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Exact Wigner functions of bicanonical
unitary transformations

By J. P. Amiet and P. Huguenin, Institute of Physics,
University of Neuchitel, Rue A.-L. Breguet 1,
CH-2000 Neuchatel (Switzerland)

(21. TV. 1983; rev. 29. VI. 1983)

Abstract. A class of unitary operators (called bicanonical) is defined. The Wigner functions
describing these operators in phase-space induce classical canonical maps.

On the other hand, the Wigner function is completely given by the standard generating function
of the classical map if this function exists globally and if the map is connected to the identity by a
one-parameter group. Thus, a W.K.B. expansion yields the exact result by the lowest order in 4.

Information about topological limitations due to caustics is easily obtainable for these exact
cases. They remain important when W.K.B. is only approximate.

1. Introduction

For quantum systems whose Hilbert-space if # = L*R", d"q) the Wigner
isomorphism [1, 2, 3] is well defined and associates to each linear operator F on #
a function f(q, p), the Wigner-function of F (reference W.F.). The computation of
f=®(F) is easy if F is a polynomial of the canonical operators Q and P,,
representing linear coordinates and momenta. This is also the case for most
Hamiltonians which are the sum of a kinetic and a potential energy. The
arguments g and p of the W.F. are usually interpreted as the classical canonical
variables of a classical system corresponding to the quantum one.

This idyllic situation changes badly in the case of projectors onto quantum
states, and becomes still worse for unitary operators. Because unitary operators
are important in many respects (change of coordinates, construction of projectors,
S-matrix, evolution operators), it is worthwhile to study them in the language of
W_.F. Starting from a wellcome subset of unitary operators for which the W.F. can
be computed exactly, we show in this paper:

1° That the W.F. of unitary operators form a complicated manifold sub-
divided into “botanic species’” (C™ bounded functions, unbounded func-
tions, functions with partly compact support, distribution kernels, .. .).

2° How these various species are due to geometrical properties of the
corresponding classical systems.

For illustration, let us say that the W.F. u(q, p) of an unitary operator U is
comparable to the kernels {q'| Ulq), (p'| U |p) or {(p'| Ulq). In some cases, a
sensible approximation for these functions has the form N exp (i#) 'G [4, 5],
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where N depends on the phase G. The phase is a geometric quantity, a generating
function of the classical canonical transformation ¢ corresponding to U. But it
may also happen that no single G exists to generate ¢. This failure, of pure
geometric nature, invalidate the above form in a way that higher order terms of a
W.K.B. expansion cannot improve anything.

The bicanonical unitary operators, defined in Section 2, represent essentially
linear changes of canonical variables and coordinate transformations in configura-
tion space. Their W.F. can be computed exactly, and by iterating non-commuting
products of two such operators one generates a very large set of operators. This
method is being used to produce chaos for instance (see M. Tabor [10] and
references given therein). W.F. of bicanonical operators are closely related to
standard generating functions, which we review in Section 3. They are a particular
type of generating functions ‘““‘discovered” independently by M. S. Marinov [6],
who calls them phase action, and ourselves [7]. In fact, they were introduced by
H. Poincaré [8], as was kindly told us by A. Weinstein who calls them Poincaré
generating function [9].

The W.E. of the bicanonical maps representing finite transformations are
roughly classified and then constructed in Section 4. One-parameter sub-groups
are treated in Section 5. Typical examples of W.F. are given in Section 6.

The direct method used in this paper for the construction of W.F. of
bicanonical operators can lead to valuable results in more complicated cases. It
has the advantage of avoiding formal expansions and their convergence problems.
The set of bicanonical unitary operators is not a group, but it contains essentially
two groups which have been studied by several authors by means of various
methods [11, 12, 13, 14, 15, 16]. The present paper gives a survey of this subject
and fills some gaps. Our approach enhance the deep role played by the underlying
symplectic geometry. Namely, the form of W.F. of unitary operators depends on
global geometric properties (transversality, caustics, . . .).

2. Wigner functions of operators — bicanonical maps

In order to fix the notations and to make this paper self-supporting we recall
in this section the notions of linear polarization of phase space and of Wigner-
function (W.F.) of operators. Afterwards, using W.F. of unitary operators, quan-
tum and classical canonical maps are compared and bicanonical maps are defined.

Throughout this paper the phase-space E of the dynamical systems is
supposed to be an affine symplectic manifold homeomorphic to R*". The points x
of E will usually be labelled by 2n linear canonical coordinates X =
(X', ..., X?). Then X can be identified with a vector of the tangent space TE, at
X =0 and the symplectic 2-form | of E reads

(X, Y)=X-LY, L:(lo "g"). (2.1)

We denote by A=(A"") the inverse matrix of L=(L,,):AL=1,,. A linear,
anticanonical involution M of E,

M =1, I(IMX, MY)=-l(X,Y), (2.2)
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induces a linear polarization of E defined by
X,.=1+tM)X. (2.3)

The sets VY={X, | X e E} are Lagrangian submanifolds of E. By adapting the
canonical coordinates to VY, M can always be brought into the form

T=(1" 0 ) (2.4)
0 -1,
in order that

X,=(q0), X =(0,p), g peR" (2:3)

We shall conventionally call E, = VY the configuration space of the system for

any choice of M.
The Wigner map [1, 2, 3]

D :Frsf (2.6)

associates to each linear operator F defined on the Hilbert space # = Lz(Eq, d"q)
a function (or distribution kernel) f on E, called the Wigner function (W.F.) of F.

Explicitly
I
F(X) = j dq(exwra’ p)(q 1 Flg+iq),  X=(ap). 2.7)
Eq

® sends the product of two operators F and G onto the Moyal product of their
images

D:FG— fog,

where
2n 2nZ
(feg)(X)= _L udz—n f()g(Z)exp 2(ih) ' X-Y, X—-2). (2.8)
xE (’Tl'h)

The Moyal bracket

{f gha = (Fog—gon) = (- [F. G]) (2.9)

PEM T ih ih '

is usually different from the Poisson bracket
{f. gle =A"" 3,f 8.8 (2.10)

But there are remarkable sets of functions (Section 4) on which these two
brackets coincide. Another coincidence is

{x*, flp ={x" flm=A"" 9.f (2.11)
where f is any C' function of X and x* the linear function
H(X)=X"  p=1---2n (2.12)

x* 1s just the W.F. of the canonical operators X* corresponding to the linear
coordinate X*. From (2.11) follows

{x* "= x", ¥} =A™, (2.13)
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If u is the W.F. of an operator U €U, the unitary group of #, the quantities
£ = proxPoy (2.14)

are W.F. of the transformed operators U"X*U; the map x + X is canonical in the
quantum sense because

{=%, 2} =AM (2.15)
But it is usually not canonical in classical sense, i.e.
(&, £}p A",

In exceptional cases, the new set {X"} satisfies both conditions (2.13), so that
(2.14) defines a map ¢ : x — X which is canonical in the classical as well as in the
quantum sense. In view of this property we propose the

Definition. An element U e % is said bicanonical if its W.F. u defines a map

@:x—> u*oxou (2.16)
which verifies the classical conditions of canonicity

{e"(X), " (X} = A", (2.17)

for each set X" = x*(X) of linear canonical coordinates of E.

