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Exact decay of correlations for infinite
range continuous systems

By G. Benfatto,*) Dipartimento di Matematica,
Universita di Roma, Italy

Ch. Gruber and Ph. A. Martin,) Institut de Physique
Théorique - EPFL. PHB - CH-1015 Lausanne, Switzerland

(25. IX. 1983)

Abstract. We give the exact asymptotic form at low activity of the correlations p(x, - - - x,,) of a
classical fluid of particles interacting by two body potentials ® with integrable power law decay.

These low activity results are extended to the whole domain of activities and temperatures where
the state is unique and the (truncated) correlations have a power law decay. For homogeneous
systems, this yields in particular a rigorous proof of the formula

p(x,x3) ~ p2(1—BP(x, — x,)(B 'px)?), |, = x5 — 0

with x the compressibility. Moreover it is shown that for all activities and temperatures, the decay of
the correlations cannot be faster than that of the potential when x#0.

0. Introduction

The study of the asymptotic form of the correlation p(x, y) is an old problem
in the theory of fluids. It is of interest since measurements of p(x, y) can yield
informations on the pair potential between atoms or molecules.

In this paper we consider a classical system of particles in R", with pair
potential ® such that ®(x)~d |x|™, y>v, as |x| = . Assuming that the direct
correlation c¢(x) behaves as —B®(x), |x| — =, Enderby et al. obtained in 1965 the
relation |x —y["p"(x, y)~—dBp*(B 'pxr)* as |x—y|— [la], where p"(x,y)=
p(x, y)—p(x)p(y) and xr is the compressibility. On the other hand a low activity
study of p(x, y) led Groeneveld in 1967 to conjecture that |x —y|* p"(x, y) should
have a limit as |x — y| — e [1b]. An argument for the asymptotic form of ¢(x) can
be found in Verlet 1968 [2a] and a formal proof of these properties was given by
Stell in 1977 [2b].

Since these early works, a large number of authors have studied the decay of
the correlation functions for systems with long range interactions. Almost all these
investigations were concerned with lattice systems and the results were restricted

*)  Partially supported by CNR-GNFM and Ministero Pubblica Istruzione.
) Partially supported by the Swiss National Foundation for Scientific Research.
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to high temperature. Typically their analysis have shown that, at high tempera-
ture, the correlation functions have a power law decay (if the potential has a
power law decay) and bounds on this power have been obtained. Furthermore, it
has been shown that the correlations decay in the same weighted summability
sense as the potential. For a survey of the literature up to 1979, we refer to the
article of L. Gross [3]; among the more recent works, we mention those of R.
Israel and C. Nappi [4] and C. Cammarota [S]. Results in the whole domain of
uniqueness for the equilibrium state have been obtained by H. Kiinsch [6], while
J. Imbrie obtained bounds on the decay in the low temperature domain for
1-dimensional spin systems with interaction J(x, y) =|x —y| ™ [7]. For the case of
continuous systems we recall the results of M. Duneau and B. Souillard [8]; more
recently, assuming some regularity property of the correlation functions, it was
shown that their decay cannot be faster than that of the potential for all values of
temperature T>0 [9, 10, 11].

This last result should be compared to the analogous property for ferro-

magnetic spin 5 lattice systems. Indeed in this latter case the Griffith inequality

yields [25]
(U(]0x> = tanh B‘I(bc = B‘I()x’ lxl —> 0,

In this article, we first give a rigorous derivation of Enderby’s result which is valid
at low activity (Section 2). Our result is in fact more general since we obtain for
any (n + m)-point functions the exact value of AY(p(x; * - * X,y + Al * =y, T All) —
p(xy - x)p(y,+Ali - -+ y,, + A1) in the limit A — o, (Proposition 1 and Corol-
lary). This result is derived using the low activity expansion: we show that the
limit A — o can be permuted with the sum and we evaluate the limit for each term
of the series.

In Section 3, we discuss the decay property for arbitrary values of activity.
We prove under reasonable hypothesis that the clustering cannot be faster than
the decay of the potential if the system is compressible, i.e. if xr# 0. Moreover, in
the domain of uniqueness of the equilibrium state, it is shown that if

A%(p(xy - Xyt AL - - -y, FAD) —p(xy - - - x,)p(y1 + AT - - -y, +AL))

has a non zero limit when A — o, then necessarily a =y (=power of the
potential) and the asymptotic form is the same as in the low activity domain
These properties are obtained by an asymptotic analysis of the Kirkwood-
Salsburg equation. We should stress that all our results are derived without
assuming translation invariance of the state, but under the condition that the
potential is integrable i.e. y > v; furthermore it yields a rigorous proof that unde:
these conditions c(x)~—B®(x) as |x|— . It is interesting to compare these
results with the decay property of Coulomb systems for which y = v —2 and this is
done at the end of Section 3 for different situations. In the case of exponentia
interactions, or finite range and hard cores interactions, our analysis does no
apply. In the latter case, it is well known that the correlations have an oscillatory
behaviour at infinity [2b, 24].

1. Definitions

We consider an infinite system of classical particles in thermal equilibriun
defined by (T, z) (T = temperature, z = activity) and moving in some domain & o
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R". The domain & may be the whole space R”, or some region of R” bounded by
hard walls. We require that 9 extends to infinity at least in some direction @ and
that the limiting ensemble lim, .. (2— Aii) =9 exists.

