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Calcul numérique de la masse physique dans le
modèle À:</>4:2 pour de petites valeurs de À1)

Par Béat Hirsbrunner, Département de Mathématiques, Ecole
Polytechnique Fédérale, CH-1015 Lausanne, Suisse

(28. VII. 1983)

Abstract. It is known that the perturbation series in powers of A for the physical mass in the
K-.<t>4:2 quantum field model is Borel summable. In this paper, we take advantage of this fact to
compute numerically this physical mass for small values of the coupling constant A. To do this, we
evaluate accurately the coefficients of the perturbation series up to the fourth order, and we compute
Lipatov estimates for higher orders. These results are then used to compute low order Borel
approximants for the physical mass, and to get plausible estimates on their accuracy. For definiteness,
we focuss our attention on the critical value of A for which the physical mass vanishes. We give
numerical results for this critical value. Our numbers depend on the value of a certain critical
exponent. We argue that our computations give the critical A with an error between 5 and 10%, as

soon as the critical exponent is known.
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Introduction

Dans cet article, notre propos est de donner une idée sur l'information
quantitative qu'on peut tirer des séries perturbatives de la théorie quantique des
champs en combinant:

1°) le fait que ces séries sont parfois sommables selon Borel,
2°) la connaissance précise de leurs quelques premiers coefficients,
3°) les estimations à la Lipatov qu'on utilise actuellement pour les coeffi¬

cients d'ordre élevé.

Pour atteindre ce but, nous avons choisi de resommer la série de puissances
de k qui donne le carré de la masse physique m2h dans le modèle k:cp4:2. Dans
cette resommation, nous ferons un large usage des méthodes variées que nous
avons exposées et illustrées dans un article précédent, Hirsbrunner (1982).

Justifions ce choix en quelques mots. Tout d'abord, Eckmann-Epstein (1979)
ont démontré que la série perturbative associée à À t-» m2,h(m2, k) est sommable
selon Borel, à masse «libre» m0 positive fixée, pour À dans un certain intervalle
[0, À0], avec À0 positif. Il est donc possible en principe de reconstruire quantitativement

m2h pour 0 ë A S A() à partir de la série perturbative. Ensuite, la manière
dont m2h dépend de À a des aspects intéressants. L' «image de Goldstone»
suggère le comportement qualitatif de la figure 1 (voir par exemple Glimm-Jaffe-
Spencer (1973), p. 142); dans cette figure, kcr est le point où m2h s'annule; k,r est
appelé le point critique. Ce comportement a été confirmé dans des modèles
voisins, voir par exemple Glimm-JarTe (1974) et Fröhlich (1976, pp. 39-44); voir
aussi les références de Fröhlich (1976) et Summers (1979). On peut espérer que
A.0 Acr» et Que ia resommation de la série perturbative pour m2h permettra
d'évaluer A.cr. En troisième lieu, le calcul des coefficients de la série associée à m2,,,

est relativement simple, puisqu'il peut se ramener à l'étude de la «fonction à deux
points» dans le voisinage immédiat de la couche de masse p2 m2.

Cette simplicité est toute relative, cependant. Comme il est de règle er
théorie quantique des champs, il est pratiquement impossible de calculer avec
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région à une phase région à deux phases

Figure 1

Le comportement de la masse selon l'image de Goldstone.

précision autre chose que les quelques premiers coefficients de la série. Ainsi,
nous nous contenterons dans ce travail des cinq premiers coefficients. Dans cette
situation, les méthodes exposées dans Hirsbrunner (1982) nous serons très utiles
pour tirer un maximum d'informations quantitatives sur m2h pour des À pas trop
minuscules. Combinées avec des estimations heuristiques sur le comportement
asymptotique des coefficients aux grands ordres, elles vont nous permettre de
donner avec une certaine confiance des valeures numériques pour m2h jusqu'à des
À de l'ordre de 1.5mo à 2m2, et même de risquer des estimations pour Àcr.

