sogenanntes deterministisches Chaos zu beschreiben. Leider muß ich es mir
versagen, im vorliegenden Rahmen auf diese hochaktuellen Fragen hier näher
einzugehen.

5. Strukturbildungen

Ich will nun an einem ganz einfachen Beispiel darlegen, wie es zur Ausbildung

räumlicher Strukturen kommen kann. Dazu fassen wir wieder die Zerlegung
der gesuchten Lösung nach den einzelnen Moden w ins Auge. Ist nur ein
Ordnungsparameter 4 vorhanden, so lautet im vorliegenden Fall die Zerlegung

q=q.> + 4(0w.-((x) + X4U)ws(x). (9)

Wie sich im allgemeinen zeigen läßt, sind die Größen 4 wesentlich kleiner als 4v
die entsprechende Struktur wird daher durch das in Gl. (9) bezeichnete Skelett
beschrieben. Der Ausdruck 4V enthält zwei Anteile, von denen der erste den
Zeitverlauf, also das Wachstum beschreibt, während der zweite die räumliche
Struktur, wenigstens im Prinzip, wiedergibt. Sehen wir uns zunächst das Wachstum

von 4 an- Wie die Lösung von Gl. (6) zeigt, ergibt sich folgender Verlauf
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Durch eine anfängliche Fluktuation wird zunächst 4. das noch relativ klein aber
von 0 verschieden ist, geschaffen. Durch positives a findet dann zunächst ein
Wachstum statt, das aber dann schließlich durch den nichtlinearen Term beendet
wird. Es gibt hier also letztlich zwei gegenläufige Prozesse, die wir durch
Aktivierung und Stabiliserung bezeichnen können.

Es sei hier nur darauf hingewiesen, daß statt der Stabilisierung auch durch
negative Rückkopplung eine Oszillation geschaffen werden kann. Sehen wir uns
aber in unserem Zusammenhang an, was mit der räumlichen Struktur passiert.
Die Funktion wü(x) v(x) ist beispielhaft in Abb. 8 dargestellt. Wir verfolgen
nun die Strukturbildung (Abb. 9). Zur Anfangszeit t0 soll z.B. die Flüssigkeit in
Ruhe sein. Hier ist dann

4 4=0
und das System befindet sich im räumlich homogenen, durch q0 beschriebenen
Zustand. Zur Zeit f, liege eine Fluktuation vor. Diese regt ein von 0
verschiedenes 4 an> das nun, wie wir bereits gesehen haben, weiter anwächst. Damit
wächst die Amplitude von wü weiter und führt schließlich zu einer voll
ausgebildeten Struktur. Wie wir an diesem Beispiel sehen, kann es auch schon in der
Wachstumsphase zu Strukturbildungen kommen. Dies könnte z.B. bei Vorgängen
im Kosmos wesentlich sein.

Natürlich habe ich hier nur ein einfaches Beispiel mit einem
Ordnungsparameter. Im Rahmen des hier nur angedeuteten Verfahrens lassen sich
aber auch komplizierte Strukturen, z.B. in Plasmen und bei der Morphogenese,
berechnen.

6. Instabilitätshierarchien

Wie wir gesehen haben, können durch Änderung eines äußeren Parameters a
drastische Strukturänderungen eines Systems induziert werden. Zunächst wird
durch die Änderung des Kontrollparameters das System instabil und es findet
dann von sich aus, d.h. durch Selbstorganisation, nachdem eine Fluktuation
stattgefunden hat, seine Struktur. Ändern wir den Kontrollparameter immer
mehr, so können Systeme durch eine Hierarchie selbstorganisierter Strukturen
laufen, wobei nicht nur räumliche Strukturen auftreten, sondern auch bestimmte

' qix,

v x

Abbildung 8

Beispiel für die Ortsabhängigkeit von wu(x) v(x)
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qlx.y

qlx.t,

t qtx.t,)

qlx.t

Abbildung 9
Die zeitliche Ausbildung einer räumlichen Struktur Von oben nach unten: der homogene Zustand zur
Anfangszeit zur Zeit l, tritt eine kleine Fluktuation auf. zur Zeil l. wird diese verstärkt, wobei ..(r)
anwächst, zur Zeil I, ist ein neuer stabiler Zustand erreicht.
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Funktionsabläufe. In meinem Vortrag habe ich gewissermaßen die einzelnen
Bausteine von Selbstorganisationsvorgängen näher dargelegt. Zumindest zwei
wichtige Punkte, auf die ich hier aus Zeitgründen nicht näher eingehen kann,
sollten aber noch hervorgehoben werden. Einerseits können Systeme, insbesondere

im biologischen Bereich, weiter vernetzt sein, so daß z.b. Kontrollparameter
wieder als Ordnungsparameter und umgekehrt auftreten können. Ein ganz
entscheidender Punkt, auf den ich hier nur abschließend hinweisen möchte, besteht
in der Umsetzung der hier betrachteten dynamischen Strukturen in feste Strukturen.

