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Calcul numérique de la masse physique dans le
modele A:¢':, pour de petites valeurs de A')

Par Béat Hirsbrunner, Département de Mathématiques, Ecole
Polytechnique Fédérale, CH-1015 Lausanne, Suisse

(28. VII. 1983)

Abstract. It is known that the perturbation series in powers of A for the physical mass in the
A:¢d*:5 quantum field model is Borel summable. In this paper, we take advantage of this fact to
compute numerically this physical mass for small values of the coupling constant A. To do this, we
evaluate accurately the coefficients of the perturbation series up to the fourth order, and we compute
Lipatov estimates for higher orders. These results are then used to compute low order Borel
approximants for the physical mass, and to get plausible estimates on their accuracy. For definiteness,
we focuss our attention on the critical value of A for which the physical mass vanishes. We give
numerical results for this critical value. Our numbers depend on the value of a certain critical
exponent. We argue that our computations give the critical A with an error between 5 and 10%, as
soon as the critical exponent is known.
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Introduction

Dans cet article, notre propos est de donner une idée sur I'information
quantitative qu’on peut tirer des séries perturbatives de la théorie quantique des
champs en combinant:

1°) le fait que ces séries sont parfois sommables selon Borel,

2°) la connaissance précise de leurs quelques premiers coeflicients,

3°) les estimations a la Lipatov qu’on utilise actuellement pour les coefhi-
cients d’ordre élevé.

Pour atteindre ce but, nous avons choisi de resommer la série de puissances
de A qui donne le carré de la masse physique m7, dans le modele A:¢*:,. Dans
cette resommation, nous ferons un large usage des méthodes variées que nous
avons exposées et illustrées dans un article précédent, Hirsbrunner (1982).

Justifions ce choix en quelques mots. Tout d’abord, Eckmann-Epstein (1979)
ont démontré que la série perturbative associée a A — m_,(mg, A) est sommable
selon Borel, a masse «libre» m positive fixée, pour A dans un certain intervalle
[0, Ao], avec A, positif. Il est donc possible en principe de reconstruire quantita-
tivement mﬁh pour 0 = A =), a partir de la série perturbative. Ensuite, la maniere
dont m;, dépend de A a des aspects intéressants. L' «image de Goldstone»
suggere le comportement qualitatif de la figure 1 (voir par exemple Glimm-Jaffe-
Spencer (1973), p. 142); dans cette figure, A, est le point ou m,,, s'annule; A, est
appelé le point critique. Ce comportement a été confirmé dans des modeles
voisins, voir par exemple Glimm-Jaffe (1974) et Frohlich (1976, pp. 39-44); voir
aussi les références de Frohlich (1976) et Summers (1979). On peut espérer que
Ao= A, et que la resommation de la série perturbative pour mp,, pumgttrd
d’évaluer A,,. En troisiéme lieu, le calcul des coefficients de la série associée a m.,
est relativement simple, puisqu’il peut se ramener a I'étude de la «fonction a deux
points» dans le voisinage immédiat de la couche de masse p* = m,.

Cette simplicité est toute relative, cependant. Comme il est de regle er
théorie quantique des champs, 1l est pratiquement impossible de calculer avec
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Figure 1
Le comportement de la masse selon I'image de Goldstone.

précision autre chose que les quelques premiers coefficients de la série. Ainsi,
nous nous contenterons dans ce travail des cinq premiers coeflicients. Dans cette
situation, les méthodes exposées dans Hirsbrunner (1982) nous serons tres utiles
pour tirer un maximum d’informations quantitatives sur m», pour des A pas trop
minuscules. Combinées avec des estimations heuristiques sur le comportement
asymptotique des coefficients aux grands ordres, elles vont nous permettre de
donner avec une certaine confiance des valeures numériques pour m, jusqu’a des
A de l'ordre de 1.5mj a 2m;, et méme de risquer des estimations pour A,
Dans le Chapitre 1, nous rassemblons quelques résultats de la théorie
constructive des champs concernant le modéle A:¢*:5; nous nous bornons dans
notre choix a ceux qui nous ont paru indispensables pour notre propos, en fixant
tout particulierement notre attention sur la sommabilité selon Borel de la série
perturbative en puissances de A du carré de la masse A — m2,(mg, A), my>0 fixé.
e Chapitre 2 présente notre calcul précis des cinq premiers coefficients de la série
perturbative pour mZ,. Nos chiffres sont rassemblés dans I’équation (2.12). Dans
lc Chapitre 3, nous exposons comment nous avons combiné ces chiffres avec ce
qu'une méthode heuristique nous donne concernant le comportement des coeffi-
cients aux grands ordres pour construire les approximants de Borel de
m2,(mJ, A). Les approximants présentés sont ceux qui nous ont paru les mieux
adaptés a une estimation de A.,. LLe Chapitre 4 rassemble nos résultats sur A, et
plus généralement sur m;,(mg, A) pour 0=A =\, Notre travail se termine par
nos conclusions, suivies par quelques points particuliers discutés dans les annexes.

1. La sommabilité selon Borel de m;,

Dans ce chapitre nous rappelons quelques résultats bien connus du modele
A¢3 dans la théorie constructive des champs relativistes quantifiés. En particulier
nous portons notre attention sur la sommabilité selon Borel de la série perturba-

. . . 2 ~ -
tive en puissances de A de la masse A —> my(mg, A), m;>0 fixé.
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1.A. Les fonctions de Schwinger

Le modele A¢* a deux dimensions d’espace-temps est caractérisé par sa
densité lagrangienne. Celle-ci est donnée formellement par

'g(xoa i) = °c‘£()(x09 i) - Ad>4(x03 i)

ZLo(x°, %) = 3((0,00)* — (93)* — M) (x", X)
ou ¢ € F'(R?) est un champ scalaire réel (boson massif, neutre et de spin 0), m,
est la masse libre et A est la constante de couplage.

L’existence des fonctions de Schwinger S, associées a la lagrangienne (1.1)
est assurée par le résultat fondamental suivant.

(1.1)

Théoreme 1 (Glimm-Jaffe-Spencer (1973), page 161). Soit m, >0 fixé et soit
un n-tuple (M,,..., M,) d’entier positifs. Alors il existe € >0 tel que pour
0=\ <e - mj les limites

lim L [T :6™:(x) dv()

g1 i=1

existent au sens des distributions de Q = %' (R*").

Dans cet énoncé ¢ est un champ scalaire euclidien et dv,(¢) est la «mesure
en interaction» sur &' (R?) définie par

exp[—A - fge:d*:(x) - g(x) d?x] dp,2(b)
foexp[—A - fre:d®:(x) - g(x) d°x] du,z(d)
ou du,:(¢) est la mesure gaussienne sur ¥'(R*) de moyenne 0 et de covariance

(=A+m§)';: :sont les points de Wick relatifs a la mesure du,:(b); g € F(R?) est
a support compact

dv,(d) =

Remarques. 1. Pour M,=---=M, =1 les limites du Théoreme 1 sont
désignées par

S.(x; mg, )

ct sont appelées les fonctions de Schwinger. x désigne le n-tuple x =(x,, ..., x,).
x; e R*.
2. Par linéarité le Théoréme 1 se généralise a

5.0 x;m3, Ay =lim [ I :0,6):(x) d ()

ou Q=(Q,,...,Q,) est un n-tuple de polyndbmes a une variable. Par abus de
langage ces S, sont également appelées fonctions de Schwinger.

1.B. Quelques propriétés des fonctions de Schwinger

1. Pour 0=\ <e - mj les S,(x; mg, A) sont les fonctions de Schwinger d’une
théorie de Wightman dont le spectre de masse est de la forme, voir Figure 2:

{0} U{m,, (mg, MU {p =2m,,(m3, M)},
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Le spectre de masse.

ou 0 est une valeur propre de multiplicité 1 (unicité du vide); m,,(mg, A) est une
valeur propre isolée (le sous-espace propre correspondant porte une
représentation irréductible du groupe de Poincaré: ce sont les états a «une
particule de masse mg,»); m,, est appelée la masse physique. Pour A — 0 on a
my,(m3, A) — m,. (Glimm-Jaffe-Spencer (1973 et 1974)).

