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Thermodynamics of a relativistic Fermi gas
in a strong magnetic field

By David E. Miller* and P. S. Ray, Fakultat fiir Physik,
Universitat Bielefeld, D-4800 Bielefeld 1, F.R. Germany

(1. IX. 1983)

Abstract. The thermodynamical properties in the grand canonical ensemble for a relativistic spin
—4 ideal gas including both the particles and anti-particles are investigated in the presence of strong
constant homogeneous magnetic field. We calculate the magnetization and the static magnetic
susceptibility for very strong fields at high temperatures, for which we present numerical results in the
special case for equal numbers of particles and anti-particles.

Numerous aspects of relativistic statistical mechanics appear in many physical
situations. One important example is a relativistic electron gas in a strong
magnetic field, which has been studied by various authors [1, 2] in the context of
astrophysical questions. A similar phenomenon is encountered in the case of the
quark gas, that is supposed to be formed during heavy ion collisions at high
energies [3], in which the existence of very strong magnetic fields is possible.

Another example of interest is the quark phase of the nucleons, which is
supposed to be present at the core of neutron stars. In all such cases the
theoretical understanding of the physics involved needs to be formulated on the
basis of covariant formulation of the laws of thermodynamics. The existing works
indeed satisfy this requirement. There is one aspect however, which although
taken into account by many, is yet to be brought out explicitly in the calculations
of various physical quantities —that is the contribution from the anti-particle
states, which is a truly relativistic effect. In this work we shall describe this effect
for the case of a relativistic electron gas in a very strong magnetic field.

A covariant formulation of the thermodynamical laws basing on Dirac’s
constraint concepts, [4], which builds the foundations of relativistic dynamics, has
already been worked out by one of the authors previously [5]. We take this as the
basis of our formulation here. Consider now a model where the electrons are in
thermal equilibrium with a background blackbody radiation field and the temper-
ature is in the relativistic domain. Such a situation is surely realized in the plasma
state. The antiparticles, which are the positron states, originate due to the
possibility of the background thermal photons materializing by pair production.
An equilibrium will then be reached with certain distributions of electrons,
positrons and photons. The thermodynamic parameters describing this state are
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then the temperature, the external magnetic field and the total charge of the
system. A variation in temperature or the magnetic field will then imply a change
in the electron and positron densities and also that of the photons, while the total
charge of the system remains conserved. If the system is initially neutral with
respect to a positive ionic charge background, then it remains so for any change of
the physical parameters and hence the relativistic chemical potential is to be
attributed to the lepton conservation law. With this view a study of the magnetic
properties of the system is presented below.

The energy levels E,, of the Dirac equation in the presence of an external
magnetic field of strength B (parallel to z-direction) are given by [6]

E,, =[mc*+pici+e(n+r— 1]

2.3
5 5 m-c
e =2—mc*, ;= (1)
B. le| A
where n=0,1,2,..., and r=1 or 2 according to the spin orientation up or down
in the field. Here p, is the z-component of the momentum. For quantizing in
a box of column V one has p, =hk,, k, =27V '"’n, with n, =0, 1,2, .. ..
For r=1 and 2 separately E,,=(m?c*+pic*+€e°n)'> and E,,=
(m?c*+pic?+€e*(n+1))"? so that E, .., = E,,. The statistical weight g, of each
energy eigenstate E,, is independent of r and n and has the value g, =
V33le| B
2whe

In the covariant formulation of quantum statistics the grand canonical
partition function takes the expression:

- ~B(H-pQ)
Z,=Tre

where @ is the chemical potential considered as a Lagrangian multiplier corres-
ponding to the globally conserved charge Q, which is the time component of a
conserved four vector, and H is the Hamiltonian of the system with 8 =(kT) '. In
terms of the number operators of the particles N, and anti-particles N_ one can
write Q = N, —N_. This implies that the chemical potentials w, and w_ for the
particles and anti-particle states are related by w, =—u = . Thus the grand
canonical partition function for our system can be written as

3
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where the last term denotes the contribution due to the background photons. For
a large volume V one can write equation (3) as
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where the first term in the bracket is the contribution from the electrons and the
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second term from the positrons respectively. Writing FE, (k, B) — E, , (k. B)
aE, n m’c?

(mc*+c?h’k?+ne’)'’? one has — = — .
9B E, |e|h

If M be the magnetization (or the magnetic moment) of the total system, one
has by the consideration of the quantum statistics

M—l—'ljr{e BB u()l( __H_F_{)]_—i—”_ln7 (5)
\ 0B, BoB

2

where H = H(B) is the Hamiltonian. Thus one obtains from (3) the magnetization
per unit volume as
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The magnetic susceptibility x 1s related by x 7;5 (—V—) One has then
explicitly ‘ "
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Here the free parameters of the system are 8 = 1/kT, the external field B and the
total charge Q or the charge density Q/V. One must choose w so that one can
match a given value for Q. One has explicitly
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The number density p = N/V (i.e. particles and anti-particles per unit volume) 1
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similarly given by
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Finally, for the sake of ease in the explicit computations now we consider the
very special case of equally distributed electrons and positrons in equilibrium [7].
Although such an assumption is seldom warranted for any realizable physical
system, 1t nevertheless leads to a vanishing total charge Q in (8) and its
corresponding chemical potential w. In this case the magnetization per unit
volume M/V in (6) together with its corresponding susceptibility x in (7) may be
computed numerically for very strong fields at high temperatures. We have
displayed the quantities in a plot as a function of the magnetic field B in Fig. 1.
On the left-hand axis we can see the plot of the falling magnetization with
increasing fields B in the range 0.01B.=B=100B, where B, is B, =
4.414x 10" Gauss as given directly from the constants in (1). We have chosen the
temperature to be equal to the electron rest mass energy, which gives kgT as
511 KeV. Under the same conditions on the right-hand side axis we have drawn
the magnetic susceptibility as a function of the magnetic field. It should be further
remarked that the value of M/V at a field equal to 100B. is very near to its
saturation magnetization for the free electron—positron gas at this temperature,
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Figure 1
The magnetization per volume (M/V < 10° on the left axis) and the magnetic susceptibility (y x 10% on
the right axis) are plotted as a function of the magnetic field B in the high field range between 0.01B,
and 100B.. M/V is plotted with the solid curve and y is drawn with broken lines.



100 D. E. Miller and P. S. Ray H. P A.

0
1014. -
1013 -
P
’012 - 1 1 1
01 1 10 100

B /B¢

Figure 2
Variation of particle and anti-particle number density as a function of ¢xternal magnetic field B for the
fixed temperature of 511 KeV.

which is equal to 4.69875 x 10~ magnetons per cm’. This effect is also seen from
the very rapid fall in the susceptibility at high fields. Furthermore, the results
presented here are clearly very different from the rapid variation of the magneti-
zation at fields around B, which were previously calculated for the relativistic
electron gas alone.')

Finally we have also shown in the accompanying figure 2 the variation in the
number density p as a function of the external field B. With rising values of B one
finds the effect of pair production as p also increases.
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