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Identification des modes d’ondes d’Alfvén

Par A. de Chambricr, G. Collins, P. A. Duperrex,

Ch. Hollenstein, R. Keller, A. Lietti, J. O’'Rourke,

A. Pochelon et W. Simm, Centre de Recherches en
Physique des Plasmas, Association Euratom — Confédération
Suisse, Ecole Polytechnique Fédérale de Lausanne,

21, Av. des Bains, CH-1007 Lausanne/Suisse

(21. V1. 1983)

Abstract. Amplitude and phase measurements with magnetic probes at various locations outside
the plasma show the existence of both a discrete mode and a damped quasi-mode, always belonging to
the slow m = —1 Alfvén wave. The asymmetry is originated by the ion cyclotron rotation.

I. Introduction

L’étude des ondes d’Alfvén a été motivée par son intérét scientifique, ainsi
que par sa potentialité comme chauffage des plasmas en vue de la fusion
thermonucléaire. I.absorption résonnante dans un spectre continu a été expliquée
déja en 1965 [1] pour le cas des ondes d’Alfvén et en 1955 [2] pour les ondes
¢lectrostatiques. Lutilisation des ondes d’Alfvén comme moyen de chauffage a
¢t¢ préconisée par Jankovich [3], Grossman et Tataronis [4] puis par Hasegawa et
Chen [5].

Des expériences sur les machines du type Pinch et Stellarator ont suivi
[6-11], puis le chauffage d’Alfvén a été appliqué au Tokamak [12-16]. Lors des
mesures du champ de 'onde. on a observé de nouvelles résonances formant un
spectre discret situé étroitement au-dessous du spectre continu [17]. Le lancement
d’'un mode discret comme moyen de chauffage semble &étre compétitif avec
"attaque du spectre continu [18, 19]. L’objet principal de ce travail est la
recherche du nombre d’ondes qui les caractérise. ['une de leurs propriétés
remarquables est la dissymétrie vis-a-vis de la rotation cyclotronique des ions,
dont I'effet est de favoriser I'onde lente de polarisation gauche [20-23]. Les effets
w.; ont été observés en diverses places [16 et 24-27].

II. Théorie

l.e champ magnétique en géométric cylindrique répond a deux types de
solutions. Le premier type est représenté par les fonctions de Bessel modifiées

B, = cl[kl,’,,(kr). ol I, (kr), ikl,,Jkr)]e“”‘”"‘*l et (1)
, r |
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Le deuxiéme type est représenté par les fonctions de Hankel
B,= cz[kK;n(kr), K, (kr), ika(kr)]e“'“9+k:zw" (2)
r

Ces expressions sont exactes dans le vide lorsque les courants de déplacement
sont négligés. Pour les grandes longueurs d’ondes et dans un tore a grand rapport
d’aspect a« R, les fonctions peuvent étre approximées comme suit:

— s : —nr| . -

Bl _— Clrlml 1 [l I I’ m, = ]el(mﬂ+nw wt) (3)
= . _ . nri| . B

Bzmclammlr lm| I[I Iml, m, ]el(m9+n¢: wt) (4)

ol ¢ est maintenant la coordonée toroidale et ou le vecteur d’onde longitudinal
k., a été remplacé par n/R.

Dans un plasma excité a une fréquence inférieure a la fréquence cyclotroni-
que des ions, le champ magnétique ressemble aux expressions ci-dessus, voir ref.
[26,27]. Le premier type présente ’aspect d’'un champ homogéne. On I’appelle onde
de surface, désignation se rapportant a la méme onde en géométrie plane. Le
deuxieme type ressemble a un champ dipolaire, c’est I'onde d’Alfvén lente.
Dans certains cas, son champ peut étre fortement accentué au centre, Sans
toutefois tendre vers la singularité contenue dans la formule (4).