The particles interact by means of a symmetric, translation invariant, pair
potential d(x, —x,) = ®(x,—x,) having the following properties:')

Y ®(x,—x)=-nB foral B=0 (x,,...,x,)cR" (1a)
Il=i<j=n
lim AYP(AX)=d(x), uniformly with respect to x (1b)

where d(%) is continuous and not identically zero on the unit sphere || =1; vy > .
Notice that (1a) and (1b) imply that |e #®* —1] is everywhere bounded and
for all B

s C(B)
ﬂfb(x)_l <= 2
e | s (2a)
j dx |e PP 1| =b(B) <> (2b)
Let X, Y, ..., denote finite sets of points in R” and | X|, | Y| their cardinality.
We write Y™ =(y,,..., y,) when it is necessary to specify that Y has n points

and

‘[ dY(n):L dyl - Ldyn
D

2. Clustering properties at low activities

In this section we prove that, at low activities, the asymptotic behaviour of
the truncated correlation functions is the same as that of the potential.

Let G% be the set of fully connected graphs with | X|+n vertices XY™, with
X fixed and y; arbitrary in 2. We denote by g a graph in GY%, and by [ a line of
the graph g. Any pair of vertices in g is linked by a chain, i.e. a sequence of
consecutive lines.

To each g we associate the product of Mayer functions:

FR(XYm)):H (e*BCD(l)_l) (3)

leg
F,(x)=1 when g consists of a single vertex x.
In this section, the truncated correlation functions are defined by the series
oo | X|+n

pT(X)= Y 2

n=0 n!

L.(X) (4)
with

L(X)= Y | dY™F(XY"™) n>0
" (5)
I(X)= Y F(X)

geGyx

5 We do not assume rotation invariance of ®(x).
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It is well known that the series (4) converges absolutely for z <z,. h fact,
one can show that

L(X)<(X|+n—-1)! AXI-tpn

where A and B are functions of 8 only; these functions depend on the techiques
used for the estimation of (5) (see e.g. [12], [13]). Of course z, goes to infnity as
B goes to zero.

We denote by X*, or X+ A#i, the translate of X by Ad, i.e.
X*=X+Al=(x;+All, ..., x, +Ald)

Our main result is given in Proposition 1:

Proposition 1. If the potential satisfies the conditions (la,b), then pr any
X\ #D, X#, and 0<z<z,,

lim A"p™ (X, Xz +A8) = —Bd(@)H" (X)H"(X>)
where

HT(X) = X p"(X)+ L dyp™ (Xy) = 2= p7(X) ©)

and HT is the same quantity as H™ but defined with respect to @; let us note tiat

HT(X)= lim HT(X+A) and p"(X)=lim pT(X + A1)

Corollary. Under the conditions of Proposition 1
ll_rg A [p(Xy, Xp+ ) — p(X))p(X,+ Al)]=—B d(ﬁ)H(XJH(Xz)
where

H(X) = |X| p(X-)+L Ay ()~ p (B0 uly] (©)

To establish the proposition we first compute explicitly in Lemma 1 the Imit as
A — o of the integrals AL, (X,, X3) occurring in the development (4), i.e.in
oo [ X +HX,l+n
Mo (X, X3 = Y ——— NL(X,, X5) (7)
n=0 n.
Then we give in Lemma 2 a bound on the nth order term of the series (7) miform

with respect to A which enables us to permute the limit A — o and the summation
in (7).

Lemma 1. If the potential satisfies the conditions (1a,b), then
}im AL (X, X, +Al)

n | _
=—gd@) ¥ "—C‘I,(p+|xll)(q+|X2|)I,,(X1)Iq(xz> ®)
p=0 *
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Lemma 2. Under the same conditions on the potential, there exists C,>0
independent of A such that

1 oo
— I\VL(X,, Xo M) <G, with Y, z"C, <%
n:

n=0

for 0=z <z,

The result of the proposition is then immediate since Lemmas 1 and 2 imply that:

IX [+ X, | +n

llm AMNpT(X,, X, +Ai) = Z hm AL (X, X5+ Ai)

o _|X,|+p

=—B d(a)( Z
oo |szlr+q

(X

> I (XD (X))
=-Bd@H"(X)H"(X)) (9)

This last expression follows from the definitions (4) and (5) which give

L.aX)= ¥ dyLdY‘“’FR(XyY‘"‘)

geGx"'

(p+|xll)1p(xl))

=| dy X | dY™E(XyY™)
5 geGlx,
1.e.
“9p
and thus
) Z|X|+n o0 IX|+n+1
2 nl,(X)= ¥ — Ldyln(Xy)
n=0 nN: n=0 h:
=£ dyp " (Xy) (11)
<D

where all sums are absolutely convergent for 0 <z <z,. The rest of this section is
devoted to the proof of Lemma 1. The proof of Lemma 2 and of the corollary can
be found in Appendix A.

Proof of Lemma 1

We divide the domain @ into three disjoint regions, @ = 2" U2 UZ$" with
PN ={x eD||x| < M4} around X, and @’ ={x €D | |x — Ait] <A/4} around X3. We
then have:

3
Lde: 2 [ dyr"L dy,
ay,na, =1 @) ()

“1 n

Furthermore for any subset I <{1,2, ..., n}, we denote Y; ={y,e Y™ |ieI}
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and xM(Y)) =TTicr x(y;) where x is the characteristic function of 2, a =
1,2,3.

The idea of the proof is that only the graphs in the definition (5) of
I.(X,, X5+ Aa) with just one line connecting 2 to 2%’ and no vertices in 25"’
will give a non-zero contribution to AYI, (X, X5+ A1) in the limit A — =, Indeed,
in this case only, all the Mayer functions are non-vanishing except for the one
connecting 2" with @5 which is of the order 1/A”.

We thus decompose I,(X,, X3) as the sum of two contributions

with
nxxy= Y ¥ [ an| avkeaxay) (13)
I={1---n} geGx, A Y2}’ Dy

where Y; = Y/Y;. In (13) the integration variables Y; ={y; | i € I} remain close to
X, and the integration variables Y, close to X3.