Let B denote sub-set of bicanonical elements of 4. The combination of the
Wigner map (2.6) and of the map u — ¢ defined by (2.16) is a map :U > ¢. Per
definition, 8 = B(B) is a subset of classical canonical maps.

Theorem 1. The kernel of
B:B— %
is homeomorphic to the unit circle S of C.

Proof. Let V, UeB, such that B(V)=B(U)=¢. Hence u™ox"ou=v*ox"ov.
Using unitarity, ucu®*=vov*=1, this equation becomes xevou*—vou*eox =0.
We recognize a Moyal bracket. Using (2.11) we get

{x*, vou*}y = A" 3, (vou™)=0.

Thus vou™ is constant; more precisely v=e“u with a €R to preserve unitarity.
Since @ (2.6) is linear and bijective, one has finally V =¢'*U.

The unitary transformation ¥ =U*FU of an operator F reads in phase space

f=u*ofou. (2.18
The W.F. f and f are real if F is self-adjoint. Explicitly

fx)= L d*"x'k, (X, X)f(X') (2.19
where

ko (X, X') =

+
2 2

2n ' '
(2d )lz)n u*(X+X h V)M(X_;X —‘g V)e“(xx"v’. (22{)
2n aw
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Note that u has an explicit dependence in A not indicated here. The property
(u™ e fou)*=u*o f*ou of the Moyal product ensures that k, is real. Unitarity of u,
u ou=uou* =1, implies

L d*" X'k, (X, X’)=I d*" X'k, (X', X)=1 (2.21)
E
From k-, = k.~ k, =1 follows orthogonality
j d*" Yk, (X, Yk, (X', Y)=8"(X-X') (2.22)
and )

ki'(X, X') =k o(X, X') =k, (X', X).
In the particular case (2.16), (2.19) reads
e 00 = [ drxk,x X)X 2.16)

E
and conversely

X+ = j d2" X o (X" )k, (X', X). (2.23)
E

The suitable quantities for discussing limits #— 0 are the kernel k, and its
momenta in g and p. The function u itself has a highly singular behavior at #~0.

3. Standard generating functions

This section contains a brief review of the matter treated in previous paper
[7], followed by additional developments about geometrical properties of canoni-
cal maps and their standard generating functions. These functions come later into
play as phases of W.F. of unitary operators.

The standard description of canonical automorphisms of E, which is the
natural geometrical substratum of W.F. of unitary operators, works as follows: A
set of 4n parametric equations

X=Y+3AVg(Y) = x(Y)

X=Y-3AVg(Y)=x(Y), YeDcR* (3.1)
defines locally a canonical map

¢:EaX—>X=¢(X)eE'. (3.2)

We call g the standard generating function of ¢ because it belongs to a symplectic
invariant procedure. Eliminating the variables Y" between the two sets (3.1) one
obtains the equivalent equations

_ X +
X—XzAVg(XZX), (3.3)
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which define ¢ implicitly. The symplectic map X induced by ¢ in tangent spzce is
given by

z(X)E(S;’;t (X))=(n+%An(Y))(n—%An( y)! (3.4)
where
82
(HY)= (aY“ Y (Y)) (3:3)

and Y =3(e(X)+ X) =3 X+ X).
In view of later applications, it is essential to know:

1° If ¢ is symplectomorphic (canonical and diffeomorphic).

2° If g unfolds ¢ (generates it globally). These difficult analytical questions
can be stated in a simple geometrical way. For this we introduce the
product space E X E’, the prime serving to distinguish the domain from

the range of ¢. Supplying E X E' with additional structures by means of
the projectors

P:EXE>(X, X)—(X,0eE
P:ExXE>(X X)—(0,X")eFE' (3.6)

and of the symplectic 2-form £(X,, X,, X4, X5) = (X, X5)— (X}, X%),
we form the symplectic space € = (E®DE’, £). The canonicity of the map
¢:E—E' is then simply expressed by saying that its graph V is a
Lagrangian submanifold of & [7]. Obviously, ¢ is symplectomorphic iff
the restrictions to V of the above projections, Py, : V—E and P},:V —
E’, are diffeomorphic. Iff it is the case, no tanget vector of V:(dx, dx)=
(dx, Z(x) dx), lays somewhere parallel to E or to E’. In other words, = has
nowhere a vanishing or an infinite eigenvalue, and, since eigenvalues of
3(X) go by pairs 0,(X) and 1/o(X), k=1---n, the characteristic

function

800 =det}500+1) =1 [T (0. 0+1(5+1) 3.7)
takes finite values. In conclusion, ¢ is diffeomorphic iff

|A%(X)| <, XeE, | X]| < oo, (3.8)
where by definition

|| X1| = sup | X*|, w=1---2n (3.9

[The restriction on || X]| is usual, E being regarded as an infinite open set].

To answer the question 2°, we first remark that putting g = constant in (3.1)
yields the identity map X = X, whose graph in & is the manifold

M={(X, X)| X' =X]}. (3.10)
Introducing the projector
X+X X+X
3 ¢ 3 ) <A

pﬂ;zga(x,x')_»( 3.11)
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and the variable Y =3(X+ X'), we can speak of points Y of #. This convention
allows one to say that P, projects the particular points (X, X)e V of the graph of
¢ onto the “middle points” Y =3(X + X) e M. Iff the restriction of P, to V is a
bijective map V — D =P (V)< M, the standard description (3.1) of ¢ is global.
One usually says there, that the projection P, of V into # makes no folds, and
that g unfolds ¢. By adapting to P, the above arguments (preceding (3.7)) one
obtains easily the unfolding condition

|A2(X)|>0, XeE |X|<x. (3.12)

When (3.12) holds, the initial equation (3.3) has up to an additive constant a
unique solution defined on a domain D ={Y | Y =(¢(X)+ X), X € E}. The maps
x and ¥ ((3.1)) define ¢ =x - x ' and from (3.4) follows for their Jacobian

ox ax
N3(Y) =det (a—?)zdet (W) =det (1 £3AQ(Y)) (3.13)
and i
N(Y)=———, YeD. (3.14)
A*(x(Y))
To avoid later specification of integration domains we introduce the function
N(Y) = 6p(Y) [N (Y)|'? (3.15)

where 6, is 1 over D and O elsewhere.

The fact that symplectomorphisms globally described in the standard way are
given by a pair (g, D) makes the converse problem too intricate to be mastered by
simple analytical conditions. As a guide for the reader’s imagination we state
important necessary conditions:

a) The inner D of D < # (largest open subset of D) is homeomorphic to an
open Cartesian subset of R*".

b) gisatleast C'on D. (3.16)

c) 0<|N(Y)| <=, Y e D,

d) [[Vg(Y)|| =, Y—Y,eoD if |Y.[<ee.