Ein Beispiel hierfür ist etwa die Entstehung des Schleimpilzes, bei der
dynamische Strukturen in Form von Spiralwellen schließlich in eine feste Struktur,

nämlich in die Aggregate der Zellen des Schleimpilzes umgesetzt wird.
Ähnlich ist es ganz allgemein bei der Morphogenese, wobei nach Turing bzw.
Wolpert ein dynamisches Feld, das aus der Wechselwirkung von Diffusion und
Reaktion von bestimmten chemischen Stoffen erzeugt wird, eine feste Struktur
durch Zelldifferentiation, die durch bestimmte Aktivatorkonzentrationen
ausgelöst wird, hervorgerufen wird. Schließlich haben wir die Umsetzung
dynamischer Strukturen in feste Strukturen bei all den Vorgängen, bei denen das
Gedächtnis ins Spiel kommt. Übrigens können dynamische Strukturen wie der
Laser oder die schon mehrfach erwähnte Flüssigkeitsinstabilität nicht altern.
Diese Strukturen bestehen, so lange der Energiezufluß aufrechterhalten wird,
unendlich lange. Dies erscheint mir ein wichtiger Hinweis zu sein, daß Altern mit
dem Auftreten fester Strukturen verknüpft ist.

In meinem Beitrag habe ich die Bildung geordneter Strukturen in den
Vordergrund gestellt. In den letzten Jahren ist es immer deutlicher geworden, daß
bei Änderung äußerer Parameter, etwa der Energiezufuhr, ein spezielles System
eine ganze Reihe verschiedener Strukturen annehmen kann, z.B. ist dies heutzutage

im Detail bei Flüssigkeiten und Lasern untersucht. Als Endstufe tritt hierbei
oft sogenanntes chaotisches Verhalten auf, bei dem eine scheinbar unregelmäßige
Bewegung vorliegt. Interessanterweise hat sich herausgestellt, daß derartige
unregelmäßige Bewegungen bereits bei wenigen Freiheitsgraden, nämlich mindestens

drei, auftreten können. Die Bewegungen, die hierbei auftreten, hängen sehr
empfindlich von Anfangsbedingungen ab, so daß die Bewegungsart schon nach
kurzer Zeit wieder völlig anders sein kann.

Ein elementares Beispiel wird durch das Herabfallen einer Stahlkugel auf
eine Rasierklinge geliefert, wo die weitere makroskopische Bahn ganz empfindlich

von der mikroskopischen Lage des Schwerpunkts der Kugel gegenüber der
Rasierklinge abhängt. Die Behandlung derartiger chaotischer Bewegungen ist ein
reizvolles Gebiet moderner physikalisch-mathematischer Forschung geworden,
birgt aber auch sehr tiefliegende Probleme in sich, was an dem letzten Bild
erläutert sei.

Der obere Teil der Abb. 10 zeigt ein scheinbar chaotisches Verhalten, der
untere Teil ein streng periodisch geordnetes. Bei diesem Bild handelt es sich aber
um die Aufzeichnung des Elektroenzephalogramms, und zwar im oberen Teil bei
der normalen Denktätigkeit eines gesunden Menschen, beim unteren Bild um das
EEG bei einem epileptischen Anfall. Hinter dem, was wir unter Ordnung und
Unordnung verstehen, verbergen sich also tiefliegende Probleme, die damit
verknüpft sind, ob es uns gelingt, die Regeln, die einer Struktur zugrundeliegen,
zu entziffern.

Lassen Sie mich nun zum Schluß meines Vortrags kommen. Im Anfang
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\^kM^^^

Abbildung 10

Aufzeichnung des Elektroenzephalogramms (siehe Text).

meines Vortrags hatte ich den Widerspruch zwischen der Entstehung von Strukturen,

insbesondere im biologischen Bereich, und den Vorgängen im physikalischen
Bereich, bei denen Strukturen immer mehr verfallen sollten, gegenübergestellt.
Dieser Widerspruch ist durch mehrere Schritte aufgelöst worden:

1) handelt es sich bei dem erwähnten physikalischen Theorem (dem 2.

Hauptsatz) um eines, das sich auf sogenannte abgeschlossene Systeme bezieht.
Die Strukturbildungen, die wir hier besprochen haben, werden erst in sogenannten

offenen Systemen möglich, bei denen ständig ein Zufluß (und auch Abfluß)
von Energie/Materie erfolgt.

2) Ein weiterer entscheidender Unterschied zwischen der Thermodynamik
und der Synergetik ist der folgende. Bei Systemen in oder nahe am thermischen
Gleichgewicht spielt die Entropie eine fundamentale Rolle. Diese beruht letztlich,
wie wir anfangs sahen, auf einer Abzahlung von Besetzungsmöglichkeiten im
mikroskopischen Bereich. Bei Systemen fern vom thermischen Gleichgewicht
werden die Strukturen aber durch Wachstumsraten bestimmt, d.h. also durch
kinetische Größen. Wie mir scheint, ist dies der fundamentale Unterschied, der
das Auftreten dynamischer Strukturen erst adäquat erklärt.
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