Dans le Chapitre 1, nous rassemblons quelques résultats de la théorie
constructive des champs concernant le modèle k:cp4:2; nous nous bornons dans
notre choix à ceux qui nous ont paru indispensables pour notre propos, en fixant
tout particulièrement notre attention sur la sommabilité selon Borel de la série
perturbative en puissances de À du carré de la masse À >—> m2h(m2, k), m0>0 fixé.
Le Chapitre 2 présente notre calcul précis des cinq premiers coefficients de la série
perturbative pour m2h. Nos chiffres sont rassemblés dans l'équation (2.12). Dans
le Chapitre 3, nous exposons comment nous avons combiné ces chiffres avec ce
qu'une méthode heuristique nous donne concernant le comportement des coefficients

aux grands ordres pour construire les approximants de Borel de
m2Jtti2),k). Les approximants présentés sont ceux qui nous ont paru les mieux
adaptés à une estimation de Àcr. Le Chapitre 4 rassemble nos résultats sur Àcr et
plus généralement sur m2h(m2), k) pour 0SASÀ(T. Notre travail se termine par
nos conclusions, suivies par quelques points particuliers discutés dans les annexes.

1. La sommabilité selon Borei de m2
ph

Dans ce chapitre nous rappelons quelques résultats bien connus du modèle
kcp4 dans la théorie constructive des champs relativistes quantifiés. En particulier
nous portons notre attention sur la sommabilité selon Borel de la série perturbative

en puissances de k de la masse À >-^rn2h(m2,k), mo>0 fixé.
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I.A. Les fonctions de Schwinger

Le modèle kcp4 à deux dimensions d'espace-temps est caractérisé par sa
densité lagrangienne. Celle-ci est donnée formellement par

ï£(x°, x) £0(x°, x) - kcf>4(x°, x)
J£0(x°, x) è((oW>)2-(dAf - m2d>2)(x°, x) ilA)

où cp eSr"(R2) est un champ scalaire réel (boson massif, neutre et de spin 0), m0
est la masse libre et k est la constante de couplage.

L'existence des fonctions de Schwinger S„ associées à la lagrangienne (1.1)
est assurée par le résultat fondamental suivant.

Théorème 1 (Glimm-Jaffe-Spencer (1973), page 161). Soit m„>0 fixé et soit
un n-tuple (M,,...,MJ d'entier positifs. Alors il existe e X) tel que pour
0uÀ<e • m\\ les limites

lim f t\ :cPM:(x,) dv,(cP)
R--

j — -

existent au sens des distributions de Q £r"(R2").

Dans cet énoncé cp est un champ scalaire euclidien et dvg(cp) est la «mesure
en interaction» sur ^'(R2) définie par

exP [-¦*• ; W: <fr4 : (*) " Six) d2x] dpmi(<P)
"gW,J io exp[-À • Su-:d>4:(x) ¦ g(x) d2x] dpmi(d>)

où dp^cp) est la mesure gaussienne sur ^'(R2) de moyenne 0 et de covariance
(-A+ mo)"1; : : sont les points de Wick relatifs à la mesure dpm2t(cp); geSr^R2) est
à support compact

Remarques. 1. Pour Mi ¦ ¦ ¦ Mn l les limites du Théorème 1 sont
désignées par

Sn(x;ml,k)
et sont appelées les fonctions de Schwinger, x désigne le n-tuple x =(x,, xn).
x,eR2.

2. Par linéarité le Théorème 1 se généralise à

SJQ, x; m2, À)^ lim f ft :Q(0):(x,-) dvR(<fr)

où Q (Qi,..., Qn) est un n-tuple de polynômes à une variable. Par abus de
langage ces Sn sont également appelées fonctions de Schwinger.

l.B. Quelques propriétés des fonctions de Schwinger

1. Pour 0SÀ<£ • m,2 les S„ix;m2i, k) sont les fonctions de Schwinger d'une
théorie de Wightman dont le spectre de masse est de la forme, voir Figure 2:

{0}U{mphiml A)}U{pâ2mPh(m(l k)},
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0

Figure 2

Le spectre de masse.