Conditions ¢) follow from (3.8) and (3.12). d) is necessary because sections of D
may be compact and |x(Y.)||=|lx(Y.)|| = for finite | Y|

The next important question is to look for the generating function g of the
product ¢ = ¢, - @, of two symplectomorphisms unfolded by functions g, and g.
In principle, g is the T-product [7]

E=8T%& (3.17)
defined explicitly in the following way: g(Y) is equal to the value of the function
(Y, Y, Y)=2(Y"-Y)  L(Y' - Y)+ g(Y")+ g,(Y") (3.18)

taken at the stationary point with respect to variations of Y’ and Y” for fixed Y.
Hence ‘

g(Y)=uy(Y, Y (Y), Y(Y))
where the pair Y;, i =1, 2, is solution of
Y, +3A Vg (Y,) =Y, —3A Vg (Y) =Y. (3.19)
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These equations admit a unique solution for all Y < D if ¢, - ¢, is diffeomorphic
and if the projection P,:V — M makes no fold. Otherwise, more than one
solution may exist, the number of which depends on Y. There is a bifurcation set
which can be studied using catastrophe theory [17]. In not too bad cases, the
solutions are branches of a multivalued function. Each branch g’ defines ¢ in a
subset D™ = #. The boundary 4D is a caustic on which #%(Y) ((3.13), (3.23))
usually diverges. Multivalued generating functions also occur in the case of
piecewise diffeomorphic canonical maps (see Example iii), Section 6).

The solutions Y; of (3.19) are gometrically interpreted as ‘“‘middle points”,
like Y. Putting X = ¢,(X), X = ¢,(X) = ¢(X) for simplicity one sees easily that

Y, =4{X+X), Y,=4X+X), Y =4X+X). (3.20)

Using this property, the composition law 3(X)=3,(X)3,(X) and the formula
(3.4), one obtains the relation between the matrices of second derivatives (3.5) of
g g and g:

1-3AY) = A A (Y2) (1 +IA0(Y)AQ(Y) '@ —3A0, (YY),  (3.21)
and for the determinantal functions (3.13):
NY) = N(YINUYS,) det (1+3AQ,(Y,)AQ,(Y,) . (3.22)

This relation is important for the product of bicanonical maps because their
amplitude is in many cases given by |#?|'2.

The standard description of Hamiltonian flows succeeds using generating
functions g :R X # — R. If h denote the generator of a flow 4", and t €R the group
parameter, the solutions of the equations

X, ={X, h}p=AVh(X,), X,=XEeE, (3.23)

define the elements ¢, : X — X, of ¢¥". The generating function of ¢" satisfies the
standard Hamilton-Jacobi equation [6, 7, 9].

3.8 (Y)=h(Y+3AVg(Y)), (3.24)
with initial condition
go(Y)=0. (325)

For each given t, g, generates ¢, via (3.3). The group law ¢, * ¢, = ¢,,, of 4"
implies

g T & =g tc(t,t). (3.26)

The cocycle ¢ is a piecewise constant function of t’, t only, equal to zero for
sufficiently small ¢t and t'. Equation (3.24) with initial condition (3.25) admits a
unique solution g for some interval [0, t,] at least. But it is not true, as suggested
in the paper by Marinov [6], that g, unfolds ¢, in any case. The projection of the
graph V, into # can make folds for arbitrary small t already. The standard
description of ¢, must be completed using solutions of (3.24) which fulfill
boundary conditions differing from (3.25). A similar situation occurs when ¢, is
only piecewise diffeomorphic (Example iii), Section 6).

In the next sections, we use mainly Hamiltonians of two particular forms.
Results about the relation between h and the corresponding g are summarized
for these cases in the next theorem.
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Theorem 2. Let ¢" be a flow whose Hamiltonian is a function, of second degree

in X,

h(X)=3X' wX+A - -X+h,, (3.27)
or of degree 1 in n commuting variables, for instance

h(X)=h(q)+p- Aq). (3.28)

Then the solution g,(Y) of (3.24-25) have the same functional form as the generator h.
Moreover, the characteristic function (3.7) has the property

©>AX(X)=0, |X|<s=, XeE, |t|<=. (3.29)

Proof. The first part of Theorem 2 is proved in [7]. With h as in (3.27) the
solution g, is the second degree polynomial

g2(Y)=Y-LCY+Y -LA-C)V,++, (3.30)
where
0, = th% Aw
V,= J. dt'(exp ' Aw)AA (3.31)
0

v.=hot+3V, LV, —3A - j dt'(exp —t'Aw) V..

0
The characteristic function is
n t t
AZ=T] (ch— ,x::) (ch— uk) (3.32)
k=1 2 2

where £, k =1 - - - n, are the eigenvalues of Aw. It is =0 and finite for finite t.
With h of the form (3.28) one has

g(Y)=f(&)+n-a(), Y=(n)eD=déxXR", (3.33)
where f, is a function and a, a vector field satisfying
_(q_1%a 1 _
(6= (13 32)AEHa©). a0,
3£ (&) = hy (£ +3a,(8)) —3A (£ +3a,(8)) - Vfi(8),  fo(&)=0. (3.34)

The characteristic function is independent of p:

A%(q) = det (z—g‘ (q))wl [det% (11 +3_;h (q))]2

NI

The factor det ( )" in the first equality is continuous, equal to 1 for t=0, and
cannot change sign because all ¢,’s are diffeomorphic by assumption. Thus A?
fulfills (3.29).
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%" is automatically a flow if h has the form (3.27). A? is a finite constant for
any finite t. Moreover, g, unfolds ¢, € 9" for all t iff Aw has no purely imarinary

eigenvalues. If it has, w, =im,, m R, k=1-- - n,, then A? vanishes at
t,=2v+l)—, veZ (3.36)
my

The set {f,} is discrete; g is well defined and unfolds ¢, for each t¢{f ,}.

When h has the form (3.28), ¥" is a Hamiltonian flow iff the equations
4. = A(q), q0=q, define a n-dimensional flow. The solution (3.33) of (3.34)
unfolds ¢" iff AZ(q)>0 for all finite |t| and ||q|. If not, this solution unfolds ¥"
locally only, in a connected domain of R X E, containing the hyperplane t =0 and
delimited by two hypersurfaces t.(q) defined by A7 (q) =0. Additional solutions
are necessary. In complicated cases, it is preferable to try first other descriptions
[3, 5].

4. Wigner functions of bicanonical unitary operators

The set B of bicanonical operators (Section 2) cannot be characterized
explicitly as a whole. The main difficulty is that B is not a subgroup of .
However, it is possible to exhibit bicanonical subgroups of % which generate by
repeated products a large part of B at least. One subgroup is homeomorphic to
ISp(E), the inhomogeneous symplectic group. The other ones, two by two
isomorphic, form a continuous set containing the gauge transformations in par-
ticular. Let us first give a rough classification of bicanonical maps according to the
analytical form of their W.F. This classification keeps sense for more general
unitary operators.

