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Geometrical effects on the absorption of
MHD waves at the Alfven spatial resonance

S. Succi, K. Appert, A. H. Kritz' and J. Vaclavik, Centre
de Recherches en Physique des Plasmas, Association
Euratom - Confédération Suisse, Ecole Polytechnique
Fédérale de LLausanne, CH-1007 Lausanne, Switzerland

(14. X. 1983; rev. 5. XII. 1983)

Abstract. Recent advances of MHD theory of Alfvén Wave Heating have shown evidence of
several novel features. These features are related to the inclusion of the Hall term and to the inclusion
of shear and curvature of the magnetic field lines in cylindrical plasmas. It is important to ascertain the
extent to which these features are retained in a simpler geometry such as a slab. We have employed a
cold, current-carrying plasma model for a slab of finite thickness, in order to compare results with
those already obtained using other models. We show that some phenomena have similar behaviour in
a slab plasma as in a cylindrical plasma. However, the general conclusion is that the slab geometry
provides a qualitatively correct model for only some of the features relevant to Alfvén Wave Heating.

1. Introduction

It has been shown that the effects associated with a finite ion-cyclotron
frequency can significantly influence the MHD description of resonant absorption
of magnetoacoustic modes at the Alfvén spatial resonance. For example, Cramer
and Donnelly [1] have carried out analytic studies for a plane semi-infinite plasma
illustrating the effects of finite ion-cyclotron frequency. These effects have also
been demonstrated numerically in cylindrical geometry by Appert and Vaclavik
[2]. Moreover, it has been shown that the magnetic field curvature and shear [3]
can play a non-negligible role in the context of absorption. In order to obtain a
tokamak modelling for the Alfvén wave heating scheme, it is desirable to
determine which physical features can be retained in a simple geometry, namely a
slab of finite thickness. A simple geometry would allow for the inclusion of a more
complete physical description of the plasma behaviour. Therefore, a cold, current-
carrying, plasma slab model is used, and the results obtained are compared with
the results obtained using a cylindrical model.

In order to simulate field line curvature, we introduce a gravitational field,
acting in a direction perpendicular to the main magnetic field component. From
the equilibrium equations, it follows that the gravity field provides an additional
centrifugal force on the plasma motion. We include the effect of the Hall term in
the same way it was included by Appert and Vaclavik [2].
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The paper is structured as follows: In Section 2, we write down the basic
equations of our model, and in Section 3, we discuss the spectral properties for
the homogeneous currentless plasma. We present typical results for resonant
absorption in Section 4. Section 5 contains a discussion of the global cigenmodes
of the Alfvén Wave. Finally, in Section 6, we present the main conclusions.

2. Basic equations

We are concerned with small amplitude perturbations that have frequencies
much less than lower hybrid frequency. The plasma we consider is a cold,
current-carrying plasma slab of finite thickness. Linearization of the equation of
motion and Ohm’s law leads to the following equations:

. | s s -
PeAv[t :E(]ox B +jxBy)+pg (1)

E+5XBn/C:(mi/ecp())(f()xé+fxBn) (2)

Here ¢ denotes the plasma velocity; j the current; E, B, and g the electric,
magnetic and gravitational fields, respectively: p the mass density; ¢ the speed of
light, m; the ion mass; and e the electron charge. Equilibrium quantities are
labelled with the subscript ‘0.

We assume a one-dimensional layer model, so that all the equilibrium
quantities depend only on the x space coordinate (radial), with no variation along
the y (poloidal) and z (toroidal) directions. Consequently, we introduce the usual
“ansatz” e'"™*tmy et far the perturbed quantities, with k representing the
“toroidal” and m, the “poloidal” wavenumber. We shall consider the limit
vr—0",

Equations (1) and (2), together with Maxwell’s equations and the mass
continuity equation, yield a wave equation for the electric field vector. With use of
E, and By as the unknowns, the wave equation can be cast in the elegant form
given below:

A dEl/dX = GkLEL’f‘ lw(A - ki)B“ (3a)
A dB/dz = (iw) (G*+ AD)E, - Gk, B, (3b)
with
o o) Fiyn d
A= (1-8) "'k} G=w%(1-&)' D=8 (4)

(8]

where £ = w/w,. All variables in equations (3a) and (3b) are normalized using the
standard MHD scaling. Length is expressed in units of the slab half-width, a, and
the time, in units of Alfvén transit time a/ca (0) where c,(0) is the Alfvén wave
speed at x =0, the mid-plane of the plasma slab. The magnetic field is in units of
By.o= B,,(0) and the electric field in units of c,(0)B,,,/c. Plasma density is
scaled by its value on the plasma mid-plane.