%'i1' 2'Vmo'*'

'¦

où 0 est une valeur propre de multiplicité 1 (unicité du vide); mph(m2, k) est une
valeur propre isolée (le sous-espace propre correspondant porte une
représentation irréductible du groupe de Poincaré: ce sont les états à «une
particule de masse mph»); mph est appelée la masse physique. Pour À^fl on a

mph(mf, k) ^> m(). (Glimm-Jafïe-Spencer (1973 et 1974)).
2. Les fonctions de Schwinger (m2, k) »-> Sn(Q, x; m2, k) sont C* dans Oë

A./m,2<F et leurs développements en puissances de À (mf, fixé) sont donnés par la
théorie des perturbations usuelle. (Il en est de même pour les éléments de la
"matrice S"; d'où la «non trivialité» de la "matrice S"). (Dimock (1974),
Eckmann-Magnen-Sénéor (1975), Eckmann-Epstein-Fröhlich (1976)).

3. Les fonctions de Schwinger À •—> S„(Q, x; mf, k) peuvent être prolongées
analytiquement dans un domaine du type

{A/|A|<e • mf et |arg A| <tt/2 +e'} avec e'>0.
De plus ces fonctions et leurs développements perturbatifs satisfont le théorème
de Watson-Nevanlinna. Les fonctions de Schwinger sont donc sommables selon
Borel par rapport à À et elles peuvent être entièrement reconstruites à partir de
leurs développements en puissances de À. (Eckmann-Magnen-Sénéor (1975)).

4. Soit H„ la fonction définie par la transformée de Fourier de ST:

i" • S,2)( J k) ¦ Hn(Q}, (ik°u fc,);... ; Qn, OK, kn); m2, À)

(2ir) " • f exp \i • ï k, • x,l • S^(Q), x,;...;Qn, xn; mf, k) fl d2x, (1.2)

où les k, sont réels, k, ¦ x, k° • x"+ k, ¦ x, et S^ désigne la fonction de Schwinger
tronquée à n points, voir Dimock (1974).

Théorème 2 (Eckmann-Epstein-Fröhlich (1976)). 3e >0 telle que pour
OâA<e • m2 la fonction Hn est la restriction aux points euclidiens d'une fonction
H„ holomorphe dans le «domaine axiomatique», avec des "pôles isolés" d'ordre 1

sur les hypersurfaces {p/pf m2,,} et des "coupures" sur {p/pj^a}, a^2m2h.
Le «domaine axiomatique» est une ouvert de

M'"' {p/p e /Vf" et p, + p2 + • • • + p„ ()},

où M" est l'espace minkowskien {p/p e C2"} muni de la métrique p2 (p")2 ~~ (p,)2-
Le «domaine axiomatique» possède entre autres les quatre propriétés

suivantes:

i) c'est un ouvert connexe de M(n),
ii) il contient les points euclidiens de Min), c'est à dire les p (p,,..., p„) où

p, est de la forme (i ¦ p", py) avec p", pt réels,
iii) il contient V\ Vp où V est un voisinage ouvert de V_, ={p/pf m2h),
iv) {p/p2&a}, a^2m2h, est dans le bord du domaine axiomatique.
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Remarque. Pour éviter toute confusion nous utiliserons dans la suite la
notation suivante:

i) p pour les points du «domaine axiomatique»,
ii) k pour les points réels de la forme

(k°, fc) (Im p°, Re p) et avec fc2 (fc0)2 + (fc)2,

iii) / pour la restriction aux points euclidiens d'une fonction / définie dans le
«domaine axiomatique». En particulier on a

/(p2)|eucnd,en=/(-fc2).

l.C. La masse mph

1. Le Théorème 2 nous enseigne que les singularités des fonctions Hn sont
reliées au spectre d'énergie - impulsion de la théorie. En particulier pour OS \<
e • m2 la fonction à deux points