There are “easy” UeB. Their W.F. has exactly Van Vleck form [4, 5]

®(U) = u = Ne /M= (4.1)

where N is the function (3.16) of second derivatives of g, and g is the standard
generating function which unfolds the symplectomorphism ¢ = 8(U). u has no
zero, is bounded in D ((3.16c¢)), and is continuous if g is C? (see theorem 3 and 4
below). There are “‘less easy’” U eB. Their W.F. is no longer completely specified
by the generating function of ¢ = B(U). The form (4.1) holds with a multiplicative
correction which tends toward 1 when A#— 0 (see Theorem 6). There is no “‘a
priori”’ argument against an appropriate W.K.B. expansion of u.
In more “difficult” cases, u is a sum

u=Y N ¥ (42)
k

where N, and g, are related as in (4.1). The functions g, are branches of a
multivalued generating function which piece-wise unfolds ¢. This geometrical
complication occurs when ¢ is only piecewise bijective (Example iii), Section 6),
or (and) when P : V — # makes folds (Example iv)).
In “exceptional” cases u is a distribution of type 8. The corresponding
classical map ¢ admits no standard generating function (Example i), Theorem 3).
This (non-exhaustive) list remains meaningful for non-bicanonical U €% in
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the following sense: Usually, the limit (u*ex*ou)(X)=[d*" X'k (X, X X" —
¢"(X), h— 0, exists, and ¢ is canonical. If a single g unfolds ¢, Van Vleck’s form
(4.1) is certainly a sensible first approximation for u. If more than one g is
needed, it is necessary to begin with (4.2). No expansion in power of A can save
the situation if an information contained in the classical underlying geometry has
been overlooked in the first approximation.

The sets of functions considered in Theorem 2 play a central role in the
generation of bicanonical maps [11, 18]; we need to define them properly:

i) The set of real polynomials of degree 2
A={g|g(X)=X -QX+A - X+g, Q=0}. (4.3)

The function (3.13) is constant here: &% =det (1+ AQ). We shall denote by
o5 the subset of elements g € &, for which A2#0.

i1) The sets of real functions whose restrictions to a linear Lagrangian
submanifold VM (2.3) are polynomials of degree 1.

Av={g|g(X)=f(X)+X -a(X,),X. eV} (4.4)
In the canonical chart (2.5) adapted to VY one has
g(X)=f(q)+p-alq). (4.5)

The function f and the vector field a are supposed to be C* on an open
subset d, of R". Multivalued functions are not excluded. The function
(3.13) depends on q only

N?(q) =det (IL —% (:—21)2) ) (4.6)

i will denote the subet of functions g € &,, which unfold a symplec-
tomorphism of E. The necessary conditions (3.16) give an idea of their
properties.

We are now able to construct well behaved W.F. of bicanonical maps.

Theorem 3. The function (4.1) u= N exp (ih) ‘g is for any g € ¢, the W.F. of
a bicanonical map U element of a sub-set B5 =B. The corresponding map ¢ = 3(U)
((2.16)) belongs to ISp(E). The kernel (2.20) is local and reads

k., (X, X") =8 (p(X)—X). (4.7)
Proof. Let g(X) be as in (4.3). We have from (2.20) and (4.1)

2nV . ' ’
ku(X, X’) = |det (1‘_ AQ)IL7 (gw)zn e'v'L(X—X FAQUX+X)+AA)

=|det 1-AQ)| 6°(1+AQ)X+AA -(1-AD)X").
Since ge o5, 1—AQ is regular and k, is given by (4.7) with
e(X)=1-AQ) '@+ A)X+1-AQA=3X+a. (4.8)
Obviously, 3 is symplectic and ¢ € ISp(E). U is unitary because k, fulfills
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(2.21-2); it is bicanonical since

(w*ox*ou)(X) = jdz"X'a‘z"’(cp(x—X'nX'“ - o (X).

The vector space &, is a Lie algebra for Poisson and Moyal brackets (they
coincide on «,). Moreover, &, is an (incomplete) associative algebra for the
T-product: g,, g, €4, = g, T g€, if the product exists. Assuming that these
three functions belong to &5, one must have in corollary to Theorem 1 and
Theorem 3

Nze—(i/ﬁ)g2 ONle_“’m“‘ = Ne (M=, T g,—ia, (4.9)

where « is a real constant and N is given by (3.22). Thus, the map 3 preserves the
product law. The closure B, of B; is a group and B:B, — ISp(E) is a group
homomorphism, which leads to the metaplectic representation of ISp(E) [12, 13,
14, 19]. When g, T g, does not exist, the left handside of (4.9) still makes sense.
The corresponding classical map is an exceptional element ¢ = (3,3, a, + 3,a,) of
ISp(E) characterized by the fact that % =3,3, has eigenvalues equal to —1. The
W.F. u =u,cu, is then a distribution for which the exponential form does not
exist, but which can be factorized according to the

Theorem 3. Let U be any element of B, and ¢ = (X, a) = B(U) the corres-
ponding classical map. The W.F. u=®(U) can be written

= u()(’8>ire
where u, has the form (4.1) and 8% is the distribution
8100 = (mhP™ 5% (A~ DX).

2m is the number of eigenvalues —1 of 2, and 3(1—1I) the projector onto the
corresponding symplectic sub-space E,. (By convention 8 is the unit function.)

Proof. If AZ=det (S +1)#0, one has m =0 and Theorem 3 applies. If A>=0, X,
has 2m eigenvalues —1 and the corresponding symplectic sub-space E, of E is
such that (£+1)*"E, =0. A unique exceptional element I € Sp(E) exists having
the properties I°=1, I=1I, IS =3I, 51— I)E = E,. The symplectic map 3,=3I
has no eigenvalue —1:Aj=det (3,+1)#0. The distribution 8% represents the
parity in E, (Section 6, Example i)) and the identity in E — E,. Up to an arbitrary
phase, u, is given by (4.1) knowing 3. In conclusion, uy,°8% verifies

(ugo 8%)* o X o (uge 8¥)=2X+a,

and by virtue of Theorem 1 it must be equal to u assuming the arbitrary constant
phase of u, is correctly chosen.

Theorem 4. To any ge ), the relation (4.1) associated the W.F. of a
bicanonical map UeBj,=B. The corresponding symplectomorphism ¢ = (U)
leaves the Lagrangian sub-manifold E, ((2.5)) invariant:

e“(X)=q"(q), k!=1"'"’ (4.10)

e“ (X)) =pe(a, p) = ai?'? (@)p:.
q
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The kernel k, has the properties

[avkarpla,p =57 -a@ @11
[ apkuta.p 1) =8"a-a"a) (4.12)
[ @kt la. 001 =57~ d(@pa. p). (4.13)

Proof. Calling Y = (¢ m) the variables of g, (4.5) reads g(&,n)=f(§)+n-a(é)-g
generates a map ¢ : X =(q, p)— X =(q, p) given parametrically by

q=&¢-3a (E) Q(¢)
(g4 129\ [(y 100
- (e0350) 033 vre] @19

g being of degree 1 in m a trivial integration in (2.20) yields

211'" ( 2 ’ 2 )N( 2 2 )
k qd, P q’ " — N —— +_
u( 3 | 5} p ) j( )n

et o))
ety (o555 -ofe5-22)

ot (o381 ofs )
col(HA)ASE ) we

This kernel is non-local and depends on #. By integrating over p’ the first
exponential gives

o (o{154-45)-of131-4).

