Zeitschrift: Helvetica Physica Acta

Band: 57 (1984)

Heft: 1

Artikel: Geometrical approach to the Aharonov-Bohm plus potential scattering
Autor: Guillod, F. / Huguenin, P.

DOl: https://doi.org/10.5169/seals-115498

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-115498
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta, Vol. 57 (1984) 86-95 0018-0238/84/010086-10%1.50 + 0.20/0
© Birkhiuser Verlag Basel, 1984

Geometrical approach to the Aharonov-Bohm
plus potential scattering

By F. Guillod and P. Huguenin, Institut de Physique, 1 Rue A.
Breguet, Université de Neuchatel, CH-2000 Neuchatel,
Switzerland

(5. VII. 1983; rev. 30. IX. 1983)

Abstract. The ambiguity group of the canonical transformation which introduces the scattering
variables ‘deflection angle’ and ‘time delay’ is not trivial. The restriction of the scattering operator to
the invariant subspaces of the representations of this group leads exactly to the Aharonov-Bohm
effect. Distinct values of the magnetic flux correspond to inequivalent representations.

1. Introduction

If you are interested in a non-linear canonical transformation (g, p)—(q, p) it
will not be generally one-to-one. If this transformation has to be quantised, the
operators associated to (g, p) will not have the same spectra than those associated
to (g, p). Therefore, it is impossible to find a quantum unitary operator which
corresponds to the classical canonical transformation.

In certain cases however, a group may be associated to a non-one-to-one
canonical transformation. This group, called ambiguity group, has been intro-
duced by Moshinsky and Seligman [1,2,3]. Owing to its representations an
unitary operator can be constructed which corresponds to the canonical transfor-
mation.

In a previous paper, the notion of ambiguity group was applied to the
scattering theory and it was suggested there that this formalism could explain
geometrically the Aharonov—-Bohm effect [4]. This point of view is now presented
here.

The Aharonov-Bohm effect consists in the scattering of charged particules
arriving normally on a whisker of magnetic flux. Classically no effect is expected
because the magnetic field vanishes outside the arbitrarily thin solenoid [S]. But
not in quantum mechanics: some interferences occur between the parts of the
incident plane wave which pass either at the right or at the left of the whisker.
And these interferences lead to a non-zero cross section.

This paper describes the scattering of charged particles on a potential of
cylindrical symmetry superposed to a whisker of magnetic flux. Two different
approaches of the problem will be considered.

First an asymptotic expansion of the solution of the corresponding
Schrodinger’s equation is calculated in order to find the phase shifts which are
composed of two terms. One term represents exactly the Aharonov-Bohm phase
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shift obtained by Henneberger [6], while the other one is equal to the phase shift
due to the potential but evaluated for a non-integer value of the angular
momentum. The fractional part of the angular momentum is proportional to the
magnetic flux; so, by varying this flux, the phase shift becomes a function on the
full real axis.

In the second approach, the Aharonov-Bohm fiber is removed, but at the
same time a canonical transformation introduces some scattering variables (deflec-
tion angle, time delay). This transformation is not one-to-one and thus a non-
trivial ambiguity group exists. To each irreducible representation of this group
corresponds an invariant subspace. The restriction of the scattering operator to
such a subspace coincides exactly with the result found in the first approach.
Therefore, this restriction reintroduces naturally the Aharonov-Bohm effect, an
effect which depends obviously on the chosen subspace. As pointed out by Roy et
al. [7] and Ruijsenaars [8] it is important to remark that the operator id/d6
(0 [0, 27[) is not essentially self-adjoint. In fact we shall see that the irreducible
representations of the ambiguity group are related to the self-adjoint extensions
of the operator i9/96.

Finally, an example is presented in the last section. For a particular value of the
magnetic flux and for the potential y/q, the scattering amplitude can be calculated
analytically. By changing y we obtain an interesting comparison between the pure
Aharonov-Bohm effect and the scattering on the potential y/q alone.

Throughout the paper the following conventions will be made:

DAV

o

dA :jd)\.