Les ondes sont caractérisées par leur relation de dispersion. Dans un plasma
uniforme, la relation de dispersion bien connue [28], valable en géométrie plane,
explicitée selon le vecteur d’onde |k|= w/v,,, peut étre mise sous la forme

UzAlk|2_ va 1+cos® e Vsin® e +40% cos’ ¢
2a k=22
w

V2, 2(1-0%) cos® &

v, désigne la vitesse de phase et v,y = By(uop) "> est la vitesse d’ Alfvén locale. &
désigne I’angle soutenu par le vecteur d’onde et le champ magnétique statique By.
La fréquence cyclotronique des ions est contenue dans Q= w/w,; ou w, =eBo/m;
est positif pour les ions. Ces derniers exécutent une rotation gauche autour des
lignes de champ.

En réalité, 'onde d’Alfvén accuse une singularité a I’endroit d’une surface
résonnante dont le rayon r, dépend de la fréquence. Loin de cette surface, le
vecteur d’onde est quasi-longitudinal, cos® € =1 et I’expression (5) tend vers les
deux valeurs suivantes: 'onde lente et I'onde rapide

va/vaz= 10 (6)

A Tapproche de la surface résonnante le vecteur d’onde devient infini et
s'oriente perpendiculairement a elle. La valeur de cose tend vers zéro. En
développant la relation de dispersion (5) selon cos € on obtient

Wa — k”UAV 1 —02 (7)

wa désigne la fréquence d’Alfvén a la résonnance et k est la composante du
vecteur d’onde paralléle au champ magnétique. Le champ est pratiquement axial
parce que r <R, ce qui permet d’écrire k= k,(1+ m/nq) avec k, = n/R. Le facteur

(5)
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de sécurité g a I'endroit r est donné par

rB,,

] = ()
ql(r) RB, (8)

Son signe dépend de l'orientation des champs. Par exemple, dans notre
expérience, By est normalement négatif parce que le champ toroidal est dirigé
dans le sens ~¢. De méme, B, est négatif parce que le courant plasma est aussi
dirigé dans le sens —¢. Donc g est positif.

[a fréquence d’Alfvén a la surface résonnante est alors

}3() =
N —’—f—iln +m/g(nl V1 -QF (9
R~ pp(r)

w, possede done un spectre continu puisque cette grandeur dépend de r. D autre
part, il existe un spectre d’Alfvén discret dont les résonnances sont tres proches
'unce de lNautre, a quelques % au dessous du bord inférieur du spectre continu
[18, 19]. La premiere, appelée D, ici, est trés prononcée, son facteur de qualité Q
¢tant de 'ordre de 30. 1'objectif principal de notre étude est la mesure de phase
de D,. Dans la regle, la résonnance D, a ¢té observée, mais beaucoup moins
distinctement. D’autre part, on a ¢été concerné avec une forte contribution du
spectre continu appartenant au nombre d’ondes n du signe oppose.

Le lancement des ondes a lieu au moyen d'une structure d’antennes agissant
sur les modes rapides. Les modes lents torsionnels sont excités consécutivement
par I'intermédiaire du couplage aux modes rapides. Dans notre expérience, on a
seulement observé les modes m = —1. C’est aussi le résultat attendu par la théorie
[20, 22], qui prévoit une dissymétrie provoquée par la rotation cyclotronique des
ions. L'importance de cet effet se mesure par le terme w/w,; dont la valeur de 0.3
est relativement grande.

IIl. Le champ des antennes et le champ de 'onde

Une description du TCA se trouve sous réf. [29]. Le grand et le petit ravon
du plasma valent R/a =61/18cm. La section de la chambre a vide forme un
rectangle allongé dans le sens vertical. Son rayon moyen ¢quivaut a b =27 em.
[Les antennes sont logées dans I'espace libre au-dessus ¢t en-dessous du plasma.
Chaque antenne est découpée dans le sens poloidal en trois conducteurs de 8 ¢cm
de largeur moyenne et distants de 2 cm. Leur épaisscur est de 0,3 ecm. ['ensemble
des plaques forme donc un secteur de 28 cm de largeur moyenne. Les plaques se
trouvent a un rayon r, de 20 cm a compter depuis 'axe du plasma. Leur longucur
dans le sens poloidal est de 35 cm. Il y a quatre postes d’antennes centrés sur les
coordonnées toroidales ¢ = 0°, 90°, 180° et 270°. Le courant est purement poloidal
avec son centre de gravite en 6 =0° et 180° (On fixe le zéro de la coordonnée
poloidale a la verticale, et non pas sur I'¢quateur, ceci dans le but de simplifier la
formulation, voir Fig. 1).