On the other hand I}(X,, X3) is characterized by the fact that there is at least
one variable y, in @3, r=1-- - n.

In the following subsections (i) and (ii) we treat separately the contributions
I, and I, showing that the first one gives the result of Lemma 1.
i) From (13) we have

NIXLXD= Y Y

I<{1---n} geGS‘(‘ x4
X J dY’I dY;x P (YDxS (YDA F(X, Y X3Y))  (14)
v RY

For a given I={1,..., n} we consider the set £, of lines linking one vertex in
X,Y; to another vertex in X3Y}; clearly || = (1X,|+|Y:D( X5+ Y;]). Any [ in
&Ly is of the form | =v—w—Ail with ve X, Y}, we X,Y), and since y; € 25" — Aid
we have |v|<A/4, |w|<A/4 as soon as A > A,; therefore

A
|l|2)\~|v—w|35,>—|v—wi

and thus from (1b) and (2a)

lim A[e B¥ 0~ )=~ d(a) (16)
- C C
~B<b(v-w"-)\u)_1 < =
2 | (,\) lo—wl" +1 i)
=] *1
v
and
,\y le—B(D(u—w—*Au)_llsM (18)

For each I<{1,2, ..., n} in the sum (14), we distinguish the contribution of the
two following classes of graphs:

(a) g has only one line in £,
(b) g has at least two lines in £,
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and we decompose I, accordingly, i.e.
I:I(XI,X;_\):I:I(a)(XlsX%)_’_I:l(b)(Xl’X’)z\) (20)

The class (a) is the set of graphs of the type g =g, Ug, Ul with g, € G‘}'(", g2, € G',,{'z
and l € ocgl_].
For such graphs one has by (18)

A IF (X0, X3, Y3 Y9 = A7 |Fy (X0 YD F, (X Yole *0—1]
<M |F, (X, Y)F, (X, Y))| (21)

showing that the integrand in (14) is uniformly bounded by an integrable function
of Y;Y,. Moreover, by (16), this integrand converges pointwise to

=B d(&)Fy_,(Xl Yr)ng(Xz Y xa( Y xa(Y))
Therefore by dominated convergence

lim AT 9(X,, X3)

A —o

=—Bd@) Y. (I+|1X.D(J]+]X)

x( y L dY,F, (X, Y,))( Y

LIE('xl 226 GR,
which is identical to the result of Lemma 1 when we note that the terms in the
sum (22) depend only on |I| and |J|.

We show now that the term A1 ®(X,, X3) converges to zero as A — . For
each graph of the class (b), we select a pair of points (x,, x,), x; € X;, x,€ X5 and a
chain linking x, to x,+ Ad. This chain has certainly a line | in &, and therefore
by (18)

AY ng(Xls 33 Yla Y}NSM |Fg/l(Xls 33 Yls Y.?)' (23)

The graph g = g/l is necessarily of one of the following type:

I'y: g belongs to G x»

I';: g is the union of two disjoint connected graphs g, g, g, € G%, g€ G%
having vertices XY, X'Y“, with X# O, X'# @, XUX'=X,U X},
XNX'=D,p+q=n

Since g is of the class (b), g/l has still a line in &, ;, and by (17), its corresponding
Mayer factor vanishes as A — . Thus, by (23), F,(X,, X3, Y, Y)) tends point-
wise to zero as A — . Moreover, F, (X, X3Y,Y}) depends on A only through the
Mayer factors involving lines in % ;. Each of them can be majorized uniformly
with respect to A by the integrable function (17). Hence, F,(X,X3Y,Y)) is
majorized uniformly with respect to A by a product of integrable factors as-
sociated to the lines of g/l. Because g/l is either connected, or the union of
connected graphs with roots in X, U X3, this function is jointly integrable in Y;Y,
and Ilm)\_,c,c AIP(X X5 =0 fol]ows by dominated convergence.
i1) We treat the second contribution in (12). Let

L dY,;F, (X,Y; )) (22)

fg!a_@(u)\li -U@fm}:] [a]:(alv"-’an)) ai:132, 3;
I"(X,, X3) = Z" 3 j AY™E,(X,, X3, Y™) (24)
[e] ge G 3 (0]
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where )" is the sum over those [a] such that there is at least some «, € [a] with
a, = 3.

Let us choose once for all a pair (x,, x,), x, € X, x,€ X5; for a given graph g
there exists (z,...,z,)=X,UX3UY such that (x;=2z,25...,2, 1,
x,+At=2z,) is a chain between x; and x,+ Adl. Since A —|x; —x,|<¥? ! |l,| for
A > A, there exists some k, 0=k =p—1 such that

/\—-|x1—x2|> )\_\xl_le
p—1 n+|X,|+|X5—1

| =zis1—z|= (25)

and with (2a)
C

( A —|x1— x| )7_*_1
n+|X1|+|X2t_1
with C, independent of x,, x, and A.