2. Conventional approach

Consider a solenoid along the z axis which is infinitely long, arbitrarily thin,
impenetrable, containing a magnetic flux ®,, and a potential V of cylindrical
symmetry superposed to this whisker. We shall study the quantum scattering of
charged particles arriving perpendicularly to the whisker. For such a system the
Schrodinger’s equation is

1 (ha e\ . . P
—(T.T——A P(q)+ Vi (G) = Eg(q), (2.1)
2m \i dq c
where A describes the whisker:
X (D( Yy 2
A:——’;( q*), GeR? (2.2)
2mq” \ q,
In cylindrical coordinates g = (q, 6), equation (2.1) reads
?o1a 1 (a : 2mV
[, - —+— ((—+ia) +(k2— ~ )]tlf(q, 6)=0 (2.3)
aq- qoq q° \ob h*

with k> =2mE/h” (scattering state) and « = —e®,/2mhc. For the sake of simplic-
ity, « is assumed to satisfy the inequalities 0 =a <1.

Next we expand the wave function ¢ in partial waves by choosing the
boundary conditions (68 =0) = (8 =2) which correspond to the conventional
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extension of the operator id/06 used for example by Aharonov and Bohm [9]:

=2 e" R, .(kq). (2.4)
[
where R, verifies
(kq)*RY..+kqR}. . + [(] ~E‘q(kq‘)2 = (14 cr)z]R; v = 0. (2.5)

If the potential V tends sufficiently rapidly to zero as g — =, the asymptotic form
of R, 1s given by

Riio~ A ia e®=[cos § ol (k@) —=sin 8y o Y ai(kq) ], (2.6)

where we have used the conventions of Abramowitz and Stegun [10] for the
Bessel functions J and Y. The phase shift 8,,,, 1s a functional of the potential
determined by the exact radial wave function with the boundary condition
R,..(0)=0 (since the whisker is impenetrable). A, ., i1s chosen in order to obtain
the correct incident plane wave

X

l{’.‘ - ei(chos(l —af))

(2.7)

which gives a constant current density in the positive x direction. The further
calculations will show that we have to choose

Ao =E€EXp [—i(“*raﬁg%-(lﬁ—a)w)} (2.8)
[t is very useful to separate v in two parts, = s, + >, where

Wy =2 e AL J o (kq) (2.9)

and |
U~ Y. AL (e cos 8 a— DI ai(kq) — e sin 8o Y ai(kq)].
’ (2.10)

r; is the exact Aharonov-Bohm wave function [9], while i, represents the
contribution duc to the potential, but modified by the whisker.
Now we have to find the asymptotic form of s, and ), in order to have
ikq
W~ et thac et 4 —— f(a, 9). (2.11)
vVq
The asymptotic expansion of s, is well-known: for example Berry et al. [11] have
proposed an elegant method to get it by using an integral representation for J .,
in the complex plane. The result is

ikq -
i (kg cos e' 1 N o osin (o)
l\[Jl'“‘(fl(qu‘” uﬂ1+___ . CXI’[E(~+(¥17):|e i(6/2) . (2]2]
vq V27k 4 )
sm;

A straightforward calculation leads to the result

, . [+ « Sosin (arr) ;
Ii 116 5 “[GX [—i (ITF] l] — ¢ @/2) (2.13
,'E‘},;‘ L TN 0

Sll];




Vol. 57, 1984 Geometrical approach to the Aharonov—Bohm plus potential scattering 89

and therefore

lb N ei(kqumﬂ 'uH)_*_ei’k_q l
l vq vV2mk
X ex [ ~(7T+ )] Z e:lu[e [ |+« ] [] (2.14)
C 74! 4 X _l - P
P 4 am p |l+a] QT

where the sum must be understood in the sense of equation (2.13). The linear
combination of J; ., and Y, involved in equation (2.10) can be replaced by an
Hankel function

:1’_ Z e“”AJ o [eizal ] \(l“(x\(kq (215)
{
and using the asymptotic behaviour of this Hankel function [10]
ika [ _('rr+ )]Z [ [+« ]
= —7=—=¢exp| —i|-+o e exp| —
7q 2k p I 4 QT p [ ral T
x[e'*®rw—1]. (2.16)

Finally, adding equation (2.14) and equation (2.16), and comparing with equation
{2.11],

1 [T
Ha, ‘”“m“‘f’[“(f‘”)]
xZe”"[exp [i(— Yo 26 )]ul] (2.17)
- IH_ [+ . .

al

&)

Yy

This last expression shows that the phase shift due to the potential adds to the one
produced by the whisker. Moreover, by varying from 0 to —2whc/e the flux
contained in the whisker, the phase shift § becomes physically accessible for all
real values of the angular momentum. We still remark that for 6 different from
zero, the equation (2.17) gives the relation

fll—a,27—8)=e"9"2*"f(a, ). (2.18)

Thus if we know the scattering amplitude for 6 ]0, w] and a €[0, 1[, we can
deduce it for 0 €[ 2m|.