Les deux paires d'antennes situces en ¢ =07 ¢t 180° sont ¢n phase, ct les
deux autres paires placées a 90° et 2707 sont en opposition de phase. Ainsi les
modes m ==x1, n=%2 sont excités en prédominance [30]. L'ensemble des
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Figure 1
D]Sp()\ltlf expérimental
Chambre a vide, coupe A-A
Antenne
Limiteur
Plasma
: Sonde horizontale N
6: Sonde verticale S

’Jl-hw[\)—'

antennes forme une structure décomposable en série de Fourier comme suit:

—
J—ijn[() f—
m’A

] i(mé-+ne—owt) (10)

Les j,., ne dépendent pas des signes de m et de n. L’analyse de Fourier conduit
au résultat suivant dans I'approximation cylindrique et pour |m|=1
~ 2aJn sin (zyn/R)
A (R (an)]
D’autres valeurs de m ne sont pas considérées dans le présent travail. La

valeur physique de la composante poloidale appartenant aux quatre modes
(m,n)=(x1,+£2) est Re (j)=4j,,cos2¢. J désigne le courant d’une antenne

(11)




114 A. de Chambrier, et al. H P A.

(valeur de créte pour le total des trois plaques), et z,, est la demi-largeur d'une
antenne, soit 14 cm. Le plus souvent J était de SSOA hors résonance ct sa valeur
tombait a 300A au passage d’une résonance. Pour 300A la formule (11) donne
J12 = 60A/m.

LLe mouvement du plasma est provoqué par la pression du champ magnétique
des antennes. On calcule le champ en résolvant les ¢quations de Maxwell, dans le
domaine entre la paroi et le plasma formant un systeme cvlindrique coaxial et
parfaitement conducteur. Dans cette approximation le champ des antennes de-
vient

B, = CA["‘i(l —a’/r’), m(1 +a2/r3),%r(l P aZ/r?)]e”'“'"”“' ] (12)
avec
' R 2 2 2 b
cp =Bl g 22 g2p2) (13)
2nr,

La pression a la surface du plasma r = a s’obtient en effectuant le produit scalaire
du champ de l'onde avec le champ statique

“‘Upmn = B(I’BA»J; + BHBA() ( 14)
La pression devient

a(b?—r3)Byj.(1+m/ng)
Pon — 2 2 2
ra(b>—a?)

q designe le facteur de sécurité au bord. Pour [m| = 1, la pression intégrée selon 6
produit une force transversale qui imprime un mouvement global a la colonne de
plasma. Si le profil était plat, le déplacement serait indépendant de r et donc ¢gal a
sa valeur au bord &,,,. La pression d’accélération serait alors

- 2 i(mé +ne +9 -wt)
Pa = —BaPAwE,, 00 M0 (16)

ou g, désigne un facteur d’inertie égal a 1 pour un profil plat.

Mais en réalité, la fonction propre du déplacement lors d'un mode discret
accuse une forte amplification au centre [18]. Pour un déplacement donné au
bord, le travail effectué par la pression cst plus grand si le profil de &, ¢st piqué.
La formule ci-dessus doit étre corrigée par un facteur g, supérieur a 1, exprimant
I'effet d’inertie du centre. Par p on entend la densité moyenne qui s’avere étre
égale a la moitié de la densité p, au centre dans le cas d’'un profil parabolique.

La condition d’équilibre des forces conduit a I'équation du mouvement de la
surface du plasma. Les trois termes du membre de gauche de I'équation ci-
dessous représentent la force d'inertie d*/dt* = —w?, la force de rappel wi et
I’'amortissement

ei(mH'mg---mH (15)

w :
o 2 2 3 1 1m0 +r B3 wt)
gdpa‘ffllll[—w + W)~ lw Q ]e mane e Prin ( 17)

w, est la fréquence de résonance du systeme et w désigne la fréquence du
générateur HF. Le facteur de qualité Q exprime I'amortissement du systéme.
Comme la fréquence d’excitation w est fixe, il faut représenter la courbe de
résonance en fonction de la densité p, et du facteur de sécurité ¢, correspondant
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a la fréquence de résonnance w,. Le changement de variable demandé est
; > mé
X = [gl-+ 2 M ]At (18)
P qi(n+m/q,)

[’origine du temps est placée en At =0, ou le mode considéré est en résonance.
La solution de I’équation (17) s’écrit

£,.. = CQ sin 9e'; ctg 9 =—-xQ (19)

avecd

_ Bgjmn(b>—r2)(1+m/nq)

- grapw(b*—a?)