2. Les fonctions de Schwinger (mg, A)— S, (Q, x;: m;, A) sont C* dans 0=
A/mi<e et leurs développements en puissances de A (m¢ fixé) sont donnés par la
théorie des perturbations usuelle. (Il en est de méme pour les éléments de la
“matrice S'; d’ou la «non trivialité» de la “matrice S7). (Dimock (1974),
Eckmann—-Magnen-Sénéor (1975), Eckmann—-Epstein-Frohlich (1976)).

3. Les fonctions de Schwinger A — S, (Q, x; mj, A) peuvent étre prolongées
analytiquement dans un domaine du type

{MA|<e-mi et |argA|<m/2+¢€'} avec & >0.

De plus ces fonctions et leurs développements perturbatifs satisfont le théoreme

de Watson-Nevanlinna. Les fonctions de Schwinger sont donc sommables selon

Borel par rapport a A et elles peuvent étre entierement reconstruites a partir de

leurs développements en puissances de A. (Eckmann-Magnen-Sénéor (1975)).
4. Soit H, la fonction définie par la transformée de Fourier de S,

i" - 3(2’(2 k,-) - H(Qy, (k9 k). . .5 Qp (ikD, k) m3, M)

i=1
=Qm) " - jexp[i . Z k; - x_,] SSHOQy, xp5 .. O xma, M) [T d2x, (1.2)
j=1 i=1

ot les k; sont réels, k; - x; =k - x{+k; - %, et S| désigne la fonction de Schwinger
tronquée a n points, voir Dimock (1974).

Theoreme 2 (Eckmann-Epstein—Frohlich (1976)). 3e >0 telle que pour
0=\ <e - m la fonction H, est la restriction aux points euclidiens d’une fonction
H,, holomorphe dans le «domaine axiomatique», avec des “‘péles isolés’” d’ordre 1
sur les hypersurfaces {p/p; = m_,} et des “coupures” sur {p/p; = a}, a=2m},.

Le «domaine axiomatique» est une ouvert de

M™ ={p/jpeM" et p,+p>+:--+p, =0},

ol M" est I’espace minkowskien {p/p € C*"} muni de la métrique p; = (p})*—(p;)".
Le «domaine axiomatique» possede entre autres les quatre propriétés
suivantes:

i) c’est un ouvert connexe de M,
ii) il contient les points euclidiens de M™', c’est a dire les p=(p;, ..., p.) Ou
p; est de la forme (i - p{, p;) avec p], p; réels,
iii) il contient V\ 'V, ol V est un voisinage ouvert de V, ={p/p; =m,},

iv) {p/p; = a}, a=2m}, est dans le bord du domaine axiomatique.
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Remarque. Pour éviter toute confusion nous utiliserons dans la suite la
notation suivante:

i) p pour les points du «domaine axiomatique»,
i1) k pour les points réels de la forme

(k°, k)=(Imp° Re p) et avec k>=(k"*+(k)?,

iii) f pour la restriction aux points euclidiens d’une fonction f définie dans le
«domaine axiomatique». En particulier on a

f(pz)lcuclidicn = f(_ k?).

1.C. La masse m},

1. Le Théoreme 2 nous enseigne que les singularités des fonctions H, sont
reliées au spectre d’énergie — impulsion de la théorie. En particulier pour 0= A <
e - m{ la fonction a deux points

H,(py, p2; mg, M) =H,(Qy, py; Qa, p2; mi, L), ot Qy(y)=Qu(y)=y,

est holomorphe dans le «domaine axiomatique» (rappel: p,+p,=0) avec des
“poles isolés” d’ordre 1 selon {p|p;=m2(m3, A)} et des ‘“‘coupures” selon
{plpi=a}, a=2 - mZi(m3, A). Plus précisément (avec p, = —p, = p) la fonction

p?—> (p?—=mZ(m3, A) - F(p?, m§, \), ot F(p*, m,\)=Hy(p, —p; m3, A ),

(1.3)
est holomorphe dans le plan coupé

{p?|p*eC et p’¢a+R"} avec a=2- ml(mf,A),

et la masse m2,(m3, A) est la position du péle isolé de la fonction p*> — F(p?, m§, ).
2. Du point précédent et du théoréme des résidus pour les fonctions analyti-
ques il suit immédiatement:
Corollaire 3. 3¢ >0 telle que pour 0=\ <e - m;

man(mg, A) = X(mg, \)/Z(mg, X)

X(mg, \)=Qmi)™ - j

p>- F(p*, m§, ) dp?,
)

Z(md, \)=Qmi) ™" - I F(p*, m3, A) dp?,

I" est un petit cercle centré en p®>=mj et contenant le point p°=m,,(mg, ).

La fonction Z est la «constante de renormalisation de la fonction d’onde».
3. De maniere analogue aux fonctions de Schwinger S,, les trois fonctions

(mg, A)— F(p®, mg, A),
(m3, A)— Z(m3, A),

(m(z)a /\) = mrz:ah(m(z)v A)a

sont C* dans 0=A/mj<e (pour p appartenant au «domaine axiomatique»), et
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peuvent étre prolongées analytiquement dans un ouvert U du type
U.,.={A|0<|A|<e-miet|argA|=n/2+¢}.

Théoréeme 4 (Eckmann-Epstein (1979)). Les séries de perturbation des fonc-
tions

A— F(p®, m§,A), A—=>Z(mi, L) et A—>mi(mj,A)

sont sommables selon Borel, plus précisément: pour my>0 fixé, il existe €, €' >0 tels
que la fonction A\ — F(p*, m§, A) et son développement perturbatif ¥ F,(p, m3) - A"
satisfont le théoreme de Watson—Nevanlinna pour A € U, .- (et analogue pour les
deux autres fonctions).

Ce théoreme est également vérifié dans les modeles AP(¢), et il peut étre
étendu au modele A¢3 a I'aide du développement en essaims (cluster expansion)
de Magnen-Sénéor (1977); voir Eckmann—Epstein (1979).

2. La série perturbative de m?,

Dans ce chapitre nous calculons les coefficients, jusqu’a I’ordre quatre, de la
série perturbative en puissances de A de la masse A — mf,h(m%, A), pour my=>0
fixé. Nous commengons ces calculs par un changement d’échelle qui nous per-
mettra ‘““d’éliminer” la variable mi,.

2. A. Changement d’échelle

A deux dimensions d’espace-temps les fonctions de Schwinger satisfont a la
relation (changement d’échelle):

Sn(pX1, - - 5 PX; p2MG, pT2A) =S, (X1, - .-, X3 MG, A)
(au sens des distributions tempérées), Vp>0. Pour p =m, nous pouvons ainsi
éliminer mg:
F(p?, mg, A) =mq* - F(p*/mg, 1, \/mg)
Z(m3, \) =Z(1, A/mg)
mih(méa A)=mg - mﬁh(l, A/m3).

Attention. Pour simplifier la notation nous supprimons dans la suite ’argu-
ment “1” qui apparait apres le changement d’échelle. De plus “mg - x”’°, “k/mgy”’

et “p/my”’ seront respectivement désignées par “x”’, “k’ et “p”’. Et nous posons
pmg
Z = A/mg, avec my>0 fixé.

La masse m},, s’écrit alors (voir Corollaire 3):

ma(md, A) =mj - m(z) =mj - X(2)/Z(z) (2.1)
ou
X(z)= 2mi)™! j p* - F(p? z) dp?, (2.2)
r
()= @iy | G2 2) dp?, (2.3)
T

I' est un petit cercle centré en p”=m2,(0) = 1 et contenant le point p> = m7,(z).
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2.B. La n-éme dérivée par rapport a z =\/m}

De (2 1) a (2.3) il suit que la n-eme dérivée de z — m2,(z) est déterminée
par les j-émes dérivées de z — F(p?, z)=H,(p, —p; z), 0=j=n. Ces derniéres
sont reliées, par I'intermédiaire de (1.2) et du Théoréme 2, aux j-&€mes dérivées
de ST(x y; z). Plus précisément le résultat general suivant nous permet d’évaluer

la n-eme dérivée de la masse z »—-)m,,h(z) a l'aide des fonctions de Schwinger
tronquées S3..(-; z), 0=j=n:

Théoréeme 5 (Dimock (1974)). Pour tout my>0 fixé et pour tout m-tuple de
polynémes a une variable Q =(Q,, ..., Q,,) il existe e >0 telles que pour tout n et
pour tout z=\A/m{ avec 0=z <e:

(i)"sx(o, x;z)=(=1)" - I ST, (Q x;P,y;z) dy

dZ RZn

ou P= (Pl,.. ,P,) est un n-tuple de monémes a une vanable définis par
P,(y) = y* pour tout j.