We write (R*)" =JiZ} P« as an union of (non-disjoint) domains %, defined

|Av(e~6¢(l,‘)_ 1)| =\

<= Co(n +|X,|+]X,| 1) (26)

by
A—|x;—x,
9”={Y‘")l=+— > = } 27
k Hk‘ \Zk 1 Zkl n+|X1|+|X2|—1 ( )
Clearly (25) and (26) apply on %, and hence for the given graph g:
p—1
AY L dY™F,(X,, X3, Y)‘s,\* Y, dY™ |F (X, X5Y™)|
th] k=1 “@3INP,

p—1
sco(n+\xli+|le—1)v):L 4Y™|E,, (X, XY™ (28)
k=1 “a})

It remains to show that each term of the sum (28) tends to zero as A — o, Notice
that for each k, g/l, is of the form I'; or I',; thus in both cases g/l, has a subgraph
g with the following properties:
— g =, t, is the union of disjoint trees .
— the t, have vertices of the form (v,, y,) with v,€ X, or v, e X3, Y, 2 Y™
and UJ, Y. =Y™.
Then, we have

Fr X X3Y )| < AT |Fs(0.Y)) (29)
where A depends only on g/l,, and with (2b)

j dY, |F,(v,Y,)| = b™! (30)
We know that there is at least one integration variable y, in (28) which

lies in 2. Call t, the tree to which y, belongs.
Then with (29) and (30) we get for the graph g

L dY™ |F, (X, X3 Y ™)< Ab""Y”J. dY x5 (y,) |F, (v, Y))| (31
Xal
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Let (U1 =V, ¥, Yi» - - - » ¥j, — ¥») be the chain which connects v, to y, in t; and
perform all other integrations in t,. We find after a change of variables

[ AY 1 x(3,) | (0, YY)

$b1‘t’|l—<u—lj d)’,‘, . dy]-” dYngM(Yr)

X|e B0 1| -+ - [ B0, — 1| [ B _ 1| =

= blY.\ﬂl 1I dy1 . e dyq[J' dYX(:;M(Y"'Ul) 187&1’“**)*“)__ 1|]
Xleﬁﬁd"“""’l)—llIe"“""'i’—ll (32)

Since either v, =x,€ X, or v, =x,+Al, x,€ X,, we have |y+uv,|<|y|+]|x,| or
ly+v,—Ali]|=|y+x,] and in both cases lim, .. x5 (y+v,)=0. Therefore
§ dyx$(y —v,) e #*¥ v —1] also vanishes as A — % and is bounded by b inde-
pendently of y,. Then the expression (32) vanishes as A —% by dominated

convergence, and this concludes the proof of Lemma 1.

3. Kirkwood-Salsburg equation and clustering property

In this section, we consider equilibrium states defined by means of the
Kirkwood-Salsburg (K-S) equation. Assuming that the potential satisfies
lim, _... A"¢(Ait) = d (i) with y > v, we show that the correlation functions cannot
have a clustering which is faster than the potential; furthermore, if A*p™(X,, X5+
Al) has a limit when A — % with a <+ then this limit is necessarily zero whenever
the state is unique at a given (T, z), i.e. the clustering cannot be slower than the
potential. Therefore, if the correlation functions have a clustering with a power
law, then necessarily the decay of the correlations must be the same as the decay
of the potential. Finally if A¥p"(X,, X, + Ail) has a limit when A — =, then

lim ANpT(X,, X, +Ai)=—Bd@HT(X,)H"(X,)
where

H"(X,) and H"(X,) are given by equation (6)
Our starting point is the K-S equation [12]

p(xX) = z¢ X £ aYK(x: V)p(XY) (33)
where: ’
p(P)=1
Wx;®) =0  W(x;X)= ) d(x—x)
K(x;d)=1 "

K(x;y)=e BPxv—1 K(x;Y)= H K(x; y;)

vieY
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and
- 1
L dY =1+ ), —dei---dyn
nzln!

from which we obtain:

P (XX, Xa) — p(X))p(xXy) = ze PWEXX) { dYK(x; Y)
P

X[p(X,X5Y)— p(X)p(X2Y)]

+p(X,) « ze BV eV EI—1] L dYK(x; Y)p(X2Y) (34)
Our main result is given by the following proposition:

Proposition 2. If the two-body potential ¢(x) satisfies the condition (la, b)
and if p, solution of the K.S.-equation, satisfies the following conditions:

1) lim p(X+A) =p(X) for some 0 such that Alim P—-AGL=D

2) lp(X)|<&X"  for some £>0
g%+

3) |p(Xy, Xo+All)— p(X))p(X,+AR))| S AKX+ 1

where

d(X; X3) = min |x; — x|

X2€X2

then

a) if the fluid is compressible, i.e. xr>0, the decay of the correlation
functions cannot be faster than that of the potential

b) if the K-S equation has a unique solution, and if

4) A[p(X,;, Xo+Al)—p(X)p(X,+ A1)] has a limit when A — > for some «,
r<a=svy,
then

lim A*[p(Xy, X5+ M) — p(X))p (X + Aid)] = —B d ()8, ,H(X)H(X>)
where H(X,) and H(X,) are given by equation (6') and

{1 a=vy
0 a#vy

oy =

Remarks

1) It is known that for superstable potentials condition 2) is always satisfied
[14]. Moreover, following the proof of lemma 2 (Appendix A) and using the
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corresponding graphical structure, it is easy to see that
AY |p(X,, X5+ Ad) — p(X))p(X, + Aid)|
< CoQ, 2" XN+ X |+ X0 = 1) U (n + | XD (n +| Xo)a, (X, X, +Al)

where @, (X) are the coefficient of the activity expansion

p(X) =Y "Xz (X)

n

Therefore using the inequality (see [12], equation (4.27))
l&n (X)l SAIXI*an

condition 3) is satisfied with @ <+ in the domain of convergence of the activity
expansion.

2) For superstable potentials, it can be shown that y; is strictly positif if the
state is invariant under translations extending the arguments of Refs. [11, 15]
from infinite spin systems to particle systems. We thus recover the result of the
prop. 9 of [9] without the regularity assumption which was needed in this previous
work.

3) We have taken a >v which corresponds to the fluid phase (outside the
phase transition points) where one usually assumes that the correlation functions
p' are integrable.