(20)

Dans notre expérience, la variation de q, contribue trés peu, ce qui permet de
résumer ’expression (18) a x = p At/p.

Dans le cas des ondes d’Alfvén discrétes, la fréquence de résonance se situe
Iégérement en-dessous du minimum de w,, formule (9). Comme w, n’est pas
toujours une fonction monotone [31], le minimum de w, se trouve vers un certain
rayon r, ou la fonction propre est localisée. La densité p(r,) est proche de la
valeur centrale parce que le rayon r; est généralement petit. D’apres (9) on a

2 BZ(n+m/q,)*(1-Q?)
2uoR*(1-r3/a?

(21)

q, désigne le facteur de sécurité vers r,. Prés de I’axe, sa valeur est voisine de 1.

Voici un exemple numérique: Plasma de deutérium, m =—1, n=-2, B4 =1,
16T, w/l2am=2,6 MHz, Q1=0,3, q,=1, q=5, O=30. A la résonance, le
déplacement est égal a |£,,.]=0,80 mm divisé par g, La densité moyenne p
devient égale a 44-107°, elle correspond 4 une densité électronique n,, de
2,6 - 10" m™? au centre.

Le quadrant de la phase 3 définie par (19) est respecté si I'on tient compte
du signe de C qui, a son tour, dépend du signe de Bgy. Le champ de 'onde est
obtenu par la solution des équations de Maxwell dans la région autour du plasma
déformé par son mouvement. Ce champ sera mesuré au moyen de sondes
magnétiques situées loin des antennes. Dans I’approximation des grande lon-
gueurs d’ondes le champ de 'onde est

= gman) a z m+nq . r2 ,,2 nr r2 i(mO +ne —wt
B==R %) 1—a2/b2['(1_35)’m(HF)’E(HF)]e(G ’

(22)

r désigne le rayon de la sonde. On remarque que le champ est formé d’une
superposition d’'un champ homogeéne et d’'un champ dipolaire. La part dipolaire
est toujours plus grande parce que 1>r?/b>. Le produit £,,,Bg est indépendant du
signe de By. Comme q est de I'ordre de 5, on a toujours |nq|>|m|, donc le signe
du champ de 'onde ne dépend pas non plus du signe du courant plasma.

En introduisant les données expérimentales, la composante azimutale du
champ de I'onde B, devient égale a 70 Gauss divisé par g;. Or la mesure du
champ donne 5 Gauss. Ainsi le facteur d’intertie est déterminé, soit g, = 14.
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IV. Les sondes magnétiques et la mesure de phase

La Fig. 1 montre le dispositif expérimental.

Les trois composantes du champ de 'onde sont mesurées en deux points a
I'extérieur du plasma, a un endroit ou le champ direct des antennes est
négligeable. L'un des endroits, distingu¢ par l'indice N(Nord), se trouve vers
0 =-90° et ¢ =—45°, c.—a-d., a 'équateur. L’autre point de mesure, distingué
par I'indice S, est placé en 6 = 0° et ¢ = 135°. Leur centre géométrique se trouve
a 21.5cm de I'axe du plasma, ¢.—a-d., a 3,5 cm derricre les limiteurs. Chaque
sonde forme un groupe de trois bobinages enroulés sur le méme mandrin en
téflon et orientés dans les directions r, 8 et ¢. L.e mandrin est introduit dans un
tube de céramique fermé au bout. Les bobinages 6 ¢t ¢ possedent 14 spires de
4.5cm’, le bobinage r possede 20 spires de 3 em”. Leur impédance est ¢gale a
celle du cable bifilaire transporteur de I'énergie. Le queusot sur lequel est fixé la
flasque qui maintient le tube de céramique forme une cavité qui ¢carte les lignes
de champ. Cette déformation abaisse le champ d'environ 33%. Une 7 ¢cme sonde
de méme impédance détecte le courant d'une antenne.