In the following section we shall be able to understand better the structure of
the S-matrix. In particular we shall see how it depends on terms which represent
the orbiting of the particle around the whisker.

3. Geometrical aspect

We first briefly recall the results obtained by us in a previous paper [4], but
by introducing them in a slightly different manner. Consider the one-to-one
canonical transformation

fiR?— {0} xR2— {0} >R xR - {0} x[0, 27[ xR"

. (3.1)
(g, p)— (1, Ak, €)
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¢
T=m f gp A = qePy — GyPx
P i (3.2)
Py P
= I J ! I e
K g p( £ 2”1

In order to be able to take (T, Ak, ) XRXR—{0}xRxR—{0} we have to
consider the ambiguity group of f [1,2,3]. This group is given by the direct
product of Z with the inversion group {+1}:

[n, jl(m. Ak, €)=(1, A; k + 27N, je), (n, j)eZ x{+1}. (3.3)

Thus, it is equivalent to know (g, p:n,j) or (1, Ak, £)eR*XR {0} xR <R {0},
Now we would like to quantise the transformation f. To this end we define two
orthonormal basis of L*(R”) (in Dirac’s sense), |7, A) and |k, &), related by

<K, € I T, A) = ei/fr(x)\"r“r]‘ (34‘)

2mh
The operators (T, L K, H) having respectively |7, A) and |k, £) as eigenfunctions
will be associated to the classical variables (1, A; k, £), which are also _the
eigenvalues of these operators. We shall write the momentum operator P in
cvlindrical coordinates by means of K and H:

K
P:VZH’I]H‘, (DhK—’Z‘n'[z—] (3.5)
v

where [x] denotes the integer part of x. P and ® do not represent a complete set
of commuting observables in L*(R?). This fact is related with the ambiguity group
introduced previously: indeed the unitary operators & and %,

(k, e| A )y =( +2m, & | P) o
(K, €| P ) =<k, —€ | ) (3.6)

commute both with P and ®. Thus, we can construct a new ket|p ;v )
(vel0,1[,je{xl})

. 1 . p°
(ke |p@iv ) =—7= [8(8—1—)

VLM
)2 P21 x/27
+j8(€ fj!—-—]S(K 4_277[_'{_] _‘;)elmﬂllhfL,,l (37)
2m 2

which is eigenfunction of (P, ®; sf, P) with eigenvalues (p, ¢:e'*™, j). This ket
constitutes a generalisation of the momentum representation and, using the
Poisson summation formula, we ecasily verify that it forms a new orthonormal
basis of L*(R%). We remark also that all the irreducible representations of the
(abelian) ambiguity group Z x{=+1} are exactly characterised by v [0, 1[ and
je{+1}. Moreover, v has a simple physical signification: by calculating the scalar
product (T, A | p. ¢; v, j) we see that it is just equal to the fractional part of the
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angular momentum in # units:
(T, A | ) 1 i—e [ ik]
b ; ’ = —¢CX —

i .p] . . p? A A
<leww [f i | riew [ p = o3 [3]- ) o

In addition from equation (3.7) we remark:

{k,e|p, ;v ). (3.9)

This relation is identical to the formula (14) of [7]; hence v fixes at the same time
the self-adjoint extensions of the operator id/d6.

With the variables (7, A;«, &) we would like to study the scattering of
particles by a potential of cylindrical symmetry.