A local coordinate system is defined throughout the plasma by:

é”: B”/B() él_ = é"xf



Vol. 57, 1984 Geometrical effects on the absorption of MHD waves 123

where the caret indicates unit vectors. The parallel and perpendicular wavevector
components are then written:

kn = (kB,, + mB()y)/BO k, =(mB,, — kB()y )/By

We point out that m must be regarded as a step function, that is, m(x)=
m - sgn (x). This artificial definition is needed to guarantee the correct symmetry
with respect to the x coordinate. Finally, we assume that beyond the plasma there
is a vacuum region and then a perfectly conducting plane. The conducting plane is
located at x = +x,, where x,>1 (the normalized slab half-width). In general, if
f(x) designates any discontinuous antisymmetric function, the notation f will stand
for its right-hand side value.

As in Appert and Vaclavik [2], we assume that plasma oscillations are excited
by an idealized antenna, consisting of a sheet current with a given frequency, w,
and helicity, k/m. This antenna is situated symmetrically on planes located at
x = +x,. In dimensionless units, the antenna current 1s:

jAN'I“: %(k}‘)\ — mf)ﬁ(x + xA)ei(my+kz —wt)

The boundary value problem is fully specified by imposing electric and magnetic
field continuity at the plasma edge together with vanishing electric field at the
conducting shell and by imposing the appropriate jump condition at the antenna.

Equations (3a) and (3b) are solved numerically for the plasma region. We
match this solution to the vacuum solution which is obtained analytically. Once
the full solution is found, we calculate the power absorbed per unit area in the
plasma. This is given by

— 12 A+€~,”‘*
p=—lim (j G-E )dx)

where brackets denote time averaging over a wave period. Solutions of the
boundary value problem, specified above, are sought for a range of values of the
available free parameters. Particularly we consider the frequencies » and w. and
the wavenumbers k and m. We specify “‘standard conditions’’ with the following
equilibrium profiles:

po(x) =1-0.95 |x| B, (x)=1 Jo: () =0.6(1—-x%)?
and the choice,
xa =12 x,=1.5

Since the situations we investigate exhibit spatial symmetry with respect to the x
coordinate, we shall confine our study to the right half-side of the plasma slab,
e, 0=sx=<1.

3. Homogeneous currentless plasma slab

We consider a homogeneous currentless plasma, without the gravity field. For
this plasma in equilibrium, equations (3a) and (3b) are amenable to an analytical
treatment. Assuming that the perturbed fields vary as exp (k, - x), we obtain the
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following solution:

E, =C-F,k," x) (5)
(x)G/A ke A

B,=C- (u D A Fc(kxx)) (6)
m-—A m-— A

where k., the wavevector component in the x direction, is given by
) > ]
ki =m"—A+G/A (7)

and C 1s an arbitrary multiplicative constant. The symbols F, and F_ denote cither

hyperbolic or trigonometric sine and cosine functions, depending on whether k; is

greater or less than zero. The presence of the odd function in the expression for

B, equation (6), is surprising at first glance. However, it is due to the discon-

tinuity of the factor (G/A)(m(x)/(m~— A), resulting from the definition of m(x).
Imposing the boundary conditions, one finds:

k. cth (k,) =mG/A +(m”— A)cth (u | x, — 1)) (8)

where w =(k*+m>)"?. The combination of equations (7) and (8) leads to the

exact finite slab dispersion relation. We remark that in the limit of large values of
k. and x,, equation (8) reduces to

k. =mG/A + k3 (m>— A)/Aw. k2>0

This coincides with the expression reported in Cramer and Donnelly (1982) the
semi-infinite slab, occupying the half-space x <0.

The presence of cth (k) and cth [ | x, — 1]] in €q. (8) is a consequence of the
finite size of the system. The combination of (7) and (8) yields a transcendental
equation which could be solved with standard numerical techniques. The utility of
this procedure i1s limited to the homogeneous currentless plasma. Since we intend
to discuss more general situations, we follow the numerical approach outlined in
Section 2. We consider excitation of the plasma due to an external antenna and
numerically calculate the antenna load as a function of the applied frequency.
Any pecak that appears in the antenna load indicates the presence of an eigen-
mode.