De ce théoréme il suit:

Corollaire 6 (Eckmann-Epstein—Frohlich (1976)). Pour z, Q et P comme au
théoréeme précédent on a:

1) (:Z) m(Q,p;2)=(-1D"-H,..(Q,p;P,q=0; z)
) () x@- gngf(z)pZ(—‘;iz)"F(p% 2)

3 ()z@)= Res (L) Fe2 2

po=my,(z)

Remarque. Le Théoréme 5 et le Corollaire 6 se généralisent immédiatement
aux modeles AP(¢),. Et ces résultats restent valables pour A € U, .. avec U, .-
comme au Théoréme 4; voir Eckmann-Magnen-Sénéor (1975) et Eckmann-
Epstein (1979).

2.C. La n-iéme dérivée par rapport a z en z =0.
1. Avec

m,z,h(z)=z a.z", X(z)=ZX,,z", Z(z)=Zan"

il suit de (2.1)

():an-z")(Zzn-z")=an'z
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c’esst a dire
n—1
an:(lfzo)(xn_ao'zn— Z a, 'Zj) (2.4)
i=1

powr tout n =1, et a,= Xy/Z,.
2. Les coefficients Z; et X; se calculent a 'aide des ingrédients suivants:

a) le Corollaire 6 qui relie les Z;, X; aux H,,; (-; z=0), (rappel: F=H,),

B) le Théoréeme 2 qui relie H,,; (-;z=0) a S,,; (-;z=0),

v) le Théoreme de Wick qui permet d’exprimer S7,; (-; z=0) comme la
«somme d’un produit de fonctions de Schwinger libres a deux points
S, (-; z =0)», voir Dimock-Glimm (1974),

6) la fonction de Schwinger libre S, qui est donnée par

S:(x,y;z=0)=S(x-y)=Q2m) " - J exp[—i-k-(x—y)]- S(k)d?k

ou
r 1 1
Sk)=—+—5—
(k) 27w k*+1° ]
voir Simon (1974) page 76.

Rappel: au point réel k =(k° k)eR? correspond le point euclidien p =
(i - Im p° Re p)=(ik? K).
3. Alordre n=0 on a:

i 8Pk + ko) - Hay((ikS, k1), (ik$, k2); z =0)
= Do} 2 » J‘exp [ik,x, + ik,x,] - ST(x,, x5; z =0) d*x, d*x,

= Uexp [ikiy] - S(y) dzy] - [(277)‘2 : I exp [i(k, + k) - x,] dzxz]

= [277 : g(kl)] ’ 5(2)(’(1 + kz)
_ 1
ki+1

° 8(2)(’(] -+ kz)

d’ot Fy(—k?=-1/(k>+1) et par prolongement analytique aux points du
«cdomaine axiomatique»: Fy(p?)=1/(p>—1). D’ou finalement:

Zy=1, Xo=1 et ag=1 (2.5)

cest & dire m2,(z =0)=1.
4. Aux ordres n =1 on obtient par un calcul analogue au cas n =0 et a I'aide
diu théoreme de Wick (appliqué ici a la fonction H,,, (-;z2=0)):

F.(-k?)=(1/n)) - (d/dz)"F(—k?; z)|, -0
:[(_1)n/n'] - ﬁ2+"((ik0, E)’ _(ik(), E)’ Ql = 03 CREE QH = 03 z)’z=0

=[(—1)"/n']- i % - «<somme sur tous les graphes de Feynman connexes avec n
vertex a 4 pattes et 2 lignes externes d’impulsion k»

=Y Clp - Lo (=K,
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ou m indexe les graphes différents du méme ordre,
Cl.=((=D)""-Q2m)/nY) - Cy
C,... est le facteur combinatoire du graphe in_m(—kz),
o 1 1
L (—k* =———*~I —— 11 4k,
) wunzlhw+w£L ’

avec L I'’ensemble des lignes internes et B I’ensemble des boucles du graphe de
Feynman; k; est une combinaison linéaire des k et k.
Du Corollaire 6 il suit (avec m2,(z =0)=1):

X, = Be§ p2 ’ Z Chm: In,m(pz)’
i -

Z, =Res Y, Cir* L (D),
pr=d o

ou les I, sont les prolongements analytiques des Io,,.m dans le «doma ine
axiomatique». Or les I,,,, apparaissent sous la forme

L) =D (p* =17 T, (p?),

ou J, .. est holomorphe en p*=1, J,,.(p>=1) #0 et r est un entier qui dépend de
la structure du graphe.

En posant

B B (_1)r ( d )r42 -

Xn.m Zn.m - (r—-2)! dp2 Jn,m(p - 1)a ( 26)
(___1)r ( d )r—l -
Z .= . J = 2.7
n.m (r _ 1)! dp2 n.m (p 1)! ( )
(Xom—Zym=0sir<2et Z,, =0sir<1) il vient

X, ~Z, =Y Chr X = Z) (2.8)
Z,=Y Chm Zom (2 .9

Remarque. En général plus r est petit plus le calcul de (d/dp>)'J,,.(p>=1) est
“facile” (pour un graphe donné). Il est donc plus facile de calculer X, —Z, que
Z,. Ceci est intéressant puisque (2.4) s’écrit avec (2.5) et a,=Z,=0 (v oir
ci-dessous):

n—2
a,=X,~Z,— ), an_;*Z, pour n=2 (2. 10
=2

]

En conséquence a 'ordre n nous n’avons pas besoin de calculer Z, et Z, ,.

2.D. La n-eme dérivée par rapport a z en z=0, n=4.

A Tordre n=1il n'y a aucun graphe,dou Z,=X,=a,=0. Alordre n= 21l
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y a exactement un graphe, voir tableau 1. On obtient

1

Fy(-k?)=C3, e Jo1(-k?),
avec
—=1)3 1 (4')2
o D 214y

217 oM. 21 3t

Foa(=k?) = jdzkl d’ky[(k =k )+ 117" - [(ky = ko> +1] 1 - [k3+ 1]

L’intégrale de Feynman fz, 1(—=k?) peut étre calculée a 'aide des «paramétres de
Feynman», voir Annexe 1 de Hirsbrunner (1981a). De (2.10) avec (2.8) et (2.6) il

suit

a,=X,—2,=C3, '12_1(P2:1): _% ’

Aux ordres n=3 et n=4 les calculs sont analogues; les contributions des
différents graphes sont résumées dans les tableaux 2 et 32).

Tableau 1
Les contributions des graphes a I'ordre n =2.

m

graphe Cc x2' = Zz. Z2

2,m

2
21 4) 1. a 1 4.3 2
@ 3t T T 6" ta’

Remarque. A l'ordre n =5 il y a exactement 21 graphes. Tous peuvent étre
calculés a I'aide des techniques développées dans I’Annexe 1 de Hirsbrunner
(1981a), sauf le graphe non planaire de la Fig. 3 (graphe que nous n’avons pas
réussi a calculer).?)

En résumé nous avons pour m,>0 fixé, z = A/m:

ma(md, ) =m- mZ(z)~m2- ) a,-z" (2.11)

n=0

= Les méthodes qui nous ont permis d’évaluer les intégrales de Feynman intervenant aux ordres
n =4 sont décrites dans I’Annexe 1 de Hirsbrunner (1981a). Les graphes m =4, 5 et 6 du
tableau 3 ont été évalués a I'aide d’'une méthode peu connue mais trés efficace. Il s’agit de ce
que nous appelons “lintégration numérique sur une grille a n dimensions”. Nous nous
contentons ici d’'indiquer que cette méthode nous a permis de calculer, sur un mini-ordinateur
NORD-10, deux intégrales ‘“non-triviales” a n =6 dimensions (a savoir les graphes m =4 et 6
du tableau 3), avec une précision que nous estimons de I'ordre de 0.02% (!).

3 On peut trouver une liste de références sur les graphes de Feynman (théorie et techniques
d’évaluations analytique/symbolique/numérique) dans Hirsbrunner (1981a) pages 93-95.
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Tableau 2
Les contributions des graphes a l'ordre n=3. { est la fonction zéta de Riemann et on a ¢ (3)=

1.20 205 690 316. . .

m graphes C],m X]'m- Z],m
3
131 (4 7 3
, e’ | e
. . 3
, ~3. (45) “5/6
(21)
- - = . . 3
a, = X, 2, = 63-¢(3)/(2-m7) + 9/n
= 4.08 598 663...