To establish Proposition 2, we study A*[p(X,, x*, X3)—p(X))p(x*, X3)] in the
limit A — o using equation (34).

Lemma 3. If the conditions of 1)-4) of Proposition 2 are satisefied,
D Jim At [ YOGS VX, X3 Y)-e(X)e(X3Y))
D

A —>00

= —BL dY™K(x; Y)ga(X;; X, Y)

5.8 d(a)nL dY[p(X,y)
—p(Xl)p(y)]Lj dY" VK(x; Y)p(X5, Y) (35)

where g; is defined by
lim A%[p(X;, X3) =~ p(X))p(X3)] = —Bgu(X1; X5) (35

2) A“L dY™ |K(x; V)| |p(X0, X3, Y) = p(X)p(X3, Y)

$_§|X.1+|X:|+nnvCT |Xl| (36)
Note that
g2:(X,;P) =g, (P; X5)=0

As we shall see in the proof of this lemma, the conditions (1) and (4) are the only
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conditions required to obtain the limit (35); the conditions (2) and (3) are necessary
to obtain the bounds (36) which are necessary to permute the limit A — o0 and the
sum over n in (34).

Proof. We consider only the case a =+y; the result for a« <y follows im-
mediately using the fact that if a <1, then

}im A*D(Aa)=0

The idea of the proof is the following:

Let B* be the ball centered at the origin with radius A/8; the K-S operator
K(x+A#; Y) can be non-zero in the limit A — o only if all y, € Y are outside 8*
and in this case [p(X,, Xo+Al, Y)—p(X)p(X5+Al, Y)] will be of the order
1/A"g.(X;; X,Y); the integral over [B*]° will thus give the first term of (35).
If on the other hand one variable y;€Y is in 8" and Y,=Y/y,c[®B"]
then K(x+Al; Y)=K(x+Ali;y,) K(x+Ai;Y,) wil be of the order
—BATYd(W)K(x+Aii; Y;) and [p(X,, Xo+ A, Y)—p(X,)p(X,+ A, Y)] will be of
the order [p(X,v;)—p(XDp(v))]: p(X5+ AW, Y,); therefore, the integral over this
domain will give the second term of (35) with the factor n coming from
i=1,...,n. Finally for Y® <Y, k=2, in " and Y/Y® outside the ball 3B*,
then K(x+Adi; Y)=K(x+Aii; Y*) - K(x+Aii; YYY®) will be of the order
(A - K(x+Afi; Y/Y™) and these terms will not contribute. The technical
details of the proof are given in Appendix B.

Lemma 4. Under the conditions of Propositions 2, the functions g;(X;; X5)
satisfy the following identity for a <-v:

8a(X,; xX5) = Oeuy d(G)H(X,)p(xX3) + ze BV Lj dYK(x; Y)g.(X;; X5Y)

(37)
where

H(X,) = |X,| p(xl)+L dylp(yXy) — p(y)p(X))] (38)
Proof. Using (35"), Lemma 3 and the assumption |p(X)| < ¢!, we have
lim Aa{ze—ﬂwwf‘“nxz*’ L AYK (x + Ait; YY[0(X, X3Y) — 0(X)p(X2Y)]

= _BZC_BW(J‘;XZ) L dYK(x; Y)ga(X,; X,Y)

~28, 6 FWxXIg d(ﬁ)L dy[p(yXl)Hp(y)p(Xl)]L dYK(x; Y)p(X,Y)
(39)

=—Bze PWEXD {5 dYK(x; Y)ga(X,; X, Y)

~5,,84(@ | dylo(yX)— p(y)p(X)IA(xX) (40)

D
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Equation (39) is justified because of the bounds (36) which implies that
A aY Ko VXX - p P Y| <

1
<IX,| £XY — i (6C)" <

We can thus permute the limit A — % with the sum in fdy =Y, 1/n!{dY™ and
apply Lemma 3 to each term. Equation (40) follows then from (39) using the K-S
equation (33).

We thus obtain from equation (34)

lim A*[p(x +Ad, X, X3)—p(X1)p(x +Au, X3)] = —Bga(Xy; xXa)
= —Bze"“"""‘”{5 dYK(x; Y)gi(X,; X2 Y)
~6.,84(@) | dy{p(3X)~p(3)p(X,) XX

+p(X))ze VI8, B d(d) |X1|]£_,A dYK(x; Y)p(X,Y) (41)

The result of Lemma 4 follows then from the fact that by equation (33) the last
term in equation (41) is

— 8,y B d() | Xy| p(X1)p(xX5)
Our next goal is to show that (37) has always the solution
g2(X1; Xo) = d(@H(X)H(X,) (42)

and furthermore this solution is unique whenever the K-S equation has a unique
solution, i.e. whenever the equilibrium state is unique.

Lemma 5. If the K-S equation has a unique solution, then (37) has at most
one solution. Furthermore, this solution is zero if a <v.

Proof. Let & be the K-S operator defined on the usual space &=
{f = (fo, fr(x), fa(x1, x2), .. .)} [12] defined by:

(#f)o=0
910 = ze %< L ayK (e VXY) 3)
Then the K-S equation is simply
p=38x0t+Xp (44)
while equation (46) with G(X) = ga(X,; X) becomes
Go=0

G(xX) = 8, , d(WH(X,)p(xX) +(HG)(xX) (45)
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Since the K-S equation has a unique solution if and only if the operator & does
not have the eigenvalue 1, we see that under the same condition, there is a unique
G satisfying (45) and this solution is zero if a <y.

Lemma 6. If o =+ the function g3(X,; X,)=d(@H(X,)H(X,) is always
solution of equation (37).