H2(pi, p2;mf,k) H2iQi,P)-,Q2, p2;mf,k), où Q,(y) Q2(y) y,

est holomorphe dans le «domaine axiomatique» (rappel: Pi + P2 0) avec des

"pôles isolés" d'ordre 1 selon {p \ p2 m2h(mf, k)} et des "coupures" selon
{p | pf-Sa}, a =£ 2 • m2h(mf, k). Plus précisément (avec pi ~P2 p) la fonction

p2 r^> (p2 - m2ph(mf, k))-F(p2, mf, k), où F(p2, mf, k) H2(p, -p; mf, A

(1 -3)

est holomorphe dans le plan coupé

{p2|p2eC et p2^a + R+} avec aâ2 • m2ph(mf, k),

et la masse m2ph(mf, k) est la position du pôle isolé de la fonction p2 >-* F(p2, mf,
2. Du point précédent et du théorème des résidus pour les fonctions analytiques

il suit immédiatement:

Corollaire 3. 3e: >0 telle que pour U^A <e • m("

¦UmUmf, A) X(mf, k)/Z(mf, A)
ou

X(mf, A) (2-rri)-1 • I p2 ¦ F(p2, mf, k) dp2,

Z(mf, A) (2m)-1 ¦ f F(p2, mf, A) dp2,

T est un petit cercle centré en p2 m2 et contenant le point p2 m2ph(mf, A).

La fonction Z est la «constante de renormalisation de la fonction d'onde».
3. De manière analogue aux fonctions de Schwinger Sn les trois fonctions

(m(2, A) ^ F(p2, m2,, A),

(mf, k)^>Z(mf, A),

(mf, k)^>m2ph(mf, A),

sont Cœ dans Oëk/mf<e (pour p appartenant au «domaine axiomatique»), et
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peuvent être prolongées analytiquement dans un ouvert U du type

UB,e={k |0<|A|<e • mf et |arg k\^v/2+e'}.
Théorème 4 (Eckmann-Epstein (1979)). Les séries de perturbation des fonctions

k-^F(p2,mf,k), k^Z(mf,k) et k^m2ph(mf,k)
sont sommables selon Borel, plus précisément: pour m0>0 fixé, il existe e, e'>0 tels

que la fonction A —» F(p2, mf, k) et son développement perturbatif £ F„(p2, mf) ¦ A"
satisfont le théorème de Watson-Nevanlinna pour A e Ue>e- (et analogue pour les
deux autres fonctions).

Ce théorème est également vérifié dans les modèles kP(cp)2 et il peut être
étendu au modèle kcp4 à l'aide du développement en essaims (cluster expansion)
de Magnen-Sénéor (1977); voir Eckmann-Epstein (1979).

2. La série perturbative de m ph

Dans ce chapitre nous calculons les coefficients, jusqu'à l'ordre quatre, de la
série perturbative en puissances de A de la masse A *-> m2h(mf, A), pour m0>0
fixé. Nous commençons ces calculs par un changement d'échelle qui nous
permettra "d'éliminer" la variable m0.

2. A. Changement d'échelle

A deux dimensions d'espace-temps les fonctions de Schwinger satisfont à la
relation (changement d'échelle):

Sn(pxu...,pxn;p~2m\\,p~2k) Sn(xl>.. .,xn;mf,k)
(au sens des distributions tempérées), Vp > 0. Pour p m0 nous pouvons ainsi
éliminer nto:

F(p2, mf, A) m02 • F(p2/mf, 1, A/m2)

Z(mf,k) Z(l,k/mf)
m2ph(mf, k) mf- m2ph(l, k/mf).

Attention. Pour simplifier la notation nous supprimons dans la suite l'argument

"1" qui apparaît après le changement d'échelle. De plus "m0 ¦ x", "fc/m0"
et "p/mQ" seront respectivement désignées par "x", "fc" et "p". Et nous posons
z =k/mf, avec m0>0 fixé.