Tableau 3
Les contributions des graphes a 'ordre n =4. R,, = (=(2m)"%/4!) - C, ,, - (X4.n — Z,,,,) st la contribu-
tion du graphe “m” au coefficient a,. Notons que les deux graphes qui livrent les plus grandes
contributions (m =4, 6) sont les graphes les plus difficiles a calculer!

m raph =
9 phes C4,m xd. zﬁ,m Rm
4
S%? 14! (4! 7 4
1 23T o7 e <5 (3) - 1.17
4
1.4 (42 4
2 14t : n (3 - 2.00
(2%)
4! (49 ? a
3 { '3 . (Errz-‘lsnli) - 2.19
(2!)
140 (48 4
4 s———— | 4.n% . (0.244 595 |- 3.25
< 2! + 0.000 040)
4: (4n? a
5 a—5r— | ¢! - 0.478 027 |- 2.12
2 + 0.000 003)
4
4 (4
6 4@_ —‘iz-’- g-n' . (0.152 283 |- 4.05
(2) £ 0.000 024)
4
4:(4!) 1 4 14 3 2
7 _— il e | + 0.24
-@—9 (3”2 2 (16 4
a, "X, - Z,-a,z, = (IR) - a,z, = - 14.6558 : 0.0012
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s

Figure 3
Le seul graphe non planaire a I'ordre n =5.

avec
a,=1 A
a, =0
a,=—1.5 > (2.12)
a;=4.08598663 . ..
a,=—14.656. .. J

3. La construction des approximants de Borel de m >,

Introduction

_ Dans ce chapitre, nous construisons diverses suites d’approximants de Borel
{Bn(z)}n pour le carré de la masse m3,(z), z=0 (voir équations (2.1) et (2.11)).
Ces constructions combinent

1°) la sommabilité selon Borel de la série perturbative de m2, (voir Chapitre
1, Théoréme 4);

2°) la connaissance des coefficients perturbatifs a, de mj,(z) (équations
(2.4), (2.11)) pour n =4 (équation (2.12));

3°) les estimations actuellement pratiquées sur les a, lorsque n—
(méthode de Lipatov; voir notre hypothése A, section 3.C).

Pour orienter ces diverses suites d’approximants vers un but précis, nous
avons décidé de les utiliser pour tenter d’évaluer le plus petit zéro positif z., de
m?h(z), voir la Fig. 1 (A, = z,m¢, cf. Chap. 2.A). Pour une suite {By(z)}5 donnée,
soit

Z.= lim z

N —>wx N

zy étant le plus petit zéro positif de Byn(z). Supposant qu’elle existe, nous
identifierons z., a cette limite

Z: = 2w (3.1)

Dans I’état actuel des connaissances, cette identification est conjecturale. Nous
I’adoptons faute de mieux. _

Les suites d’approximants {Bx(z)}n que nous utiliserons seront adaptées au
probleme d’évaluer z,. Nous les ferons dépendre d’un quadruple de parameétres
désignés par ¢, B’, A, v'. Si I'on veut que les By(z) convergent vers mﬁh(z) pour
les z d’un certain intervalle réel, il faudra restreindre le choix du parametre ¢. La
rapidité et le mode de convergence (monotone, oscillant, etc.) sera ensuite
influencé par tous les quatre parameétres. Si notre conjecture (3.1) est valable, z.,
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devrait, lui, en €tre indépendant. Tous ces aspects seront discutés abondamment
dans le présent chaptire.

La section A commence par un énoncé précis du résultat d’Eckmann—Epstein
sur la sommabilité de Borel de m>, (voir Théoréme 4); cet énoncé contient entre
autres la définition des trois parametres ¢, B, A’. Viennent ensuite 1’introduction
de I’exposant critique v et du quatrieme parametre, v’, ainsi que la définition de la
suite { By (z)}y correspondant & ¢, B’, ', v'. Dans la section B, nous expliquons ce
que nous entendrons par «parametres optimaux». La section C introduit des
conjectures quantitatives sur des aspects mal connus du résultat d’Eckmann-
Epstein. En particulier, c’est ici que la méthode de Lipatov joue son rdle. Dans la
section D, nous donnons notre choix «optimal» des parameétres ¢, B’ et A’, et nous
avouons notre embarras concernant le choix «optimal» du parametre »'. Le
comportement numérique des By (z) que nous avons effectivement calculés pour
N =4 et 0=z =z, sera analysé dans le chapitre suivant.

3.A. Les approximants de Borel By(z) et les zéros zy

1. Du Théoréme 4 il suit dans la formulation (4.1) a (4.5) de Hirsbrunner
(1982), les ouverts D, g, T, et T, étant définis par les figures 1 a 5 de
Hirsbrunner (1982):

Il existe R>0, >0, 1/A>0 et C>0, Ny;>0 telles que pour tout ze D, r et
pour tout N> N:

N-—1

m2.(z)— ). a, - z"|=C- N!'- AN - |z|V; (3.2)
n=0

la,|=C- N!- A", (3.3)

la transformée de Borel t — g(t) de {a,}, est holomorphe dans 'ouvert T, 4, ou g
est définie, pour B'>—1%) fixée et pour tout |t|<1/A, par:

g)= Y (a/T(n+B'+1))- 1", (3.4)

n=0

Pour z € D, r nous avons en plus:

oo

M) =(12)- [ exp (u2) - (12)" - g(0) s (3.5)
0

nous pouvons évaluer (numériquement) le membre de droite de (3.5) par

I'intermédiaire d’une transformation conforme ¢ (fixée) qui applique T, < T, A

dans le disque unité {w||w|<1}:

mp(z) = lim Bn(z) (3.6)
ou

Bn(2) = i b,.M,.(z) (3.7)
avec " .

M, (z)=(/z)- L exp (—t/z) - (t/2)® - (o (1)) - S(1)™ dt; (3.8)

4 La constante B’ est due a Le Guillou-Zinn-Justin (1977)
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les coefficients b,, sont définis par

(& "(@)/0) ™ gld (@)=Y b, @™} (3.9)

A’ est une constante réelle fixée.®)

2. Ainsi, a chaque choix des trois paramétres ¢, B’ et A’ correspond une
suite d’approximants de Borel {By(2)}n, qui converge dans le disque D, g vers

m?2.(z). Nous introduisons maintenant un quatneme parameétre, v', qui nous

permettra de tenir compte de la maniére dont m2,(z) approche 0 lorsque z tend
en croissant vers z.,. Nous le faisons dans le cadre de I’hypotheése R, qui est I'une
des conjectures que nous avangons dans la section 3.C; cette hypothese consiste a
admettre que z., est soit dans D, g soit sur son bord.

L’idée est la suivante. On s’attend a ce que

m(z) ~(zo — 2)" (3.10)

lorsque z tend en croissant vers z.,. L’exposant critique v est un nombre dont nous
imaginerons qu’il satisfait 1< »=<2.”) D’autre part, on a pour tout approximant de
Borel Bn(z) qui s’annule en z = zy:

Bn(z) ~(z—zy)* (3.11)

pour z dans le voisinage de zy, w étant un entier positif (génériquement égal a 1);
en effet, By(z) est holomorphe dans le demi-plan Re z >0, comme on le voit sur
les équations (3.7) et (3.8). Comme notre but est d’évaluer z, moyennant la
conjecture (3.1)

Z, = Z.= lim 2zy

zn: le plus petit zéro positif de By(z), nous pensons qu’il vaut mieux, pour des
raisons de convergence, étudier plutot les approximants de Borel non pas de m,,h
mais de m?2’; en effet, m%{:’ aura alors en z., un zéro d’ordre entier, qui
ressemblera davantage aux zéros éventuels des By(z) correspondants. Cette
opinion est confirmée par ’étude de la fonction f,(z) présentée dans I’Annexe 1.
Malheureusement, nous ne connaissons pas a ce jour la valeur exacte de v.
Nous tenterons de procéder par titonnement, en jouant sur le parametre v’ que

nous allons maintenant introduire.

Définition de By(z). Soit v’ une constante réelle non nulle.