Classically the S-matrix applies canonicaly the straight line (7, A ; k, £) on the
straight line (7', A; k', £) ((A, k, €) and (A, k', €) determine the asymptotes of the
motion while 7 and 7’ fix a point on them). It is described by the generating
function

G, e';1, M)=k'A—&'T—=2mA0(N) + 245, (€] (3.10)

i 27T

(k+2me|p,@;v,j)=¢'

where #8,(|le']) is the classical phase shift [12]. If we differentiate G, the time
delay and the deflection angle are obtained:

d d
T'—1=-2h—8,,(l¢]), k' =k =2m0(A) —2h— 8, (le"]). (3.11)
Je oA

To understand the term 276(A) in equation (3.11) we recall that the direction of
the incident particle is determined by p, while p'=p(G'/q’) (@' — =) gives the
outgoing asymptote. Now it is sufficient to consider free particles: figure 1 shows
that the deflection angle is either 0 or 27 and thus it depends on the sign of the
angular momentum, which agrees with equation (3.11). In quantum mechanics we
propose the following expression for the S-matrix:

, .
(', e'|S| T, A\)=——¢€xp [—l (k'A—€e'Tt—=2mAO(N) + 2718m(|£'|))] (3.12)
2mh h

Figure 1
Classical trajectories for free particles showing that the deflection angle depends on the sign of the
angular momentum: ' —k =2mwl(X)
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where & has to be calculated now from the Schrodinger’s equation. This form is
chosen in order to correspond to an unitary operator and to reduce to the
generating function (3.10) in the semi-classical approximation. In a real scattering
experiment an incident plane wave (given by p) is sent on the target and a
scattered wave is detected in the direction fixed by p’. Therefore, the interesting
S-matrix elements are (p’, ¢': v, j' |S| p, ©: v, j). From equation (3.12) a short cal-
culation shows that § commutes with the ambiguity operators .«f and 2. So we have

1
e v, i ISIp, e;v ) ::;8(p'—p)5(v' —v)8,;Svi¢’, ¢). (3.13)

From a mathematical point of view the S-matrix has been defined on the sheeted
phase space (k, £; 7, A) by equation (3.12). Thus, we can consider equation (3.13)
as the restrictions of the scattering operator to the subspaces labelled by the
indices (v, j) which distinguish the irreducible representations of the ambiguity
group.

Making use of the completeness relations

Jj dk de lx,s)(K.E\:Jj drdA |7, A1, A| =1 (3.14)

Sv(¢’, ¢) reads:

i A
. T S = -7 ) —
Sv(e’, @) rh & Jd)\ exp [z-wn(z h)]

m

And finally, again with the Poisson summation formula, we obtain

SV((P’ (P) :;l_eitrfw"*-¢—w) Zeil(-c' @)

2 T
4 2
chDI:i(* Lo u7r+25[,,,-(p—))]. (3.16)
[+ v 2m

Now comes the most important step of this paper: the comparison of the two
expressions (2.17) and (3.16). For 6 different from zero S, is proportional to f it
the following choices are made: v=a and 8 =¢ — ¢. From these identifications
we see that the S-matrix (3.12) describes exactly the scattering by a whisker of
magnetic flux and a potential, although the whisker was not introduced explicitly
in equation (3.12)! The effect due to the solenoid depends on the subspace (v, j)
which is chosen to project the S-matrix. More precisely, in absence of the
potential (i.e. when all the phase shifts are zero) the S-matrix (3.12) do not reduce
to the identity operator. In this case only its restriction to the subspace r=(
equals the identity operator, while its other restrictions give a pure Aharonov-
Bohm scattering.

In order to understand better the final formula (3.16) we shall still note that
the expression (3.15) is particularly convenient to make a semi-classical approxi-
mation. If we apply the stationary phase method to each term of equation (3.15)




Vol. 57, 1984 Geometrical approach to the Aharonov—Bohm plus potential scattering 93

we have to find some A which verify

- 2
¢ —¢=27mn +2176()\)—2hi61,\=(p—). (3.17)
dA T \2m
So the nth term represents the probability amplitude to detect the scattered
particule after an orbiting of n turns around the whisker. And because the particle
entwines n times the flux of the solenoid the total phase is modified by the value
of 2mnv (see equation (3.15)).

4. An example

It is well known that an analytic expression for the scattering amplitude can
be found for the potential y/q. In this section we shall show that the same
calculations are always possible if a whisker containing a flux —wfic/e i1s added to
the potential. To this flux corresponds a flux parameter a equal to one half, which
leads to a maximum Aharonov-Bohm cross-section (see equation (2.12)).