Proof. Let us first compute:

HETET Baad s {_ dYK(x: YYH(XY).
<D

[=ze AW £ dYK(x;Y)
)

X {(ixl +|YDA(XY) + [ dylp(yXY)— 5()’)5(XY)]}

%D

Using (33)
I1=|X| 5(xX)+ze‘BW"“x‘L dyK(x;y)L dYK(x; Y)p(XyY)
eze e[ ay [ avkes VIBOXN-50)500)]
~1X1 500+ [ dyeP® (a3
o[ ey~ 5)p60)

=1X] 50X+ |

o~

D

dy[p(xyX)—p(y)p(xX)]
we thus have:
d()p(xX,)H(X,) + ze PV&XD d(a@) ]E_ dYK(x; Y)H(Xl)I:I(XzY)

= d(a)H(Xl){ﬁ(XXZ) +|X5| p(xX3) + L dy[p(yxX,) - 5(y)p(xXz)]}
= d(ﬁ)H(Xﬂﬁ(XXz) = g3(X,; xX5)

which concludes the proof.

Proof of Proposition 2

a) If the clustering is faster than the decay of the potential, i.e.

lim AY[p(X), X3)~p(X))p(X3)]=0
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then Lemmas 3 and 4 apply with a=v and g, =0. Hence equation (37)
implies H(X) =0, i.e. the following sum rule

| X p(XH_[ dy[p(yX)—p(y)p(X)]=0 (46)

P

and in particular that for all x in @

p(x) +J dyp'(x,y)=0 (47)

Thus the compressibility y; defined by

_ | ]
My = E lim = j dx[p(X) +J dyp' (x.‘f')]
p- 2 |A] ) »

o1
p = {'T Tl J’ dxp(x)

is identically zero, which contradicts the assumption of compressible fluids.
b) follows immediately from Lemmas 5 and 6.

Under the conditions of Proposition 2, we find that the direct correlation function
c(x) defined by the Ornstein—Zernike relation

p"(x) =pEC(x)+pj’ c(x—y)p"(y)dy (48)

has the well known asymptotic behaviour ¢(x) ~—B®d(x) as |x| — .
Precisely we have

Proposition 3. In an homogeneous state and under the conditions of the Prop.

%
a) The decay of c(x) cannot be faster than that of the potential
b) If A“c(x+Adét) has a limit as A — > for some o, v<a <+, then
Jim Ac(x +Al)=—4,,8d(0)
Proof. Since c(x) is integrable, (48) implies
H(l*pJ‘ C(x)dx):p>() (49)
with

H=p+ j dyp'(y)

Hence H#0 and pf c(x) dx# 1.
a) Multiplying (48) by A7, taking the limit A —2 and using

lim A" (x+Ad)=—-Bd(a)H?
R
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gives
-Bd(a)H?>=—-3 d(ﬁ)Hij c(x) dx

This implies either H =0 or pf c(x) dx = 1, which contradicts (49). ,
b) If a <<y, multiplying (48) by A* and taking the limit yields, with c(&) =
lim, . A%c(x+Al)

0=p’c(i)+ pc(ﬂ)j dyp™ (y) = pc(t)H

and hence c(i1) =0.

Taking now a =y, the same limit gives

—Bd(WH?=p’c(d)+ pC(rft)J dyp'(y)—B d(ﬁ)Hzpj c(x) dx

and thus, with (49) c(it) = —B d(i1).

Concluding remarks

1) It is of interest to compare the situation of Proposition 2 with known
results on charged fluids. Whereas the sum rule (46) cannot be valid for compres-
sible neutral fluids with integrable potentials, they are true identities for the one
component Coulomb system (Jellium). In the latter case, they express the typical
screening properties of the system’s charges in the fluid. This is in close relation
with the fact that the square of the particle number fluctuations are extensive in a
neutral fluid (outside of critical points), but the charge fluctuations are always
abnormal [9, 19, 20]. Sum rules analogous to (46) (with summations on charges)
hold in several component Coulomb systems (y = v—2) and in general for long
range potentials v —2=<+vy < v —1 whenever the state has an integrable clustering
[9, 16, 20].

2) In an equilibrium state of a semi infinite system bounded by a plane wall,
ie. @={xeR"; x' =0}, and translation invariant parallel to the wall, we have

lim ApT(x,, xo+Al) = —d(Q)p*xr

X [p(xa)-**[ dyp"(x,, y)]

when @ is perpendicular to the wall and

lm Ap T (xy, x,+AG)=—f d(ﬁ)(p(h)*’[

D

-

. (p(x2)+ [ dyp" (x3, y))

when @ is parallel to the wall, showing that the decay parallel to the wall is the
same as the decay in the bulk. This result has to be compared to the following
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situations:

(i) the case of an inhomogeneous state in R" with a planar interface, where
the decay parallel to this interface cannot be integrable [17, 21, 22].

(11) the case of a semi infinite Coulomb system where the decay parallel to
the wall is known to be weaker (|x| *) then the decay in the bulk even at low
density [18, 23].