La masse m2h, s'écrit alors (voir Corollaire 3):

m2ph(mf, k) mf- m2ph(z) mf • X(z)/Z(z) (2.1)
où

X(z) (2-mT1 ¦ f p2 • F(p2, z) dp2, (2.2)

Z(z) (2ttì)-1- f F(p2,z)dp2, (2.3)

T est un petit cercle centré en p2 m2h(0) 1 et contenant le point p2 m2h(z).
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2.B. La n-ème dérivée par rapport à z =k/mf
De (2.1) à (2.3) il suit que la n-ème dérivée de z t-»m2h(z) est déterminée

par les /-èmes dérivées de z —> F(p2, z) H2(p, -p; z), OSjrSn. Ces dernières
sont reliées, par l'intermédiaire de (1.2) et du Théorème 2, aux /-èmes dérivées
de Sj(x, y; z). Plus précisément le résultat général suivant nous permet d'évaluer
la n-ème dérivée de la masse z>->m2h(z) à l'aide des fonctions de Schwinger
tronquées Sj+j(-;z), OS/ën:

Théorème 5 (Dimock (1974)). Pour tout mo>0 fixé et pour tout m-tuple de

polynômes à une variable Q (Q,,..., QJ il existe e >0 telles que pour tout n et

pour tout z=k/mf avec 0Sz<e:

(|)"SI(Q x; z) (-!)"• j 2

Sl+n(Q, x;P,y;z)dy

où P (PU... ,Pn) est un n-tuple de monômes à une variable définis par
Pj(y) - y4 pour tout j.

De ce théorème il suit:

Corollaire 6 (Eckmann-Epstein-Fröhlich (1976)). Pour z, Q et P comme au
théorème précédent on a:

1) {£fH^(0, p;z) (-1)" • Hm+JQ, p; P, q 0; z)

2) (-f)nX(z)= Res p2(-fYV(p2,z)
\dz/ p!=m;h(.) \dz/

3) (-fYz(z)= Res if)nF(p2,z)
\dzJ p'-mi.u) \dzJ

Remarque. Le Théorème 5 et le Corollaire 6 se généralisent immédiatement
aux modèles kP(cp)2. Et ces résultats restent valables pour A e t/E e. avec Ue f •

comme au Théorème 4; voir Eckmann-Magnen-Sénéor (1975) et Eckmann-
Epstein (1979).

2.C. La n-ième dérivée par rapport à z en z 0.

1. Avec

m2nh(z) Y,anzn, X(z) YjXnz", Z(z) ^Znzn»ph

il suit de (2.1)

(la« ¦z")(lZ„-z") IXt, z",
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c'est à dire

an (l/Z0)(Xn -a0- Zn- £ a„-j • ZA
x

1 1 '
(2.4)

po)ur tout n ü£ 1, et a0 X0/ZQ.
2. Les coefficients Z, et Xy se calculent à l'aide des ingrédients suivants:

a) le Corollaire 6 qui relie les Z,, Xj aux H2+; (¦; z =0), (rappel: F H2),
ß) le Théorème 2 qui relie H2+j (¦; z =0) à Sj*-, ('- z 0)>

7) le Théorème de Wick qui permet d'exprimer Sj+j (-;z=0) comme la
«somme d'un produit de fonctions de Schwinger libres à deux points
S2(-;z 0)», voir Dimock-Glimm (1974),

8) la fonction de Schwinger libre S2 qui est donnée par

S2(x, y;z=Q) S(x-y) (2ir)-] • J exp [-i • fc • (x - y )] • S(k) d2k

où

voir Simon (1974) page 76.

Rappel: au point réel fc=(fc°, fc)eR2 correspond le point euclidien p
(i -Imp^Rep^Ofc0, k).