éN(Z)E{(BN(Z))u, pour 0=z=z, (3.12)

sinon,

ou zy est le plus petit zéro positif du N° approximant de Borel Bn(z) de
(m2(z))""". La fonction (m2,(z))"" est bien définie sur l'intervalle 0=z =z_,. Si

%) On adonc b, =% c,,, " a, oules ¢, , dépendent de ¢, B" et A"

®)  La constante A' a été introduite pour la premiére fois par Parisi (1977).

) Dans un modele voisin Glimm-Jaffe (1974) ont établi que v=1 (résultat rigoureux) et ont
énoncé la conjecture v=2. La valeur v=1 est la valeur classique prédite par «I'image de
Goldstone» (Fig. 1) et v =2 est la valeur exacte de I’exposant critique v dans le modéle d'Ising a
deux dimensions, voir Stanley (1971) page 47. Notons que dans la littérature le symbole v est en
général réservé a 'exposant critique de m,, (et non comme ici mgh!).
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1/¢' est un entier non négatif, elle a les mémes propriétés d’holomorphie et de
sommabilité selon Borel que m,z,h(z) lui-méme (en effet, mﬁh(O) =1, #0), et I'on
aura pour 0=z =z, =R (hypothése R de la section 3.C)

mo(z) = lim By (2).

Si 1/v' n’est pas un entier non négatif, ces propriétés subsisteront a condition que
m2, nait pas de zéro dans D,, . Nous ne savons pas si cette condition est
satisfaite. Nous ferons comme si elle I’était.

_ Par abus de langage nous dirons que
— Bn(z) est le N° approximant de Borel de mou(z)
-z est le zéro de Bn(z2).

3.B. Les parametres optimaux

Le N-éme approximant de Borel Bn(z) dépend des quatre paramétres (fixés)
¢, B', A, v'. La limite By(z) lorsque N — « ne dépend bien sir pas de ces quatre
parameétres! Le choix de I’application conforme ¢ est limité par la condition
Ty =T, ou T, 5 estle domaine d’holomorphie de la transformée de Borel g. Le
choix des constantes réelles B', A', v’ n’est limité que par la condition B'>—1.

La rapidité de convergence de la suite {By(z)}n dépend trés sensiblement du
choix des quatre parameétres ¢, B, A’, v. Dans notre pratique ces parameétres
sont déterminés par tdtonnement «numérique». Nous dirons que le choix des
paramétres est optimal si ces parametres sont tels qu’une variation de ceux-ci
n’améliore pas sensiblement la rapidité de convergence de la suite {By(z)}n.
Notons que cette notion de «choix optimal» ne permet pas de déterminer ces
parametres de maniére unique: ce choix dépend non seulement du nombre k de
coefficients perturbatifs a, connu,®) mais également de maniére non négligeable
d’une appréciation subjective.

Afin de limiter le tatonnement numérique, il est utile derappelerici brievement
le «rdle» joué par les quatre parametres ¢, B', A’, v'. Ces paramétres permettent
respectivement de tenir compte, voir Chap. 4.B de Hirsbrunner (1982):

- «¢»: du domaine d’holomorphie T, , de la transformée de Borel g(¢); en
particulier plus 'ouvert T, est grand (en d’autres termes plus « et 1/A sont
grands, puisque T, = T, o) plus la convergence de la suite {By(z)}y est rapide.

- «B'»: du comportement de g(t) lorsque t\y—1/A.

— «A'»: du comportement de g(t) lorsque t 7.

— «v'»: du comportement de mﬁh(z) lorsque z 7z, voir (3.10) a (3.12) ci-dessus.

3.C. Les trois hypotheses A, a, R

Le Théoréme 4 nous assure que la série perturbative de z+— m},(z) est
sommable selon Borel, plus précisément que m,(z) satisfait les relations (3.2) a

%) On peut essentiellement distinguer trois cas: k petit (k=<35), k moyen (k ~10) et k grand
(k =20); voir annexe 1.C. Rappelons que dans le cas de la masse m;’,h onak=4
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(3.9). Malheureusement les constantes A, a et R sont trés mal connues.”) Une
connaissance, aussi précise que possible, des valeurs de A et a permet d’optimiser
la rapidité de convergence de la suite {By(z)}x. La connaissance de la valeur de R
est nécessaire puisque les relations (3.5) et (3.6) ne sont valables que pour
zeDyg. Pour pouvoir déterminer le point critique z, de mZ(z) par
I'intermédiaire des approximants de Borel By(z) nous sommes ainsi amenés a
admettre les hypotheses suivantes:

Hypothese A: la singularité la plus proche de l'origine de la transformée de
Borel t +— g(t) se trouve en t =—1/A avec 1/A =1.4626.

Hypothese «: o = /4.
Hypothése R: R=z, ou z, est le point critique de mf,h, c’est a dire
2 -
m ph(zcr) =0
Nous allons bri¢vement commenter ces trois hypothéses.'”)
Hypotheses a et R: la seule argumentation heuristique qui nous permette de

«justifier» ces deux hypothéses est le fait que «la suite {Bn(z)}y semble bien
converger vers m,(z) pour 0=z =z.,» (voir Figs. 4 et 5).

Hypothese A: en 1976 Lipatov a développé une méthode heuristique qui
permet de déterminer le comportement asymptotique des coefficients des séries
perturbatives en théorie des champs.'"'?) En suivant cette méthode on obtient
pour les coefficients a, de la série perturbative de m?’,(z):

a, -~ —(=A)"-T(n+B+1)-C-(1+0(1/n)) (3.13)

n—o0

avec 1/A =1.4626, B=1 et C une constante positive (pour I’évaluation de la
valeur de A voir ’Annexe 2 de Hirsbrunner (1981a).'?)

3 La démonstration du Théoréme 4 est basée sur le développement en essaims («cluster
expansion») de Glimm-Jaffe-Spencer (1973). Ce développement nous livre bien une borne
supérieure A, pour A, mais cette borne est certainement beaucoup trop grande: A, » A. En ce
qui concerne « il n’est guére possible, avec les techniques actuelles, de faire mieux que «il existe
a>0»: voir Eckmann-Magnen-Sénéor (1975) et Eckmann-Epstein (1979) pour le difficile
passage de a =0 a «il existe a >0».

Notons qu’a notre connaissance des hypotheses analogues ont été faites dans tous les travaux
publiés depuis 1976 et qui contiennent des applications numériques des approximants de Borel.
Dans tous ces travaux on admet méme une version plus forte pour ’hypothése a :a =7 —¢, £ >0.
') Lipatov (1976). Voir aussi Zinn-Justin (1977). On peut trouver un excellent résumé dans
Zinn-Justin (1979).

Le méthode de Lipatov est une généralisation de la méthode du col aux intégrales de chemin de
Feynman. Cette généralisation n’est pas rigoureuse, mais elle a déja été utilisée avec succes dans
de nombreuses applications en théorie des champs: notamment pour la fonction 8, les exposants
critiques, les développements en g,...; voir Brézin-Le Guillou-Zinn-Justin (1977) et les
références dans Herbst-Simon (1978), note 4, page 69. On peut trouver des justifications
partielles dans Parisi (1977), Auberson—-Mahoux—Mennessier (1978) et surtout Spencer (1980),
Ellis-Rosen (1980).

") Ce résultat a également été obtenu par Zinn-Justin (1981), tableau 1 page 129. Notons que

A= 4/AZinn-Juslin‘

I(l)
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3.D. Le choix optimal des paramétres ¢, B', A" et '

1. Nous avons construit, pour commencer, les approximants de Borel By(z)
de m?2.(z) avec 'application conforme «minimale»

d(t)=1—-exp(—B-1). (3.15)

Le choix est justifié par le fait que les hypothe¢ses du théoreme de Watson-
Nevanlinna n’ont été vérifiées, dans le cas de la masse m,,(z), que pour Ja >0
(voir Théoréeme 4, Section 1.C). Ce ¢ correspond au cas ou a =0 (voir Figs. 3 et 4
de Hirsbrunner (1982)).