The argument vanishes for z =0 only because Q:¢ —> g is bijective by assump-

tion. Performing the z integration one gets
d
det 29 (q q) a“”(zo(q zq) 2q’). (4.17)

0¢ 2

The argument of 8" has again a single zero at q' = G(q), and (4.17) is identical to
(4.11). Using the bijectivity of Q:&+>q one proves (4.12) in the same way. To
prove (4.13) we calculate the moment of k, (4.16) with respect to pj. Taking the

Id"p'kn(q, plq,p)=
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8™ in (4.16) into account the p’ dependent term is

, 20, q+q  h ;

""e"pﬁp'(o( 2 +2Z) ")

aQ(q+q h )“)k d 2i , .=
+ —exp—p - (Q-4q).

(ag 2 "2%) ) arexpypQmd)

The matrix 8Q/d¢ is regular by assumption. The p’ integration yields

Idpk (a.pld.p)p —hjd“ 8‘"’((3(%—@

Lt v)-2a M VM- )
conto (oft551) ft35+1)
Xe"ph(f(q 2q+v) f(c%i_ ))

(B2 (E)) v (oL e v)-a),

The integrand contributing for V=0 only, even functions of V can be permutated

with V,. The integral is equal to
(A5 v)-a)

e eve(ofs5-1)-oft5E e
% (50) Ve (o51-v)- o5 +v))
X(ag( 2 VolP Q( 2 (
ata’ | \_.(ata _
(55 V)5 )]
Taking the form (4.6) of N? into account, an easy computation leads to
2 (50| #ea(*3)-20)
det 2t \ 2 6" 2Q > 2q
2039 [R5
x(ag(z (ag 2 )PV ))

(4.18)

+a(

jd“p’ku(q, pla,pp =

One recognizes (4.17) in the first two factors and (4.15) in the last ones. This
achieves the proof of (4.13).

The unitarity of u= N exp (i) 'g is immediately verified using the proper-
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ties (4.11-12) of k,. The bicanonicity follows from (4.12-13):

(wreq“sw(a, p)= [ d"q'a™6 ('~ 4(a) = 3(@) = *(X)
(4.19)
(u*ep, cu)(q, p) = jd"q’6"”(q’ —d(@)pi(a, p) = pu(a, p) = ¢ "(X).

Since ¢ ((4.10)) is canonical, U is bicanonical.

The set ), has the same properties as &, with respect to Poisson and Moyal
brackets, and to the T-product. The law (4.9) holds with the same restriction for
the bicanonical elements of Bj,. The closure of B}, is a subgroup B,, of % which
corresponds to the group %,, of canonical maps leaving VY invariant. Pairs sf,,
and o, as well as By, and B,, are identical up to an equivalence:

Theorem 5. Given u e ®(B,) inducing a map ¢ =(2, q) € ISp(E), and a pair
M, M'=3M3"", of polarizations, the map

u:fr>f=u*ofou (4.20)
defines an isomorphism between the groups ®(B,,) and ®B,,), and a bijection

between s\, and sy, which preserves the Lie algebra structure and the associative
T -product. The following diagram is commutative

A S Ay
(4.1)1 1(4.1) (4.21)
PBr) > PBrr)
Proof. Let u,, € ®(B,,). From (4.7-8) follows

(U*oup o w)(X) = up(EX +a) = iy (X).

U leaves invariant the submanifold V3 of E. Thus i, leaves VY invariant,
M'=3M3"' and consequently finy = upy € ®(B,,). The group structure is obvi-
ously preserved. If now fy, € &y, it is clear from the Definition (4.4) that fM € Apy.
The Lie structure is preserved because (4.20) is linear and u™eo{f;, fo}mou =
{fi, f2}m- The diagram (4.21) is commutative because

4.1

(U oupou)(X) = uy(EX+a) = NEX+a)e WheEX+a)
= (¥ o No y)(X)e WMt oryC0,

This property and (4.9) imply that

u¥o(gy Tgi)ou=(u*ogyou) T(u*og ou). (4.22)

A corollary of (4.7) (Theorem 3) and (4.11-13) (Theorem 4) is the following
local property:

(uFofou)(X) = fle(X)) (4.23)
for any f if ue ®(B,) and for fec oy, if ueDB,,).
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Products of bicanonical maps belonging to different sub-groups may be
bicanonical or not.

Theorem 6. If u,c ®(B,) and uy, € P(B,,), then the products u,°uy, and uy,~u, are
bicanonical. Assuming further that u, and uy, are of the form (4.1) with g,< of5,
gv € A4, and that a unique g = g, T g, exists, then

Us°Upg = Ne PreiF (4.24)
with

F(X, h)—1, h— 0.
F is generically #1 (h#0) unless either u, and u,, belong to a same subgroup, or
commute U,°Upg = Upg© Us.
Proof. From (4.7-8) follows

(Uzoupg)* o x* o (Upoung) = Uuppe (ZUx" +a*)ouy

=3SHudox ouy, + Upge upg 0 a*

=bom(x) +a* = @b (epm(x)) = (@2 ep)(x)
and

(Upgouz) o x™ o(Uprouy) = Ui o@hdx)ou,
= @aml@2(x)) = (@n * @2)(X).

Hence, both products satisfy the definition (2.16-17) of bicanonicity. If u, or u,,
belongs to ®(B,) NP(B,,), both belong to one of the subgroups and F = 1 because
(4.9) holds.

If u,, upy g ©(B,) NPB,,) but commute, they induce commuting symplec-
tomorphisms ¢, = (2, a) and @p,:

o X))+ a* = pf(ZX +a).