Appendix A

Proof of Lemma 2

Let us consider a graph ge G x,. By the same argument used in the
derivation of equation (28) (the domain of integration played there no role), we
can write

p—1

MI dY“”IFK(XIX';Y‘)\ch(n+|X1[+[xz|-—n*ZI dY ™ F (X, X3Y)
<D D

k=1

(A1)
with g/l, belonging to the class I'y, or I',. Thus:
p—1
A LXK X3 <con+I1X | +1Xa - 1) Y X [ dY™E,, (X, X5 Y}
2eGR, xak =1 %@
o (A2)

If g/liely, JdY"F, (X,X3Y) occurs exactly once in the development of
p'(X,, X5). If g/l, eT5:

[ dY " F, (X, X3Y) = I

] D

dY”"Fm(X’Y“”)L dY CF(X"Y)

2,€G%, 2.€G%, p+tq=n, occurs exactly once in the expansion of
p (XNp"(X") for some X'# O, X"+ @ with X' UX"=X,UX?3

However, each of these contributions can occur several times in (A2). If
g/l €[5, one has to take in account the different ways of dividing Y in two sets
Y® and Y with p +q = n. Furthermore one has to consider that, by removing a
line [ in a chain between X, and X5 in a graph ge G x one gets the same
graph g/l a number of times which is bounded by (n+|X,|)(n+|X5|). Thus,

’\”;l; IL(X, X5<M(n +| X[+ X - DY (0 + X )(n +|Xo)a, (X, X3 (A3)

where {a,(X,X3)}, n=0, are the coeflicients of the low activity expansion of

pT(X, XN+ Y pT(XNpT (X" =Y z"a, (X, XD) (A4)
X'uX"=X,X* n=0
X'NX"=
X '#AOX #

The convergence of the Mayer series implies that |a, (X, X3)|<b, with b, inde-
pendent of A and } ,z"b, <=, for 0=z <z,(B). This observation and (A3)

immediately imply Lemma 2.
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Proof of the Corollary of Proposition 1

Since
Np(X, XD —-p(XDp(XD]= 2 p"(XXDp"(Xi/ X, (/X))
o R X
we have:
lim A Tp(X, X3~ p(X)p(XD)] = —gd@| ¥ H'(X)p(Xi/XR)]
o X =X,
Bui [ I arsopos)]
Y H"(X)p(X,/X)
G+ X X,

= X [lf.lp'r(R.)p(Xl/)?l)JrJdypT(yXl)p(Xl/f(])]

GEX =X,

-Y 3 p"‘(xmp(xl/)?xnjdy T o (yR)p(X./X,)

xeX, X<X,/x gEX =X,

=) [p(xx)—p(X)p(X1/X)+p(x)p(X./X)]+_[ dy(p(yX,) —p(y)p(X,))

=X p(X)+ L dy[p(yX,)—p(y)p(X))]=H(X))

and hence the result of the corollary.

Appendix B

Proof of Lemma 3

With B* ={y ||y|<A/8} we decompose the domain of integration @" of the
Y into (n+2) disjoint domains:

9 =a®') 9N I,
i—1

where

A

ég>={Y“”c@"”;lyi|>§ forall j=1-- -n}

(A) ! (n) (n) /\ A 4 .
PR =YD yl==,|ly|>= forall j#i

L 8 8
We then have:

I dY(n) :L LiY(n)_+_ Z [ dY(»l)+J’ dy(n)
D" >’ i=1 Y2 D0

In the following, we take

A>A,=32- sup |z

zexX, X,
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1) Let us first consider the contribution due to 2’. Since |y;|> /8 for all
j=1,...,n, we have d(X,; X3Y)=\/8—A/32>)/11;

m[ dY™ K (x + Adi: Y)[p(Xy, X3Y)— p(X)p(X3Y)]

Dy

“L dY " K(x: Y)xo aalY) - T1 6[\y,-+,\a1—%].

i=1

“AY - [p(Xy, X3, YN —p(X)Dp(X3YMN)]

1 if x>0

6[)‘]:{0 T

Using the condition 3 of Proposition 2 and the fact that d(X,; X3Y*)>A/11, the
integrand is thus uniformly bounded by

(11 )vgi.\"l*L\'?\"fn lK(X: Y)|
which is integrable, and it converges point wise to
—Bga(X: X5Y) - K(x; Y) - xa(Y)

Therefore by dominated convergence this contribution yields in the limit A — so:
—B[ dY"'K(x; Y)gi(X,; X,Y)
2

Furthermore for all A > A, the integral is bounded by
(1 1)V§IX1|+|X2|+nbn

with b defined by (2b)

2) Let us consider then the contribution due to 2, ie. |y,|<A\/8; by
symmetry we shall obtain the same result for all @{*'. In this case we have to
distinguish the two situations, y, close to X, and y, far from X,; therefore we
shall decompose the integral over y; into two parts |y,[<A/16 and |y,|>A/16.

Writing Y =Y/y, i.e. Y=1y,Y, we have:

/\”‘[ dY™WK(x +Ait; Y)[p(X,, X5, Y) = p(X,)p(X3Y)]
jtki

) _ _ _ n—1 _ ) /\
= I dy, K(x + Au; }’1)[ dYK(x; Y)X@(Yl)X@ﬂ\a(Y)H 9[1)‘:‘ +Ad| :g]
Ivil=A/16 R i=1

XA [p(X 1y X2 YY) — p(X,y,)p(X3Y)] (D
+AY[p(Xyy,) —p(X)p(y)]p(X5Y?) (1D)
+/\’[p(y‘)p(X3§_”‘)—p(leQ?'\)]p(X,)} (111)

_ _ _ n—1 A /\
*‘j dy,K(x; yl)[ dYK(x; ¥V)xorai V1 9[])7,-+/\u|—§]
A16=<|y,+Au|=A/8 R i=1

XA [p(X; X5YM) % p(X ) p(X5YM)] (Iv)
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Since for |y,|<A/16, d(X,y,; X3Y*)=A/16, and|x + Aii — y,|=\/4=|y,|, Equation
(2a) yields