Avec ce ¢, le choix optimal de B et B’ est donné par
B=A-In2 et '=B-0.2 (3.16)

ou A et B sont déterminés par 1’équation (3.13); il est intéressant de noter que
¢(—1/A)=—1. Pour les paramétres A’ et v' nous n’avons pas trouvé de valeur
optimale; nous avons choisi ici

AM=0 et V=1 (3.17)

2. Nous avons ensuite optimisé le choix de 'application conforme ¢. Les
innombrables exemples que nous avons testés, notamment la fonction d’essai
f.(z) de I’ Annexe 1 et I'oscillateur anharmonique du Chapitre 4.C de Hirsbrunner
(1982), nous ont permis d’exhiber une famille de fonctions particulierement
bien adaptée a notre propos:

d()=(wu—1D/u avec u=(p-t+1)™2 (3.18)

ou p>0, a’'>0. Avec (3.18), le choix optimal des cinq parametres p, a’ et B', A’
et v’ est donné par

p=A, m/dsa' <= u/2, (319
B' =B, A=1, (3.20)
0.5=v'=6, (3.21)

ou A et B sont déterminés par I’équation (3.13); il est intéressant de noter que
Pp(—=1/A) =o0.

Ce choix n’est pas unique. Nous analyserons, dans le prochain chapitre, les
trois cas caractéristiques suivants

’

o' =m/4, v'=1 (3.22a)
a'=1/2, v=1 (3.22b)
o' =7/2, =2 (3.22¢)

pour différentes valeurs de A’ dans un voisinage de 1.

4. Résultats

Dans ce dernier chapitre nous analysons d’abord, dans la Section A, l¢
comportement numérique de diverses suites d’approximants de Borel {B(z)}x
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pour le carré de la masse m2,(z),z=0 (voir équations (2.11) et (3.12))."*) La
construction de ces By(z) a été largement discutée dans le chapitre précédent;
nous n’y reviendrons donc pas.

Nous discutons ensuite, dans la Section B, la question de savoir avec quelle
précision ces Byn(z), N=4, approchent la masse m’,(z) pour 0=z=z, En
particulier, nous portons notre attention sur le plus petit zéro zy de By(z). Nous
hasardons une conjecture qui permet d’'une part d’évaluer la limite

2= i\lll_rpx ZN
a partir des zéros zy, N=4 (!), et d’autre part d’identifier cette limite z.. avec le
point critique z., de m;,(z). Cette conjecture, qui repose sur ’étude d’un exemple
développé dans I’Annexe 1, nous permettra d’évaluer z. avec une précision que
nous estimons de I'ordre de 5 a 10%, a condition de connaitre I’exposant critique
v de m3,(z) (v détermine la maniére dont m2,(z) approche 0 lorsque z approche
- 8

Et enfin nous montrons, dans la Section C, dans quelle mesure la connais-
sance supplémentaire des coefficients as, a, de la série perturbative de m},(z)
permettrait d’améliorer nos résultats.

4.A. Le comportement numérique des By(z)

1. A titre illustratif nous avons construit, pour commencer, les approximants
de Borel By(z) de m},(z) avec I'application conforme «mininale» (3.15). La Fig.
4 montre que le comportement des By(z) est bien du type qui nous est suggéré

$5(2)

0.0 0.5 1.0 1.5 2.0 z

Figure 4 B
Les sommes partielles Sy (z) =YN_,a,z" de la masse m7},(z) et les approximants de Borel By(z)
construits avec (3.15) a (3.17).

par I'image de Goldstone dans la région a une phase (Fig. 1), du moins pour z <1.
Toutefois pour z=1 la convergence de la suite {By(z)}y devient trés lente et il
est en particulier impossible de localiser la limite z. a partir des zéros zy de
Bn(z), N=4. Dans la Fig. 4 nous donnons également les sommes partielles

Solzd= ¥ a.z" (4.1)

Le comportement de ces Sy(z) se passe de tout commentaire!

2

') Nous rappelons que m2,(m2,A)=m2- m2,(z) avec z =A/m}, voir Chapitre 2.A.



20 Béat Hirsbrunner HI.H.P.A

EN(Z)

0.5

0.0

BN(z)

0.5

0.0

BN(21

0.5

0.0

Figure Sa
Les approximants de Borel de la masse m,(z) construits avec (3.18) a (3.20) et (3.22a).

2. Nous avons ensuite construit les approximants de Borel By(z) de m n(2)
en optimisant le choix des quatre parameétres ¢, B, A" et v/, voir équations (3.18)
a (3.22). Les résultats sont donnés dans les Figs Sa—c. Ces figures montrent tres
clairement la convergence rapide des différentes suites {Byn(2)}n.

4.B. Discussion

En regardant les Figs 5Sa—c de plus pres, on s’apergoit que le comportement
numérique de ces By(z) est tout a fait analogue a celui des By (z) de la fonction
d’essai f,(z) de I’Annexe 1, voir Figs 8 et 9. Ainsi on a pour 0 <z <zy:

By 1(z)<Bn(z) pour A'> Aé}

Bn_1(z)>Bn(z) pour A'<Aj

(AH=1.35, 1.05 resp. 1.07 dans le cas des Figs 5a, 5b resp. 5¢). Pour A'= A |,
suite {Bn(2)}%_, est oscillante.

(4.2)
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EN\Z)‘-

0.5 5

Figure 5b
Les approximants de Borel de la masse mgh(z), construits avec (3.18) a (3.20) et (3.22b).

Et comme dans le cas de la fonction d’essai f,(z), nous devons distinguer
deux intervalles: 0<z=<1 et 1sz<z, Pour 0<z=<1, les By(z) ne dépendent
que trés faiblement de v'; tout porte a penser que I'on a, indépendemment de v':

§N__1(z)<J§N(z)<m§h(z) pour A'>A{
By(z)=m2(z) pour A=A} (4.3)

By 1(2) >Byn(z)>m2(z) pour A <A}
pour N=4 et 0<z=<1. Dans le second intervalle, 1<z<z_,, les By(z), N=4,
dépendent par contre trés fortement de v’ et les relations (4.3) ne sont certaine-
ment plus valables pour tout v’; ceci est clairement illustré par les Figs 6a—c, ou

nous donnons les plus petits zéros zy des By(z) des Figs Sa—c.
Nous hasardons la conjecture suivante.

Conjecture. Pour ' = v (v étant I'exposant critique de mﬁh(z)), les relations
(4 .3) sont également valables dans lintervalle 1<z <z,; pour v'#v on a par
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Figure 5c
Les approximants de Borel de la masse mgh(z), construits avec (3.18) a (3.20) et (3.22¢).

contre, indépendemment de A':

Bn(z)<m2(z) pour v'<v}

s 4 4
Bn(z)>ml(z) pour v'>v (4.4

pour N=4 et 1<z <z, (Cette conjecture est compatible avec les discussions du
Chapitre 3.A et de I’Annexe 1).

Cette conjecture nous permet d’évaluer facilement le point critique z., de la
masse m>.(z):

z,=x(¥)+6x(v) pour vV =v (4 .5)
ou par définition

X(V') = (zsup + Zinf)/2 }

8x (V') = £(Zgup — Zing)/2 (4 .6)
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.73 £ 0.07

1

v

¥ (

Figure 6a

Less zéros zy, des approximants de Borel By (z) de la Figure Sa. Les zéros z ont été calculés en posant
as-=64+2 (estimation, voir Annexe 2).

Zinns (TESP. Z4,) étant le plus petit zéro de B,(z) pour A’ >\, (resp. ' <A(). Nous
aveons évalué x(v') et 8x(v') pour différentes valeurs de v'. Nous avons trouvé

(1.73+0.07 pour v =1

2.03+0.10 pour v =1.25

x(v)+8x(v')=< 2.32+0.15 pour ¢ '=1.50 (4.7)
2.59+0.21 pour v'=1.75

([ 2.85+0.30 pour v»'=2

c’esst a dire, par un ajustement par le méthode des moindres carrés

x(v)=1.12v"+0.62 } (4.8)

ox(v")=0.016 - exp (1.46v")
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1.90

1.80

1.73 1 0.07

1.70

x{ v

1.60

1.50

2 3 Yy 5 N

Figure 6b

Les zéros z,, des approximants de Borel By(z) de la Figure 5b. Les zéros zs ont été calculés en posant
as=64+2 (estimation, voir Annexe 2).

4.C. Peut-on améliorer ces résultats?

Nous pensons qu’il n’est guere possible d’améliorer ces résultats en n’utilisant
que ’information dont nous disposons actuellement.