Because ¢,, is non-linear, this relation implies that ¢, and ¢,, act non-trivially on
two non-intersecting symplectic subspaces of E. The result is trivially u,°up =
UsUpng, €= 82+ 8y F=1. In the generic case

(u2° uM)(X) = (‘ﬂ'fl)_znj d2nz d2nZ:N2NM(ZI)e—(ilﬁ)dn(x.z'.z)

where ¢ is the function (3.18). By assumption ¢ has a unique stationary point
(20, 20) = (22(X), (X)) for each X, and g(X)=(g>T gu)(X)= (X, z5(X),
zpm(X)) exists. By choosing a new origin, z =2,+Y, z'=2z,,+ Y’, one obtains

(X, 2, 2)=g(X)+x(X, Y, Y')
XX, Y, Y)=2Y - LY'+1Y - Q,Y+iY' - Q.Y
+gm(zm+ Y') - YI°V8M(ZM)‘“%Y' " Qp(za) Y

=(Y, ¥ Bz §, )+ i, YO

there, (2, and (), are the matrices of second derivatives of g, and g,, respectively.
The function r vanishes like the third power of Y’ at the origin. On the other
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hand, the relation (3.22) yields

10, -A

o) = det A+ IAQAQ) = N3Nz N (X),
A EQM

det B(z,) =det (

where the A’s are the norm functions (3.13) associated to the g’s. Eventually,

(Uz° Upg ) (X) = N(X)e /=0

[Idet B|'?
x D S ST —

— Id"Vd"V’ NM(Zz""/EV') e Mz, RV

Num(z,)

f 'r(z,, VAV') vanishes at the limit # =0 and the factor in brackets tends toward

—i(V.V) - B(Y)

e
7T

e T L[ B ] X3 B
e~ = — —i—=t‘|=exp— 2, —
E\/ﬂ.m atew | o172
where b, denote the eigenvalues of the real symmetric matrix B. B(z,(x)) is by
assumption continuous and regular for all X (unicity of g). Its eigenvalues are
continuous and cannot change sign without vanishing. Therefore « is independent
of X. The function F of the statement is e ** times the above bracket. It depends

on X and # in generic cases.

This theorem shows in particular that a bicanonical u is not always com-
pletely specified by the generating function of the corresponding classical map ¢.
The function N exp (i#) " 'g, T gy is not exactly unitary. A correction F dépending
on h is necessary.

It is not difficult but teadious to see that products uy,°uy, are generically no
longer bicanonical. The residual property is

(uM"’“M)*C’x“"(uM”uM);‘:{*)"‘PM(X) (4.25)

where ¢ is generated by gne T ga-

The groups B,, present all the difficulties listed at the beginning of this
section. There are elements UeB,; which induce non diffeomorphic maps ¢,
although they are unitary (Example iii)). Other ones induce symplectomorphisms
whose graphs make folds on # (Example iv)). In both cases, it may happen that a
multivalued function g exists, whose branches g - - - g™ unfold ¢ piecewise,
and the W.F. u takes the form (4.2). These difficulties are in principle solved by

the theory of Maslov [20]. Integral representations may also be helpful:

Theorem 4'. Let UcB, such that ¢ = B(U) is a symplectomorphism. Then its
W.F. u is given in integral form by

q’+d(q')), (4.26)

— n_t_ —(i/M(2p - (a—q)+x(@q") d ts n|1/2 (n)( _
u(q, p) jdqe |det S(q")|'"* 6| q 5
with
o
(@) = ¢*(q), s=(,—q),
aq
pe(@,p) =@, p)=(S""(@N(pi—ax(q").
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u has the form (4.1) iff 9" — &(q') =3(G(q") + q') is a diffeomorphism, and the form
(4.2) if £(q") = q has the same number m of solution for each q.

Proof. Supposing first that £(q") =3(G(q')+q’) is a bijection q' <> & of R", the
Jacobian matrix (9¢/dq’) is everywhere regular and the inverse map q' = Q(¢) is
well defined. Choosing £ as a new integration variable and defining Q(¢)=
q(Q(¢)) we have

ao)| 20|"2| . 90| 1"
n_1»= ] 1/2= n
d"q' |det S(q")| d"¢ det (36 det y: det _ag ,
and
6(—) 9 1/2 '
u(cb P) = det (—)(—)| e“(!/h)ap-(Q*Q(q))+x(0(q))).
& /\a§

Defining a(¢) = Q(¢)— Q(¢) and using the property Q&)+ Q&) =2¢ we have
(0Q/3£)(0Q/2€) =1 —(3q/0¢)* and & — Q(£) = Q(&) — £ =3a(£). Thus

da 2 1/2
det (1].— (a—g) ) e—(ilh)(p sal@)+f@) — N(q)e#(ilﬁ)g(q.p)’
where f(q) = x(Q(q)). This is exactly the form prescribed in (4.1).
When q'— € =q(q")+q' is not bijective, the matrix

at\ 1 oG , , aQ\!
)2 (3 @)= G¢)
aq 2 aq aé
is not everywhere regular and more than one solution Q(£) exist. u is a sum of
terms like (4.2) with each g™ e sy,

u(g, p) =

5. One-parameter groups of bicanonical maps
One-parameter subgroups of % are given in Wigner form by
u o =e Whpo (5.1)

where h is the W.F. of the self-adjoint group generator H. The W.F. u, 1R,
satisfy the equations

ihou, =hou, (5.2)
ug=1 (unit function) (5.3)

and have the properties
Uy o Uy = Uy, (group law) (5.4
u¥ou, =ucu*t=1 (unitarity) (5.5)

On the basis of Sections 3 and 4, it is not difficult to construct one-parameter
sub-groups of bicanonical maps:

Theorem 7. Let h € 4, (respectively sf,) be the generator of a flow €". Being
assumed that the solution g of (3.24-25) unfolds " for ter=[—t,,1,], the
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following relation holds:

e*(it/h)ho s (N[e—(i/h)g,)o , ter, (56)
where g, is equal to g at “‘time” t and
82
=+ +3 ( )) 5.7
N.(Y) \/det (11 IA aYaY(Y) (5.7)

Proof. We know from Theorem 2 that h € of,, (respectively «f,) implies g, € «,,
(respectively s£,) and N?=1/A7=0. By assumption g unfolds ¢, ter. Thus
g, € oy, (respectively of5) and > N7>0, ter; ii, = N, exp (ih) 'g, is bicanonical
(Theorem 4 (respectively 3)). The law (4.9) is valid and yields using (3.26)

fioofy, = N, g WP Feltl Lt t'+ter.
The real function « is at least C* in the limited domain of t, t' € 7. Differentiating
with respect to t' at t'=0 gives
& . I . ,
at’ut’ourlr’=() = 0, U, _-;l U, a(’a(t s I)I;’:o-
But
O Uy | i 3¢ 8li—o+ 8Nyl i h
U, = —— ¢ P g = ——
"'’ =0 htgll() "Y' =0 h

by virtue of (3.24-25) and because N7 is even in g ((3.13)). Thus
iho, =heti, —a'(0, t)i,
and
o
d,

=

1 1
o'(0, t)=l—1r*(iﬁ o, —heth)=Re - (ih 3 —h°i)=0,g —Re

With h(X)e = h(Xe) = h(X+3ihAV), hest,, or h(X)o=h,(g°)+3(p°A(ge)epe),
h € o4y, it is easy to verify that

heil,

Re — (X) = h(X +3A Vg, (X)).

ur
Hence o'(0, t) =9, (X)—h(X +1AVg (X)), and a'=0 since g, satisfies (3.24) by
assumption. Therefore i, fulfills (5.2-3) like u,. (5.6) follows from the unicity of
the solution of (5.2-3).