First radial mode (*'surface mode™)

It has been recently recognized [ 1, 2] that the Hall term splits the first radial
mode (F;) of the fast magnetosonic wave into two branches, F,(m>0) and
F,(m <<0). The dispersion relation of these branches appears quite different when
the wave field helicity k/{m|=1. In a plane semi-infinite plasma, the F,(m <0)
mode always has surface character, i.e. k, > 0. For the other mode F,(m >0), k,
can become negative for k/|m! greater than a certain value [1]. This implies that
beyond this value, the mode looses its surface character. In addition, it also looses
physical meaning because the amplitude becomes unbounded at infinity. In our
case, since we consider a slab of finite thickness, this argument does not hold, and
both signs of k, must be retained. The nature of the mode in our analysis is not
determined by the sign of k,. Nonetheless, we shall use the terminology “‘surface”
mode to denote the F;(m <<0) mode.

Our computational results for a plasma slab of finite thickness have shown
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Figure 1
The frequency spectrum is shown for a currentless plasma slab with uniform density as a function of
axial wavenumber k, for (a) m = +1 and (b) m = +2. The first and second radial modes are designated
by F} and F3 accordingly to whether m >0 or m <(0. The notation “S” stands for ‘‘surface mode”,
which coincides with F|. The dot-dashed line (---) represents the accumulation point for the
frequencies of the Alfvén wave, with w, = 2.

good agreement with the previous results [1, 4] in the range 0 <k/|m|<0.7 (Figs.
la, 1b). As the ratio k/|m| is increased to 1 and greater, the frequencies of the
F,(m>0) mode deviate from the values obtained for the plane semi-infinite
plasma and for the cylindrical plasma. However, for the ‘surface” mode, the
dependence of frequency on k is in good agreement with the results obtained
both for the plane semi-infinite plasma and for the cylindrical plasma. These
computational results can be qualitatively explained as follows: As previously
mentioned, for the mode F,(m>0) in the plane semi-infinite plasma, k,
decreases and tends to assume negative values as k/|m| increases. In the slab of
finite thickness, when k, tends to zero, the left-hand side of equation (8) still
maintains a value greater than one. This is due to the presence of the factor
cth (k,), which reflects the finiteness of the geometry. Therefore, to satisfy
equation (8), a wave frequency rearrangement is needed in order to produce the
corresponding increase on the right hand-side. This increase can be effectively
achieved by letting the coefficient A tend to zero, which corresponds to the mode
frequency tending towards the Alfvén wave frequency. The same argument does
not apply to the m <0 mode, whose frequency is already brought close to the
Alfvén wave frequency by the Hall term.
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Higher radial modes (cavity modes)

The Hall term together with the finiteness of the slab remove the degeneracy
of the fast modes with respect to the m wavenumber in the small k region. This
leads to distinct cut-off frequencies. Analysis of equations (7) and (8) in the limit
k — 0 yields:

kI~m?—w? (9)
k. cth (k,) —~ mw/w, (10)

In the plane semi-infinite plasma, the factor cth (k,) does not appear in equation

(10). In this case k, is antisymmetric with respect to m. Therefore, using equation
(9) one finds:

2 241/2
(Ucul-ul]'(_'") = wcul-oﬁ(+’") = !m]/(l +m /(!)“') '

However, in the slab of finite thickness, the presence of the cth k, factor breaks
the k, antisymmetry with respect to m. As a result, there are two distinct cut-off
frequencies, i.e., one for each sign of m. This is shown in Fig. la and 1b.
Equations (9) and (10) can be used to show that for a slab of finite thickness the
cut-off frequencies have the property

(Ucul—nlf(m Py 0) > {Uuul-olf(m > ())

It is interesting to point out that in the finite slab, this property does not depend
on the distance between the conducting wall and the plasma boundary. This is a
consequence of the fact that the k? factor in equation (8) always dominates over
the cth [ |x, — 1] factor. Thus, even in the limit x, = 1, the second term on the
right-hand side of equation (8) vanishes for k — 0. In contrast, for a cylindrical
plasma [4] the cut-off frequencies do not change with the sign of m unless x, = 1.
Therefore, in the cylindrical case, there are two distinct cut-off frequencies only
when x, = 1.