D’apres I’Annexe 2.D la connaissance supplémentaire des coefficients pertur-
batifs as, ag n’apporte (probablement) aucune amélioration décisive: certe:
I’évaluation de z. serait plus précise, mais elle resterait dépendante de v’
D’apres ’Annexe 1.C cette difficulté ne peut étre résolue que si k est suffisam-
ment grand, k =10? (k étant le nombre de coefficients perturbatifs a, connu),
Dans ce cas il est probable que la resommation selon Borel de la série perturba-
tive de la masse m?, permettrait de déterminer non seulement le point critique z.,
mais également [’exposant critique v.

En principe il est bien sur possible de calculer autant de coefficients a,, que
I’on désire. Mais il se trouve que:

—la difficulté liée au calcul (exact) des a, croit avec n;
—déja le calcul (exact) de as est non trivial;'?)

'5) ' Nous pensons notamment au graphe non planaire de la Fig. 3.
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= 2.85 % 0.30

)

X0 v

2.00

2 3

=
i

Figure 6c¢

Les zéros z) des approximants de Borel By (z) de la Figure Sc. Les zéros z5 ont été calculés en posant
as= 64+2 (estimation, voir Annexe 2).

—le calcul (exact) de a, n’est intéressant que si 'erreur 8a, ., est suffisamment
oetite (voir Annexe 2.C).

Ceci nous amene a penser que I’énorme effort que nécessite(rait) le calcul
des a,, n=35, est nettement disproportionné par rapport aux (nouveaux) résultats
que l'on peut escompter. Il est certainement préférable de porter I'effort sur

I’évaluation de I’exposant critique v par d’autres méthodes (telles par exemple les
méthodes du groupe de renormalisation'®)).

Conclusion

Les approximants de Borel Bn(z), N=4, de la série perturbative de la masse
physique

2 ’
mu(mg, A)=md-mi(z) avec z=Amj m§ fixé,

A Apres avoir terminé ce travail, j'ai appris que Le Guillou-Zinn-Justin (1977) ont obtenu a I'aide

du groupe de renormalisation: v =1.94+0.16 (voir tableau I, page 3985).
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“ x(v")

3.00 —
4
4
[ ]
2,50 —
1
2.00 — {
1.50 I T T T T
1.00 1.50 2.00 \
Figure 7

Le zéro x(v')+8x(v') de la masse m},(z), pour 1=v'=2 (voir relation 4.7)).

dans le modéle A : ¢*:,, nous ont permis de minoriser resp. majoriser mﬁh(z) dans
I'intervalle 0=z <1. Pour z =1, cet encadrement n’est par contre plus «garanti».
Plus précisément, nous pensons que pour 1=<z<z, nos By(z) n’encadrent
m2,(z) que si v’ = v (voir la conjecture du Chap. 4.B; v est I'exposant critique de
m2,(z) et v' est le paramétre introduit dans le Chapitre 3.A). Dans le cas ou
I’exposant critique de m?2,(z) est connu, il est alors possible d’évaluer le point
critique z., de m2,(z) avec une précision que nous estimons de l’ordre de 5 a 10%.
Ces résultats ont été obtenus en utilisant:

1) la sommabilité selon Borel de la série perturbative ¥ a,z" de m2,(z), voir
Chapitre 1 (résultat rigoureux établi par Eckmann—Epstein (1979));

2) les coeflicients perturbatifs a, pour n =4 (ces a, ont été calculés dans le
Chapitre 2);

3) le comportement asymptotique des a, lorsque n — oo (résultat heuristique
basé sur les travaux de Lipatov (1976) et Zinn-Justin (1977));

4) les hypothéses A, a, R du Chapitre 3.C;

5) la conjecture du Chapitre 4.B (basée sur I’étude de la fonction d’essai f,(z)
de ’Annexe 1).
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Annexe 1. La fonction d’essai f,.

A. Définition de f,

Soit la fonction d’essai f, définie par

o) =(=2tz) - (32112 [ exp () o )

n=0
avec z,,, v et A telles que f,(z) soit «proche» de la masse m?2,(z):
z, >0, v>0 et 1/A =1.4626.

B. Quelques propriétés de f,

Pout tout z_, >0 et »>0 on a:

1. f,(z)~Y a, - z" satisfait le théoréeme de Watson-Nevanlinna et les
hypothéses A, a, R (Chap. 3.C) avec 1/A =1.4626, a<m, R=z,.

2. Les a, possédent le méme comportement asymptotique que les coeffi-
cients perturbatifs de la masse mp,, voir (3.13):

a,~—CFA)"-T(n+B+1):-C-(1+0(1/n)),

lorsque n — o, avec 1/A =1.4626, B =1 et ici C=0.5. Notons que ce comporte-
ment est indépendant de z_, et v.

3. f.(z,)=0c¢et f,(z)~(z,—2z)" lorsque z 7 z,.

4. f,(z)~1.5-(-z/z,)" lorsque z 7, pour v=1,2, ...

C. Les approximants de Borel de f,

Dans cette section nous discutons le choix optimal des parametres ¢, B’, A’,
v’ et le comportement numérique de diverses suites d’approximants de Borel
{Bn(2)} o de 1a fonction d’essai f,(z), et ceci pour différentes valeurs de k'”). On
peut essentiellement distinguer trois cas: k<35, k=10 et k =20. Pour z_, €[1, 10]
et ve[0.25, 4] nous avons obtenu les résultats suivants.

1. k petit (k=<5)
Pour k=<5, le choix optimal des parametres est donné par (3.18) a (3.20),
v'e[~v/2, ~2v] et il existe A, (A;=1, la valeur exacte est donnée par ’examen

'7) " Pour les définitions de la notion «optimal» et de I'approximant de Borel By (z) voir les sections

3.A et 3.B; il suffit de lire f,(z) a la place de m2,(z).
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BN‘Z]

0.5

Figure 8
Les approximants de Borel de la fonction d’essai f,(z) avec z, = 1.8 et v =1, construits avec (3..18) &
(3.20) et (3.22b).

numérique) tel que la suite {By(2)}y_, est

- croissante pour A'>A/);

— décroissante pour A'<<A|.

Plus précisément on a pour N=5S et 0<z <zy:

Bn_1(z)<Bn(z) pour A'> )\{,}

3 B AT
By 1(2)>Bpn(z) pour A <A (

Pour A'= A, la suite est oscillante. Ceci est trés clairement illustré par la Fiig. 8
On a méme mieux: les suites d’approximants de Borel (A1.1) minorisent 1resp
majorisent f,(z), du moins pour z «pas trop grand». Plus précisément il exxiste
z4>0 (la valeur exacte de z; est donnée par '’examen numérique) tel que jpou
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By(2)

0.0 0.5 1. 1.5

Figure 9
Les approximants de Borel de la fonction d’essai f, (z) avec z,, = 1.8 et v =2, construits avec (3.18) a
(3.20) et (3.22b) respectivement (3.22c). Le traitillé indique que dans le cas v’ =1 les B (z) dévient
fortement de f,(z) pour z =0.6.

N=Set(0<z<z,ona

By 1(2)<Byn(2)<f,(z) pour A'>A;
Bn(2)=f,(z) pour A'=A| (A1.2)

By 1(2)>Bn(2)>f,(2) pour A <A(

On pourrait espérer que z,; = z5; malheureusement ceci n’est vrai que si
vVi=v

Dans le cas ¢' # v, nous avons obtenu dans I'intervalle ouvert z € (z,, zx):
Bn(z)<f.(z) pour v'< v}
Bn(2)>f,(z) pour v'>v

pour N=5 et pour tout A’. Une discussion analogue au point 2 du chapitre 3.A
permet de comprendre ce résultat, a défaut de I’expliquer! Un exemple avec v' <wv
et v'= v est donné par la Fig. 9. Regardons, pour un instant, cette figure de plus
preés. Le traitillé indique que dans le premier cas, v'<v, les By(z) dévient
fortement de f,(z) pour z=0.6; on a «donc» ici z; =0.6, c’est a dire

(A1.3)

24 =243,
Dans le deuxiéme cas, v' =, on a By(z)=f(z) pour 0=z<z, et N=2 (!); c’est
a dire

Zd = Z¢re

En résumé, si ’on s’intéresse a évaluer z., a I’aide des zéros zy, des approximants de
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Borel By(z) de f,(z), N=5, une connaissance aussi précise que possible de la
valeur numérique de v est nécessaire. De plus, a supposer que la valeur de v soit
inconnue, I’étude numérique du choix optimal du parametre v’ ne donne qu’une
vague idée sur la valeur possible de v.