3. A l'ordre n 0 on a:

i2 • S(2)(fc, + k2) ¦ H2((ik°u fc, (ik°2, k2);z= 0)

(2ttY2 ¦ exp [ifc^i + ifc2x2] • ST(x,, x2; z 0) d2xl d2x2

[Jexp [ifc,y] • S(y) d2y] • [(2tt)-2 • | exp [i(fc, + fc2) ¦ x2] d2x2]

[277-S(fc1)]-S(2)(k, + k2)

'
¦•S60(k1 + fc2)

k2 + l
d"où F0(-k2) =-l/(k2+1) et par prolongement analytique aux points du
«(domaine axiomatique»: F0(p2) l/(p2-1). D'où finalement:

Z0=l, X0=l et a0=l (2.5)

c"est à dire niph(z 0) 1.
4. Aux ordres n S 1 on obtient par un calcul analogue au cas n 0 et à l'aide

diu théorème de Wick (appliqué ici à la fonction H2+n (¦; z =0)):

Fn(-k2)-(l/n!) • (d/dz)nF(-k2; z)\z=0

[(-l)7n !] ' H2+n((ik°, fc), -(ik°, k);qi=0,...,qn= 0; z)|z=0

[(—l)7n!] • i'2 ¦ «somme sur tous les graphes de Feynman connexes avec n
vertex à 4 pattes et 2 lignes externes d'impulsion fc»

Y c ¦ ï (-fc2.
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où m indexe les graphes différents du même ordre,

C'n,m ((-l)n+l ¦ (2ir)-2n/n\) ¦ Cn,m,

C„m est le facteur combinatoire du graphe Inm(—k2),

lmi k2)"(fc2+l)2iPL(kf+l)2j[ld2fcf"

avec L l'ensemble des lignes internes et B l'ensemble des boucles du graphe de
Feynman; fc| est une combinaison linéaire des fc et fcb.

Du Corollaire 6 il suit (avec m2h(z =0)= 1):

X„ ReS p2 • Ya C'n.m ' f„.m(p2).
p'-i

Zn=ResIC't,.m-/„.m(p2),
p =1 m

où les I„m sont les prolongements analytiques des /nm dans le «doma ine
axiomatique». Or les Inm apparaissent sous la forme

f„.mvP2)=(-i)r-(p2-irw„.m(p2).
où Jnm est holomorphe en p2 1, Jn,m(p2 1) ^ 0 et r est un entier qui dépend de
la structure du graphe.

En posant

Xn.m - Z^m • ("paJ /n,m (p2 1), 2.6)

z-=0v.idvVJ^2^' (2-7)

(Xn.m ~~ Zn,m 0 si r < 2 et Z. m 0 si r < 1) il vient

X„-Z„=ï C'„m ¦ (X„.„, -Z,,J 2.8)
m

m

Remarque. En général plus r est petit plus le calcul de (d/dp2)'Jnm(p2 1) est
"facile" (pour un graphe donné). Il est donc plus facile de calculer Xn — Zn que
Z„. Ceci est intéressant puisque (2.4) s'écrit avec (2.5) et a1 Z1 0 (voir
ci-dessous):

n-2
an Xn-Zn- £ an-i,-Zj pour nS2 (2.10)

1=2

En conséquence à l'ordre n nous n'avons pas besoin de calculer Zn et Z.,-,.

2.D. La n-ème dérivée par rapport à z en z 0, nâ4
A l'ordre n 1 il n'y a aucun graphe, d'où Z, X, a, 0. A l'ordre n 2 il
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y a exactement un graphe, voir tableau 1. On obtient

F2(-k2) Ci1-7^^-J2.1(-fc2),
avec

c;,=- (-1)3 2!(4!)2
(2tt)4-2! 3!

^2.i(-k2)=fd2kid2fc2[(fc-fc1)2+ir1-[(fe1-k2)2 + ir1-[fci + ir1-

L'intégrale de Feynman J2,\(~k2) peut être calculée à l'aide des «paramètres de
Feynman», voir Annexe 1 de Hirsbrunner (1981a). De (2.10) avec (2.8) et (2.6) il
suit

a2 X2-Z2 C2., ¦J2.,(p2=l)=-§.
Aux ordres n 3 et n =4 les calculs sont analogues; les contributions des

différents graphes sont résumées dans les tableaux 2 et 32).