4. Diffuse equilibrium profiles

For the inhomogeneous plasma, the most relevant feature is the appcarance
of a continuum in addition to the usual discrete spectrum. This continuum
corresponds to the condition A =0 in equation (4). This yields:

wa = |kjcal(1+ kici/wl)'? (11)
where
kjca =(k + mB()y )/P(l)/2 (12)

From equations (11) and (12) we note that the dependence of w, on x arises both
from the plasma inhomogeneity, py(x), and from the current, which is responsible
for the sheared magnetic field structure B, (x). A general analytical treatment is
not feasible if the plasma equilibrium is not homogeneous. Therefore, we find it
necessary to utilize a numerical description to investigate the cffects of shear,
curvature and the Hall term, 1.e., w/w,.

A peculiar property of the slab geometry is that shear monotonically increases
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Figure 2

The position of optimal resonance layer (a) and optimal power (b) is plotted as a function of the axial
wavenumber k for m =+1. Curve (1) refers to standard MHD conditions; whereas, curve (2) refers to
the currentless, i.e., shearless case. The gravity field is zero in both cases.

from the center of the plasma to the boundary, in accordance with Ampere’s law:

X
By, (x) = j Joz (x) dx’
0

As a consequence, a monotonic w, (x) profile can never be achieved when k and
m are of the opposite sign if a parabolic density profile is assumed. A monotonic
wA (x) profile can instead by obtained with a linear density profile (see standard
conditions, defined in Section 2). A second consequence is that the plasma has
enhanced capability for resonantly absorbing energy at the periphery, even in the
limit of vanishing k. Therefore, there is a monotonic decrease of optimal power
(defined below) as a function of k. (See Fig. 2) This result is different from the one
obtained for the cylindrical plasma. The optimal power p°®'(k) is defined as
max [p(xg, k)] for 0<xg <1, where p(xg, k) designates the power resonantly
absorbed when the resonant layer is located at xg and the wave number equal k.
The optimal resonant layer position xg'(k), is the value of xg where p°'(k) is
attained. As in the cylindrical case [2], when shear is removed, the power
absorption is forced to zero since w, tends to zero when k — (. Consequently,
p°” has a maximum for non-zero k. From Figs. 2a and 2b, we realize that the
optimal power is higher in the shearless case (except for small values of k). On the
other hand, when shear is present, the power is more readily deposited near the
center of the plasma.
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The absorbed power is plotted as a function of the position xg of the resonant surface for (1) k =0.01,
(2) k=1.01 and (3) k=2.01. In all cases, m=+1. The results shown are for MHD standard

conditions (a) without and (b) with gravity. The scanning step used for xp is Axgp =0.05.
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Figure 4

The absorbed power is plotted as a function of the position, xg, of the resonant surface for w/w_ = 0.0,
0.2, 0.4, 0.6 (curves labelled 1,2,3,4). In all cases gravity was not included and m=+1. In (a)
k =0.02, and in (b) k =0.5. In both cases Ax, = 0.05.
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This result is similar to the one obtained for the cylindrical geometry.

We next consider the effect of the curvature of the field lines. It has been
shown by Appert et al. [3] that the curvature can influence power absorption in
cylindrical plasmas by shifting the position of the optimal resonance layer to the
innermost regions. In slab geometry, we simulate curvature by means of an
external gravitational field. Consistent with equilibrium requirements, the gravity
field is given by

g= (f()th)y/P())f

Computational results, under standard condition defined in Section 2, indicate
that g can simulate the effect of curvature only for very small values of k (Fig. 3).
For small k the inclusion of g leads to a small increase in energy deposition near
the center. However, as we shall see below, the gravity field can produce global
eigenmodes of the Alfvén wave.