2. k moyen (k~=10)

Pour k =10, le choix optimal des paramétres est le méme que dans le cas «k
petit», sauf que

A Sp=EA, m2=a' =m, B'zZzB et v'=v+y/10.
avec
A=1/14626 et A, =(1-2"“""). A

(Notons que ¢(—1/A)=—1si p=A, et ¢(—1/A)=osi p=A). Comme dans le
cas «k petit» il est possible de construire des suites d’approximants de Borel
croissantes, oscillantes respectivement décroissantes, et de minoriser respective-
ment majoriser la fonction f,(z). Mais un tel choix ne correspond plus, ici, a un
choix optimal.

Il est intéressant de noter que la valeur optimale de v’ se situe maintenant
dans un «petit voisinage», de I’ordre de ~10%, de I’exposant critique v. Notons
aussi que I’évaluation de z., ne nécessite plus la connaissance «précise» de la
valeur v (z., peut étre évalué avec une «relative grande précision», méme avec v’
«tres différent» de v).

3. k grand (k =20)

Pour k =20, le choix optimal des parametres est analogue (mais pas identi-
que) au cas «k moyen». Il est encore possible de construire des suites d’approxim-
ants de Borel croissantes, oscillantes respectivement décroissantes, et de minoriser
respectivement majoriser la fonction f,(z); mais un tel choix ne correspond plus
du tout a un choix optimal.

Si les valeurs de z, et v sont inconnues, alors une étude minutieuse du
comportement des suites {Bx(z)}3-, dans un voisinage des zéros z = z,, permet
de déterminer z., et v avec une «tres grande précision».

D. Sur la dépendance en z. et v.

Dans cette section nous discutons la dépendance en z., et v de différentes
quantités intéressantes. Nous nous limitons au cas v'=1; les approximants de
Borel By (z) sont alors définis par les relations (3.6) a (3.9).

1. Les quantités suivantes ne dépendent que trés faiblement de z_, et v:
a,: le comportement asymptotique des a,, lorsque n — « est indépendant de z_, et
v; pour n petit (n=0,1,2...) la dépendance est faible, voir tableau 4.

2. Les grandeurs suivantes dépendent trés fortement de z., et v:

f.(z):z, détermine le zéro de f, et v détermine le comportement de f, lorsque
z 7z, (et lorsque z /).



Vol. 57, 1984 Calcul numérique de la masse physique 31

Tableau 4
a, sont les coefficients de la série perturbative de la fonction d’essai f, (z) et b, sont les coefficients des
approximants de Borel By (z) construits avec (3.18) a (3.20), (3.22b) et A’ =1.

n a, a, bn bn
(Zcr= 1.5) (Z“= 1.8) (z“_= 1.5) (ZCI= 1.8)
(v = 1.0) (v =1.2) (v =1.0) (v =1.2)
0 1.000 1.000 0.6837 0.6837
1 0.017 0.017 - 0.6752 - 0.6752
2 - 1.858 - 1.821 - 0.4530 - 0.4439
3 4.770 4.801 - 0.0278 - 0.0160
4 - 15.668 - 15715 - 0.0111 0.0022
5 62.528 62.663 - 0.0056 0.0089
6 - 293.281 - 293.747 - 0.0032 0.0123

Bn(z):on a By(z) =) b, - M,,(z) ou les M, (z) sont indépendants des a,, donc
indépendants de z_ et v. Les coefficients b,,, par contre, dépendent tres sensible-
ment de z,, et v, voir tableau 4. (Dans le Chap. 3.B de Hirsbrunner (1982) nous
avons vu qu’une petite variation 8a, des coefficients a,, entraine en général une
grande variation 8b,,'®)).

Annexe 2. Sur le calcul de as, a,.

Dans cette annexe nous développons un argument heuristique qui permet
d’évaluer (avec une fiabilité relativement grande) les coefficients as, a¢ de la série
perturbative de la masse m,z,h(z). Nous discutons ensuite la question de
I’opportunité d’un calcul exact de as, as.

A. Une estimation de as, a,

La connaissance des a,, n=4, et du comportement asymptotique de a,
lorsque n — o (voir la relation (3.13)) nous permet d’estimer tres facilement as et
ae. En effet soit

C.=a,/[(—1.4626)" - (n+ 1)!].
De (3.13) il suit
C.=C-(1+0(1/n)).

Pour n suffisamment grand on a donc C,=C. Or on a C,=1, C,=0, C,=
0.5348, C5;=0.5327, C,=0.5589. Il est ainsi plausible de poser Cs=Cg=
0.60+0.10 (?), Aot as=65+11 (?) et ag=—-309+52 (?). Cette estimation n’est
évidemment pas trés fiable. Mais on peut faire mieux en extrapolant les coeffi-
cients b,, qui interviennent dans la définition des approximants de Borel By(z).
Nous nous contentons ici de donner le résultat (le détail de cette délicate étude est
donné dans I’Annexe 4 de Hirsbrunner (1981a)).

18)  On peut trouver d’autres illustrations dans les tableaux 7 2 9 de Hirsbrunner (1981a) et dans le
Chapitre 3.C de Hirsbrunner (1981b).
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Conjecture:
as=640+2.0 et as=-326+30(?) (A2.1)

B. La répercussion des erreurs {8a,}\_, sur le zéro zy,.
De la définition de 'approximant de Borel Bs(z),
Bs(z) = B4(z) + bs - Ms(z),

il vient en évaluant le membre de gauche en z =z (rappel: zy est le zéo de
Bn(z), c’est a dire By(zy) =0) et en développant par Taylor le membre de droite
autour de z = z, (en négligeant les termes d’ordre supérieur):

Z5= 24— d * b5,
avec d = —Ms(z,)/B4(z,). Le coeflicient bs est une combinaison linéaire dzs a,,
n=>

5
bs= 2 Crn " On.
n=0

Pour n =4 les erreurs 8a, peuvent étre négligées; il suit alors que I’erreur 8z5 due
a da,, n =5, est donnée par

8z5s=(—d - cs5) - bas

Le coefficient —d - ¢5 5 dépend des parameétres ¢, B’, A, v'. Dans le cas (3.18) a
(3.20), (3.22b) et avec 0.95=A"=1.15 (ceci correspond aux valeurs utilisées dans
les Figs 5b, 6b) on trouve

0z5=0.011 - das. (A2.2)
Un calcul analogue donne pour I’erreur 8z¢ due aux erreurs éa,, h =6:
0z¢=10.045 - 8as+0.0018 - da¢ (A2.3)

(Le détail de ces calculs est donné dans I’Annexe 4 de Hirsbrunner (198 1a)).

C. La précision souhaitable de as, a,

Le calcul exact de as (resp. as et aq) n’est intéressant que si |8zs| (resp. |8z,
est suffisamment petit. D’apres la Fig. 6b il est raisonnable d’imposer au moins
|625| <0.01 (resp. |6z4|<0.01). De (A2.2), (A2.3) il suit |8as|<0.91 (resp
|8as] <0.11 et |8aql <2.8), c’est a dire

|8as/as| <1.4% (A2.4
respectivement

|8as/as|<0.2% et |8ag/ag<0.9% (A2.5

D. Conclusion

La connaissance (exacte) de as, a, permettrait de diminuer I'erreur 8x(v')
voir Fig. 7, d’un facteur 2 a 5. Par contre elle ne permettrait pas d’évaluer le poin
critique z., indépendemment de ’exposant critique v. Et étant donné la grands
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difficulté li€e au calcul de as, as (nous pensons notamment au graphe non planaire
de la Fig. 3) et la grande précision exigée (voir (A2.4) et (A2.5)), nous pensons que
I’énorme effort que nécessite(rait) le calcul de as, respectivement as, ag est
nettement disproportionné par rapport aux (nouveaux) résultats que [’on peut
escompter. Le calcul de as ne présente un certain intérét que dans la mesure ou
cela permettrait de confirmer (ou infirmer) notre conjecture (A2.1) et notre
confiance que nous avons en évaluant le point critique z., par

z,=x(¥)+8x(v') pour v =v

voir Chapitre 4.B; pour cela un calcul de as avec une faible précision, disons
|6as/as| = 3%, serait suffisant.
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