In the particular case h € &4,, this theorem can be easily extended to all t eR.
Using the notations of Theorem 2, we first remark that the root

A=]] chtwm (5.8)
k=1 2

of A7 is an entire function of teC, whose zeros form a discrete set ¢, =

(1+2v)imuy ', veZ, (u, #0). Thus 1/A, is meromorphic in the complex t-plane

(in contradistinction to N, =|A,| "), and N, = A, ' for t € 7. Similarly, the function g,

defined in (3.30) is meromorphic in t and its poles lay in {t,,} like those of A,.
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Defining for teC

1
W, :Ke g, (5.9
we have a meromorphic function of t which coincides with u, for t € 7. Since (5.4)

holds for t, t', t +t' € 7, and since W,.cW, and W, ,, are meromorphic in t’ (¢t fixed).
these functions are everywhere equal and

WeoeW, =W,,,, t,t'+teC/Hn,.} (5.10)

Thus W, = u,, teR; the continuity must be understood in a distribution sense if
some w, is purely imaginary (Theorem 3').

No such general statement is possible in the case of he o), However,
formula (4.28) holds for any t and renders possible the discussion of u, outside 7.
AZ(q)=0 is a hypersurface in Rx E, instead of a hyperplane in RX E as above.

6. Examples of bicanonical maps

The support of the W.F. u of a bicanonical map may be punctual (Example
i)) or a subset of E (Example ii)). As mentioned at the beginning of Section 4, a
bicanonical u may be only piece-wise one-to-one (Example iii)) or equal to a sum
of exponentials (Example iv)).

Symplectic sub-groups with purely imaginary time lead to Gibbs states of
thermal equilibrium (Example v)).

(1) The Wigner function of parity
The parity operation II is defined by the relations
IX“II = -X*, p=1---n, (6.1)
—— (6.2)

up to a sign (the intrinsic parity of the system). For one choice of the sign, the
W.F. of I is

u(X) = (rh)" §°"(X), (6.3)

which satisfies the relations ueXou=—-X and uou=u*ou=1, equivalent to
(6.1-2). u represents the classical symplectic map ¢ (X) = —X. The support of u is
punctual, indicating that no standard generating function unfolds ¢. This map is
an exceptional element of Sp(E) forming together with the identity the center of
this group. ¢ lies at the intersection of many sub-groups of Sp(E), as for instance

5 =gl I’=-1, |t| =, (6.4)
with _
LI=Q=Q>0. (6.5)

2., is equal to ¢ for t = £m. According to Section 5, this sub-group is represented
by

u (X) = (cos 5‘) = [—-;; X nthé]. 6.6)
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This simple form is due to I*=—1: the eigenvalues of I are +1, and

g (X)=X - (Lth%I)XzX : LIthé.

Accordingly, det Q=1 and X - QX >0 ((6.5)). Therefore

u,(X) — Ii_m0 (sin g) "exp [43;1){ - QX ctg s] = (Fimh)"8*"(X) (6.7)

or
ulll e = (Fi)"w (68)

(i1) A bicanonical map whose W.F. vanishes in a part of E

Taking n =1 for simplicity, the generating function

g(&m) =2nA tg k¢, Ak =const. >1, k>0, (6.9)
defines a map ¢ € ¥™. Equations (4.15) and (4.14) give

ta
cos’ kq—g—/\k

cos® k& — Ak 2
T T (6.10)
P k. FYY)
2
Gg=E&+Atgké = Q)
q=¢&-Atgké = Q) |.g1.<_5%, 6.11)
The functions Q and Q map D =[—n/2k; w/2k] onto R. Moreover
cos® k€ 1

0=A*= kx>1, &eD. (6.12)

? s
cos? k& — A%k? Ak:E-1"

A? reaches zero for &=+m/2k only. For these values, ¢ sends q=F% onto
q = +. Therefore, ¢ is symplectomorphic and is unfolded by the function (6.9)
defined on D XR. The W.F. of the bicanonical map which represents ¢ is

u(¢, m) = N(&e Wk (6.13)

where, according to (3.15),

N = 6(% - }él) (cogzkkg)z - 1|“2 (6.14)

The kernel (4.16) of u is
., dt (q+q’ h)N(q+q' h)
— —_— - S— +_
ku(q,PM,P) .[2 N > 2!‘ > 2!

A +q'+ht +q' —ht
X exp {i[(p'—p)t+(p+p')£ (tg kq—-—g——tg k%—)]}

+q' +h +q' —ht
xa(q—q’+)\tgk%[+z\tgkq——52——). (6.15)
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The 0 in N limitates the integration variable to the domain

= _|ata]

2k 2 2

If #— 0, the norm factors and the arguments of & no longer depend on t, and

TR S
.

=

=

) (6.16)

(6.17)
cos” k

Integrating (6.15) over ¢ yields
+ !
lim k,(q,p |4, p") = 6(m—k |q+q'|)[,\2kz(1 rg? 149 )_ 1]

2
+ ’
x8(q—q’—2A tgk%)

X 8 1+—Ak+—, p'— 1———1"—+—, p\. (6.18)
coszk% cosqu—zi

The first & contributes for

+ !
q—q=2Atg ki—z—q—- (6.19)

Taking (6.16) into account we have the unique solution
a' =4(q),

and the second & contributes exactly for
p'=p(q, p),

where @ and p are the classical transformations defined in (6.10-11). The norm
factor in (6.18) is just convenient to give

lim k,(q,p |4, p) = 8(a'-4(a)) 8(p'~ B(a, p)). (6.20)

When # # 0, the argument of 8 in (6.15) vanishes at values k#it/2 = +7, given by

2A q+q') ., q+q w k ,
t 13 sr<Z-Zlg+q] .
7—a gk 5 ) cos k 5 0o=r > 2iq q'| (6.21)

A solution 7(q, q') exists in the domain of (q, q')

sin? 7 = (1—

2 i
0<a(q q)=——tg kT 9«1, (6.22)
a—q 2

o is 1 if q and q' are classically related by (6.19), and decreases smoothly. k, is
zero for o >1 or 0 <0. 7(q, q') = 0 on the classical curve o(q, q') = 1 and increases
smoothly to 7/2 on the straight line q'=—q (o =0).
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Explicitly
2
k.(a, pla’,p)=6(m—k |q+q')6(c)6(1-0) -

’ 1/2 ' 1/2
[Azkz—cos“ (kq;q - )] [)\2k2—cos4 (k—hq;q +~r)]
X

+ ’ + !
cos’ (kq 2q - )—-cos2 (kq 2q +~r)
1 127 sin 27 ]
—cos—|—(p'— ' '—q) ——|. 6.23
thmh[k (p'—p)+(p'+p)q q)sink(q,+q) (6.23)

Here, o and T depend on q and g’ only, as given in (6.21-2). The support of k, is
that part of E X E defined by (see Fig. 1)

p,p' eR (6.24)
q+q €l—m/k, +m/k]

+q' +a
q'—g=2x tgkq—zq—zf), q'—q<2A tgkq—z—‘iso. (6.25)