In previous work that focussed on the Hall term [2] it has been shown that
the position of the optimal resonant layer can be controlled via the w/w,
parameter. For some special choices of the wavenumber k, with m equal to plus
or minus one, the shift of resonant layer position, is also accompanied by a
relevant increase in the amount of power adsorbed. In the finite-slab case, this
control capability seems to be much less efficient for positive k and m (Fig. 4a, 4b
and 5b). Instead, we observe a decrease in p(xg) for a given k, and the location of
the optimal resonant layer position seems to be rather insensitive to variations of
w/w,. For k and m both negative, the amount of absorbed power is strongly
enhanced as in cylindrical geometry. However, the position of optimal resonant
layer is shifted towards the edge of the plasma (see Fig. 5a). This result is

(1] (1}]
005+ 005
-
O\
1 -
\\\
\|
001 001 1 |
4
3
Q0051 2 0005 A
1 1
2
3
4
3 2
0001 ' 0001 +
00 05 X 0 00 05 xg 10
Figure 5

The absorbed power is plotted as a function of the position of the resonant surface for w/w_ =0.0, 0.2,
0.4, 0.6 (curves labelled 1, 2, 3, 4). In (a), k=—1.5, m=—1 and in (b), k =+1.5, m = +1. Standard
conditions without gravity are used, and Ax, = 0.05.
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surprisingly different from the result obtained for the cylindrical plasma with
m = 1. On the other hand, we find that for the cylinder with m =2, there is not a
clear shift of the resonant layer position due to variation of w/w.. We conclude
that m =1 is a very special case for the cylinder. When m =1, one wavelength

encircles the whole cylinder. There i1s not a corresponding situation for the plasma
slab.

S. Global eigenmodes of the Alfvén wave (GEAW)

In a cylindrical plasma and within the framework of ideal (MHD) description,
the global eigenmodes are a result of curvature of the magnetic field lines [S]. In
the present Section we show that a gravitational field can also produce these
modes in a finite plasma slab configuration. The frequencies of these modes are
expected to lie just below the lower edge frequency, w; g, of the continuum. The
frequency, g, is obtained as a function of k by minimizing the Alfvén frequency
wa = (k +mBy,)/py> with respect to the x variable. For the m =+1 case, we
distinguish three regions:

D) k<-B,(1)

The lower edge frequency w; g(k), is implicitly defined as: w; g = wa (k, xpqn(k))
where xy satisfies the condition dw,/dx = 0. In the spectral plane, i.e., the (k, w)

03+

02t

0T

-« T +

k -05 -04 -03 -02 -0 Qo

Figure 6
The global modes of the Alfvén wave for m = +1 are shown. Standard MHD conditions with gravity
are used. The marked line represents the lower edge of the Alfvén continuum.
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plane, w (k) is represented by a smooth line that starts from the point
(—B,(1),0) and asymptotically approaches the w = —k line. (See Fig. 6).

1) -B,(1)<k<0

In this region, w, i =0 since there is always a value of x in the range [0, 1] such
that By(x)+k =0.

1) k=0

Since B, is a monotonically increasing function of x, we obtain w,g =k, which
corresponds to the resonant layer always located at x =0.

Region I

Numerical results with m =+1 under standard MHD conditions (@ — ), show
global modes in a fairly narrow range of k. Global eigenmodes emerge from the
continuum at k = —0.5. These modes rapidly become unstable, i.e., w’ <0, so that
they disappear for k=< —0.37.

Region I1

In region II no stable mode can exist, since the continuum reaches marginal points
(w =0) for any k.

Region III

A local expansion of egs. (3a) and (3b) around x =0 provides the following
existence condition: [(dD/dx)/(dA/dx)]> 0, with D and A defined in Section 2. In
principle, this condition can be fulfilled with standard profiles (described in
Section 2). However, no numerical evidence of this has been produced.

Conclusions

We have investigated some properties of the low-frequency spectrum of cold
plasma waves. Comparisons with cylindrical and plane semi-infinite models have
been systematically carried out, in an attempt to identify those properties whose
occurrence is independent on the geometry. We have shown that the radial modes
of the fast magnetosonic wave can be partially influenced by slab finiteness and by
the Hall term, or by both combined. Fortunately, the “‘surface’ wave which is the
best candidate for the Alfvén Heating scheme, behaves rather insensitively to
geometrical details.

We have found that: 1) When frequencies in the continuum are excited, the
gravitational field can simulate cylindrical curvature only for small “toroidal”
wavenumbers. 2) The gravitational field can produce global eigenmodes of the
Alfvén wave. 3) Shear enhances power absorption near the plasma center, but
generally reduces the amount of absorption. 4) For k>0 and m =+1, the Hall
current influences the location of the optimal resonant layer less in the case of the
finite plasma slab than in the case of the cylindrical plasma.
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In general, we conclude that only some of the primary physical features of
Alfvén Wave Heating can be recovered in the slab geometry.
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