For 6 different from zero, the equation (2.17) gives

1 . [+3
1 g)= ———— i@ ¥ pile o [-(__2_+23 ) 4.1
f(‘_ ) \i211'k € ;e CXp |t \l+%l ) [ +3] ( )
3, 0)= — =MV 28,y ]sin (1 +3)6. 4.2
[, 0)= ~ o e ™e M L exp (28] sin (1) (4.2)

In our example, the phase shifts §;, have to be determined from the Schrodinger’s
equation

g =0. (4.3)
We verify easily that the regular solution at the origin reads
_ it _ikq 1| 1, My ) }
d;—ZC,e e q M(|l|+2+zﬁ,2|ll+1,—21kq) (4.4)
{

where M denotes the confluent hypergeometric function. Using the asymptotic
expansion for M[10], we obtain the phase shifts:

l‘([l|+;+i;—';%)
¢! = - (4.5)

. my
r(i0+4-i)

Evaluating these phase shifts at |[+3| rather than at |I|, we find an explicit
formula for the scattering amplitude (4.2):

5 I‘(l+l+i;—Z)
fG, 8) = ——— gilmitlg—ir 3 sin (1+1)6. (4.6)

- v2mk = _my)
F(l +1—1—
"Rk
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But this last sum is proportional to the trigonometric expansion of a Legendre
function [10], so

1
fG, 0)= —

; . s R TH (7] m
BT e V2 (w +3)e '”"”'(sm ;) P“u(co.\ ;), g =d4i- b
Y

hzk"
(4.7)

Next, we remark that the function P", can be expressed by means of a more
elementary function:

.y
(™)
lh-_k e l(lh.l( H) 2mvy/ h’ kK

i L. 6 = o ?i(n’/-“ \1“—7 '4(\’)
1, 6) V2k ‘ F(' , my) .0 2
3= = Sin =
- hk 2
And finally, separating modulus and phase
R Y | Tmy
3,01 =— cth . 4.9)
IfG. o)l 4E .6 hV2mE (
sin” 5

Sm 6  2my ) my
arg 3, 0) =——-——F7—1 ( —)+; g]‘(1+'—%)
e . 0) 4 2 m2mE "\g) AR "W2mE

—argl’(é L) (4.10)

hv2mE
This scattering amplitude possesses the following properties:

i) The change of sign of y affects only the phase (4.10).

ii) If both 4 and ®, tend to zero in such a way that the flux parameter «
remains equal to one half, then |f|* approaches the classical cross section due to
the potential vy/q:

> vl 1
L gp=2_—_ 4.11)
IfG. 6] 4E . , 6 (
sin” =
sin” 3
i) The limit y = 0 leads naturally to a pure Aharonov-Bohm scattering:
R h 1
fG 0 = (4.12)

27V2mE |, 0"
Slﬂ';

iv) Inversely, for |y| which goes to infinity, only y/q contributes to |f|*: in this
case |f|® equals again the classical cross section (4.11).

Now we understand why this example can be solved completely in an analytic
way: the scattering on the potential y/q and the Aharonov-Bohm scattering give
some proportional cross sections. And if both interactions are present. the factor

Tmy

gt ==
hy2mE

(4.13)

in equation (4.9) leads to the correct cross section.
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We have also to remark that in the limits 1i) and 1v) the Aharonov-Bohm
effect subsists in the phase (4.10):

arg fQ,2m—0)=arg f(3,0)+ 0 — . (4.14)

But unfortunately this phase remains inaccessible to the experience!

5. Conclusion

In this paper we have given a geometrical (group-theoretical) interpretation
of the Aharonov-Bohm effect.

The crucial point of the above considerations consists in the introduction of
the ambiguity group to which are associated the variables ‘deflection angle’ and
“time delay’: in fact this group reflects the topological structure of the phase space.
In this frame it should be certainly interesting to analyse the situation where
the configuration space is bored by more than one solenoid.

As pointed out recently by Amiet and Huguenin [ 13, 14], we remark that the
concept of generating functions clarifies certain analogies between the classical
and quantum mechanics. We shall note particularly the similitude between the
formulas (3.10) and (3.12) and the possibility to make a semi-classical approxima-
tion with equation (3.15).

In a next stage we think to replace the cylindrical potential by a spherical
potential to treat the three-dimensional scattering. In order to use the formalism
developed in this paper, the spherical harmonics have to be generalised for
non-integer indices.
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