[La mesure de phase entre une sonde et I'antenne s'opere de la fagon
suivante: soit A le signal de 'antenne et B le signal de la sonde. Les deux voies
sont redressées et une 3 eme voie formée de la somme C = A + B est redressée
séparément.  Ainsi la phase s’obtient en exécutant le calcul cos 9 =
(|CI?=|A]*=|B|?)/2|AB|. Si l'on intercale un cable A/4 dans la voie du signal
d’antenne, le méme calcul produit le sinus de la phase. En alternant les chocs
Tokamak dans ces deux conditions, on obtient I'évolution de la phase sans
ambiguité.

L.a manipulation a lieu de la fagon suivante: lors d’'un choc Tokamak l'entrée
de gaz est programmée de fagon a obtenir une montée de densité p(t) quasi-
linéaire. Ainsi on parcourt entierement la courbe de résonance des modes
discrets et une partie du spectre continu. Connaissant la rampe de densité¢ et la
largeur de la pointe de résonance, on en déduit le facteur de qualité O qui est
typiquement de 30 pour le mode D,. En inspectant le signe des composantes iB,,
B, et B, lors d’'une résonnance, il apparait avec certitude que le mode D,
possede les nombres d’ondes (m, n) = (+1 +2) lorsque By, et J, sont négatifs. Lors
d’une campagne de mesure faite avec le champ By, inversé, c.—a—d. positif, c’est le
mode (m, n) (11 2) qui sc manifeste. Dans les deux cas, 'helicite du mode,
définie par le signe de m/n, est la méme que I'hélicité du champ statique, définie
par le signe de Bgy/J,. 1l s’agit donc du méme mode qui, ramené a la version ou
B, et J, sont dirigés dans le sens +d¢, appartient au couple (m, n)=(—1-2).

V. Résultats

Au passage d’'une résonance d'un mode pur (m,n)=(+1+2) la phase
devrait normalement exécuter un saut de 180°. Or les mesures ont montré des
ariations de phases modifiées par la présence d'un second mode.

L’allure de la phase s’explique dans tous les cas par la présence du mode
(m,n)=(+1-2) lorsque By et J, sont négatifs (signe contraire de m si By est
inversé). Le second mode fait partie du spectre continu. Sa courbe de résonnance
est beaucoup plus plate, elle correspond a un facteur de qualité Q, proche de 2,
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conformément a la théorie [32, 33]. D’apres (19) et (22) et en introduisant les
coordonnées de la sonde N par exemple, la somme des composantes toroidales
des deux modes s’écrit

B,n =|B.n| € = —a Q sin 9e™ + a Q. sin ae™ (23)

Pour un autre cas, par exemple la composante poloidale, on obtient, en
unités arbitraires

Bon = |Bon| € = —ay4Q, sin 9e™® —a Q. sin ae™ (24)

L’indice d se réfere au mode discret et I'indice ¢ au spectre continu. Le meilleur
ajustage des parametres donne Q,; =30, Q. =2 et a; =0,2 si I'on fixe a.=1. La
précision de la mesure ne permet pas de donner a; a mieux de 20%. En outre,
le sommet de la résonance du mode ‘“‘continu’ doit étre déplacé vers une densité
plus basse.

Soit x = p(t)/p, — 1 la variable normalisée de la densité pour le mode discret
et x +Ax pour le mode “‘continu”. Les phases individuelles des modes peuvent

¢
{
a 90 -
04 2
-04 -02
L T T L | T T T i 1 L]
02 04 X
{-180
4-2710

-04 -0,2 0,2 0,4 X
L L A L L L A i 1 |
Figure 2
Calcul des phases et des amplitudes d’aprés les formules (23) et (24)
al: Phase de B, a2: Phase de By,

b1: Amplitude de By, b2: Amplitude de By
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¢ go{ ¢ 1804 ¢ 180-

j j NT
’J -904 //\ 04 = -

=270 =180 -180

Figure 3
Mesure de la phase ¥ et du champ de I'onde B. Champ toroidal habituel.