C
Iy " +1

K(x+Ali;y,)<

Therefore conditions 2 and 3 of Propositon 2 imply that the integrand (I) + (ITI) is
uniformly bounded by the integrable function

e
ly|” +1

2.167EXIXl K (x: V)|

and converges pointwise to zero because of K(x+A#;y,). The contribution
(I) + (IIT) will thus give zero in the limit A — %, and this contribution is bounded

by
2 ) ]6-V€IXI1 k|X1I+nbnflC2
1
lyl¥+1

On the other hand, since |x+ At —vy,|=A/4 implies AY |K(x+Ali;y,) <M, the
integrand (II) is uniformly bounded by

M |K(x; ?)1 £IX,|+n—1 lp(X1y1) = p(XDp(y))l

which is integrable, and converges pointwise to

—Bd()K(x; ?)X@(Y!.)X@( ?)5(X2?)[P(X1Y1) —p(Xp(yy)]
Therefore (II) will give in the limit A —

-8 d(ﬁ)L dyl[no(lel)—p(Xl)fo(y])]Lﬁ dYK(x; Y)p(X,Y)

Furthermore the integral of (II) is uniformly bounded by:
B |d(@)| b™ gy 1 X

where [ dy |p(yX,) — p(y)p(X)| =& |X,| C; This last inequality follows from
the following lemma:

Lemma 7. If the correlation functions satisfy the condition

giXIHYI

le(X, W—p(X)p(Y)lSd(X; el ¥

then

L dy [o(X, Y +y)— p(X)p(Y + y)| <X |X| - Y] - Cs

Proof. Let us decompose % as union of domains %;;

X1 1Yl

2= U@ij

i=1)=1
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B :{yld(X;y+Y):|xf*y—>’;|}

j dy lo(X, Y +y)— p(Xp(Y +y)|

<

X| Y| IX|+1Y] d
Y[ a <ix) g D

f=1j=1 X~y —yl*+1 re [V[*+1
<|X||Y| £*"VIC,
Finally, for the contribution (IV) d(X,; X3Y*)=A/16—A/32=A/32 and |x —y,|=

A/2; using the same argument as above, this contribution will be zero in the limit
A — > and the integral is bounded by

32V€E,\’I\ + )X:Mnbn

=

=

In conclusion the contribution due to 2%’ U, 2"’ gives the desired result in the
limit A — > and for all A > A, this contribution is bounded by

Anbrglsiien | |
A)

3) It remains to show that the contribution @'}, is zero in the limit A — =
and satisfies a bound of the type (36).

Let us write 2\, as union of non-disjoint sets in the following manner:

(A) (A)
9n+l# U @l
I={1....n}
|I|=2
with
[]-2
(A) (A )
@I’ - U @l.k
k=0

@(,?;JZ{Y(")C@"; Y, <BL Y, NBL, =}
YI :{YI, !€ I} YJ = Y(”)/YI
A k
= (y:lyl<5 (1+5)]
8 n

i.e. 2 is a set of configuration, with Y, inside the ball of radius A/8(1+|I|/n)
separated from Y; by a distance A/8n.

[ avkee e e X3 - p(x)p(xa V)
= /\"J dY,K(x +Al; Y,)j dY;K(x;Y))
v l<A/8(1+k/n)
. _i\. k+1

. ’l;IJ 9[|y,-+)\u| 5 (1 +—n )]
X{[p(X, Y, X3Y7) —p(X, Y)p(X5Y D]+ (I
+[P(X1YI)“P(Xl)P(YI)]P(X)z\Y})]JF (IT)
+p(Y)p(X3YD) — p(Y, X5 X)]p(X))} (TII)
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Since
A A A
d(X,Yp; X2Y1)28
n

and since |x + Al — y;| =|y;| implies

C
lYiPJFl

|K(x+Aia; y)| <

it follows that the integrand (I)+(III) is uniformly bounded by the integrable
function,

C
2 8¥nY X, [+1X, | +n K ;Y
ng Ko Ylll ey

and it converges pointwise to zero because of K(x+Au; Y;).
Therefore (I)+(I1I) gives zero in the limit A — o and for all A > A, this
contribution is bounded by

2.8Y. nv€¥X1I+IXZI+nbn*Illclzll

To discuss the contribution (IT) we choose one variable y in Y, and introduce
|I| -1 new integration variables n =(m,,...,n; ;) with Y;/y =n +y. The contri-
bution (II) is majorized by

A”j dy|K(x+/\ﬁ;y)lj' dny - -dny o |[K(x+ A, m+y)
Iyl=A/8(1+k/n)

y+n [ <A/8(1+k/n)

I dY, lK(X; YJ)‘

(X1, y, (n+y) = p(X)p(y, (n+y)| p(X3Y7). (11"
Since
|1’I;|5% and |x+)\ﬂ~—y|2%)\—\x\
we have
x+ A~y =2 A—lxl-2= 1
4 2 4

which implies that
S
Gln)+1

Therefore the integrand (II') is bounded by

|K(x+Add; y+m)|<

-1 C
C3H (; e .)K(X; Y [p(Xy, y,n+y)—p(X)p(y, n+y)
i=1 4\7“ +1

which is jointly integrable in all variables n, Y, and y since one has the bound
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(Lemma 7)

I dy |p(X,, y, n+y)—p(X)p(y, n + y)| =< C3&™( X, | + 1))

uniform with respect to 7.

Moreover, this integrand converges pointwise to zero because of the factor
K(x+Aii; y+m,) (recall that |I|—1=1), and thus this contribution vanishes by
dominated convergence.

Furthermore, for all A > A, to this contribution is bounded by

C4§"‘X1;HX’J + ”CS(‘XlI + n)
)

We have thus shown that @'}, does not give any contribution is the limit A — %
and this contribution is bounded for all A > A, by

nvglxl‘i*lx"lﬂlcg \Xll
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