Figure 1
The shaded area is the support of k, in (q, q')-space. The thick line is the graph of the classical
canonical map induced by k. It is also the support of k, at the limit A=0.
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(iii) A one-parameter group of bicanonical maps inducing a non-diffeomorphic
classical map

The function

h = pq* e Ay, (6.26)
1s the W.F. of the non essentially self-adjoint operator
H=QPQ (6.27)

Both defect indices of H are equal to one. h is the generator of the one-parameter
group [3]

_ 9
| q+—>4q.(q) -5
" p—plq, p)=(1-1tq)°p
¢, 1s canonical, but not symplectomorphic. It is only piece-wise diffeomorphic [3],
namely in the domains &, ={peR, q <1/t} and D{ = {p €R, q > 1/t}. The functions

2, (6.28)

gi(Em) = —n% (1 £V1+ (1)) (6.29)

are two branches of an algebraic function. They unfold ¢, locally, g in &, and
g" in @¢. They satisfy the standard Hamilton-Jacobi equation (3.26) with initial

conditions

g EM~h(ENt—0, -0,

(6.30
g£+)(£, n)— —2&n, t — +oo, )

The operator exp—(i/A)tH admits a continuous one-parameter set of unitary
extensions:

- _eiaﬂ(lq—l) q ) 6.31
U@ =S i), (631)

But the group law U, U, =U,,, is verified for ¢'“/” = +1 only. The W.F. of U’
has not the form (4.1). It is a sum

u™(X) = ui (X)) + eul(X), (6.32)
where
u(X) = (1+(1q)%) 2 =0, (6.33)

The components are isometric,

(U oui)g, p) = 0(1—tq) = 1 (& Vou( ")(q, p) (6.34)
and orthogonal in distribution sense

* o *_
u£+)ou£ )_.—_ug )ou£+):0' (635)
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The canonical map (6.28) is reproduced for g,
(o qou)(X) = q.(q) (6.36)
whereas one obtains for p

(U opou™)(X) = p,(g, p)—a(1—1q)* 8(1—1q). (6.37)

The correction term is zero in distribution sense like X2 8(X), but the classical
quantity dqg, = (1—tq) * dq has a pole in q =1/t. Thus, the action element trans-
forms according to

pdq— p, dq,—a 8(1—1tq) dq. (6.38)

Strictly speaking, the map ¢, (6.28) is not defined in tq = 1. The singular term in
(6.37) introduces a distinction between the classical maps induced by the various
extensions U™, a R, without which the present example would contradict
Theorem 1.

(iv) A bicanonical map near the parity operation

The generating function

3

2
e = o, 3 =2na(é), (6.39)

where a is an arbitrary positive constant, unfolds the symplectomorphism X =
¢(X) given by

_ a’ _ 2a3¢
q—§+§2+a2 p= (1 e 2)2) (6.40)

o (y__ 207

The corresponding bicanonical map is given by the W.F.

u(a p)=(1-a'@)" exp = 2 ~ pala), (6.41)

which has the exponential form (4.1). But the product of u with the parity
II(X) = 7h 8(X) no longer has this property. One has

(uell)(X)=—

: J.szdzze_‘z""‘”(Y'”u(X+Y) 8(X+z) (6.42)
T

. 57
- I_ dé8(q—a(§)(1—a'(§)®)'* exp [—;;]p(ﬁ a(¢)—q)

The equation a(&) =q has two solutions

£.(q) = *a \/3— 1 (6.43)
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and q is limited to the domain [0, «]. One finds

e ) =N@[erw 2221 Jrep [-22p 2 1] s

2
=2N(q) cos [-gp \/g— 1]
h q
where

a4 172
N(q)=6(q)6(a— )(——1) 6.45
(v) The W.F. of the density operator of a gibbs state
The identity (5.6)
e Mh o = (Ne M=) o
holds for complex values of ¢t with the same restriction (3.8). Putting
t=—ihp, B>0, (6.46)
and defining

i
G(B, X)=£ g—ihB(X) (6.47)
n(Ba X) = N—ile(X), (648)
we have the W.F. of the operator exp —H:
u(B, X)=n(B, X)e °*X (6.49)
G is real because g, is odd in t, and
3 ih, &G ) 5 =
_ L .50
(n(8, X)7=det (1-20 A2 (8, ) (6.50)

is real because N7 is even in t.
A case interesting statistics is

WMX)=1X wX, &=w>0. (6.51)

h is the W.F. of the Hamiltonian of coupled oscillators with a positive spectrum.
Because w >0, it can be diagonalized in a symplectic basis in which its eigenvalues
are wy, k =1+ n, with multiplicity 2 [3].

From Section 5 we get

. 1
(8.0 =[] —— 652
=1 Ch_(x)k
2
G(B.X) =7 ¥ (@i +phin E% 653
k=1
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and
1 #h
2 exp [—(qﬁ+pi)— th Bw"] .
Trne © —J’ d7X ﬁ h 2 l-[ (6.54)
QRmh)" i Buwy = thk ' '
ch
2 2
By normalizing u to unit trace one obtains
= h
o8, %)= TT (n"E%) exp [+ n "% gz +p2) | (6.55)

k=1

This is the exact W.F. of the density operator exp (—BH) of this Gibbs
ensemble, if B8 =1/kT. For high temperature, # 'th3hBw, ~ w/2kT, p becomes

*(h(X)/kT)

p(B, X)~ (6.56)
; | (2kT)

This is the classical approximation for #— 0. At vanishing temperature,
th3hBw, =1, p tends toward the ground state of the system

p(B X) e e*(l/ﬁ)X . X.

7. Conclusion

The algebraic content of this paper can be summarized as follows: The
bicanonical operators studied here form two distinct species of groups which
belong to a ray representation of the groups of classical canonical maps ISp(E)
and 9™ respectively. The classical maps ¢ are represented by W.F. u which are
built up from a pure geometrical quantity, the standard generating function g of
¢: The phase of u is —A 'g and its amplitude is the square root of a Jacobi
determinant containing the second derivatives of g. The standard picture of
canonical maps comes thus naturally into play together with the description of
unitary operators by means of their Wigner function.

This ideal picture is altered to some extent by complications of geometrical
nature. If the transversality condition o> N >0 does not hold, g fails to unfold
the classical map ¢ or does not exist at all. In some cases, a way-out is to work
with a multivalued function; u becomes a sum of exponentials, one for each
branch of g.

Bicanonical maps have more kinematical than dynamical applications. But, in
any case, they form a useful investigation tool because we possess exact results on
them. It is not difficult to convince oneself that Van Vleck’s formula (4.1) can still
make sense for more general unitary operators. It is the first meaningful approxi-
mation in an asymptotic expansion in #, under the condition that the phase
unfolds the classical canonical map induced by the quantum map at the limit
h=0. A h— expansion is meaningless if one does not take care to add the
appropriate number of exponentials in the first approximation step. This is
necessary whenever the classical problem reveals caustics. Interference pheno-
mena play then a leading role in the quantum problem.
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