étre mises sous la forme
tg(3 —90) = xQ, tg(a—90)=(x +Ax)Q, (25)

L’ajustage donne Ax = 0,25, ainsi a vaut déja 117° en x =0 quand 9 ne vaut que
90°. 11 faut préciser ici que la forme résonnante du mode “‘continu” résulte d’un
modele valable dans une petite région du spectre.

Parmi les 12 cas possibles, il n’existe que les deux formes de courbes
mentionnées ci-dessus. Mais certaines courbes sont décalées en valeur absolue
d’un multiple de 90°. La phase ¢ et 'amplitude de 'onde sont reportées dans la
Fig. 2. Toutes les composantes toroidales exécutent un grand saut de phase,
contrairement aux autres composantes. Les mesures de phase et d’amplitude sont
reportées dans les figures suivantes: la Fig. 3 montre By, B,s et By dans le cas
d’un champ toroidal By, négatif. Dans la Fig. 4 on a choisi B,y, Bgs et B, lors
d’un champ B, positif. Les autres mesures de phases non indiquées ici possedent
une allure conforme a ce qui vient d’étre dit.

Certaines mesures montrent tres nettement une autre résonance a plus
haute densité, attribuable au second mode discret D,. La variation de la phase se
trouve ¢videmment modifiée au passage de cette résonance. Une evaluation de
cet effet n’a pas été tentée dans le présent travail, il fera I'objet d’une étude
ultérieure.

¢ 2704 ¢ 3604 ¢ 270+
//\' 901 180 —<————— 901
-904 0 =90
1 1 1 1 /l 1 1 1 L | 1 I\
5 10 1B ms
B¢N B‘PS Brs
Figure 4

Mesure de la phase ¥ et du champ de 'onde B. Champ toroidal inversé.
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La comparaison des amplitudes des deux modes donne des indications
intéressantes concernant le mouvement du mode “‘continu”. D’apres (20) et (22),
on voit que les amplitudes maximales des modes d et ¢ respectivement sont
proportionnelles a

B, ~% [Ln- (n +—r51-)2] et g [E (n +ﬂ)2] (26)
84 n q d & h q c

Si 'on introduit les valeurs respectives des nombres d’ondes (m,n)y =
(+1 +2) et (m,n). =(+1-2) et que 'on identifie le rapport de ces deux termes
avec aygQ4/a.Q, on obtient g. =1,8+20%. Un facteur d’inertie dépassant de peu
I'unité signifie que le profil de la fonction d’onde formée lors du spectre continu
est peu piqué. Le plasma exécute un mouvement global avec un faible
réhaussement vers la surface résonnante.

La puissance délivrée au plasma par les antennes se calcule trés simplement a
partir de la pression, formule (15), et de "amplitude (19, 20). A la résonance on
obtient 60 kW délivrés au mode discret et 20 kW délivrés au mode ‘“‘continu”. Le
total est de 80 kW, valeur en accord avec les mesures électriques.

V1. Conclusion

L’excitation d’ondes d’Alfvén dans TCA est réalisée au moyen d’une struc-
ture d’antennes de symétrie m = +1 et n =+2. Bien que la force d’excitation soit
semblable pour les quatre combinaisons des nombres d’ondes poloidaux m et des
nombres d’ondes toroidaux n, seul les modes avec m négatif ont été observés.
Cette dissymétrie est provoquée par la rotation cyclotronique des ions. Le mode
fondamental (m, n) =(—1 —2) du spectre discret posséde une résonance aigué qui
se superpose au mouvement du mode tres amorti (m, n) = (—1 +2) appartenant au
spectre continu d’Alfvén. Le mode discret est une onde tournant dans le sens de
rotation cyclotronique des ions. Elle progresse dans le sens contraire au courant
plasma. En revanche, le mode amorti est une onde tournant dans le méme sens,
mais progressant dans le sens du courant plasma.

A partir de la valeur absolue des champs mesurés par les sondes magnétiques
extérieures au plasma, il a été possible d’évaluer la part de la puissance revenant
aux deux modes observés.

Ce travail a été supporté par le Fonds National Suisse pour la Recherche
Scientifique et par I’Euratom. Il a été présenté a la réunion de la Société Suisse de
Physique a Fribourg en mars 1983.
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