Tableau 1

Les contributions des graphes à l'ordre n =2.

m graphe C2.» X2.»- 22.„ 22.»

1 C\ 2: (4:)2
3:

1

4
' "

1 3 2

~16° *
4 "W

a2 X2 - Z2

• .-(2t.) ~'j2\) ¦ C2 • (X.
1

- Z2 ¦ - 3/2

Z =3/0 - 9/I2-7I2) - 0.08...

Remarque. A l'ordre n 5 il y a exactement 21 graphes. Tous peuvent être
calculés à l'aide des techniques développées dans l'Annexe 1 de Hirsbrunner
(1981a), sauf le graphe non planaire de la Fig. 3 (graphe que nous n'avons pas
réussi à calculer).3)

En résumé nous avons pour mo>0 fixé, z =A/nto:

mlh(mf,k) mf-m2ph(z)~mf- £ an ¦ zn (2.11)

Les méthodes qui nous ont permis d'évaluer les intégrales de Feynman intervenant aux ordres
n_S4 sont décrites dans l'Annexe 1 de Hirsbrunner (1981a). Les graphes m =4, 5 et 6 du
tableau 3 ont été évalués à l'aide d'une méthode peu connue mais très efficace. Il s'agit de ce
que nous appelons "l'intégration numérique sur une grille à n dimensions". Nous nous
contentons ici d'indiquer que cette méthode nous a permis de calculer, sur un mini-ordinateur
NORD-10, deux intégrales "non-triviales" à n =6 dimensions (à savoir les graphes m =4 et 6
du tableau 3), avec une précision que nous estimons de l'ordre de 0.02%
On peut trouver une liste de références sur les graphes de Feynman (théorie et techniques
d'évaluations analytique/symbolique/numérique) dans Hirsbrunner (1981a) pages 93-95.
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Tableau 2

Les contributions des graphes à l'ordre n 3. f est la fonction zêta de Riemann et on a £ (3)
1.20 205 690 316...

m graphes C3.», X3.„- 23.»

1

^~n i 3: (4.)
3

2 3: J.-t'.CU.©
2 -&- 3: (4.)3

u:,2
,5/6

a3 - X3 - 23 -- 63 C(3)/(2 t.3) 9/n

¦ 4.08 598 663...

Tableau 3
Les contributions des graphes à l'ordre n =4. Rm (-(2ir)~s/4!) • C4 m

• (X4 m - Z4 m) est la contribution

du graphe "m" au coefficient a4. Notons que les deux graphes qui livrent les plus grandes
contributions (m =4,6) sont les graphes les plus difficiles à calculer!

m graphes C4.. V. - V. R
n

1 §> i 41 (4.)4
2 3: 2; J..«.««) -1.17

2 e i 4: M.)4
2 <2.,2

TT4 C(3) - 2.00

3 _jJ^U 4: (4.i4
(2:i3

4 3 2 14, - 2.19

4 -&- i 4: mm4
2

21

4-Ti4 ¦ (0.244 595
î 0.000 0401

- 3.25

5 -JgL 4: (4.I4
2: 3: 4 ti4 (0.4 78 027

0.000 003)
-2.12

6 -$- 4: k:)4
(2.)2

8 «4 ¦ (0.152 283
• 0.000 024)

- 4.05

7 nn 4: (4:i4
<3.,2

14 14 3 2,
2 Y6 4

' • 0.24ww
4 4 4 2 2 (ÎRJ - a_.Z_ - 14.6558 T 0.0012
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Figure 3
seul graphe non planaire à l'ordre n 5

X
a0 1

a, 0

a2 -1.5 >

a3 4.08598663

a4 =-14.656...

(2.12)

3. La construction des approximants de Borel de m ph

Introduction

Dans ce chapitre, nous construisons diverses suites d'approximants de Borel
{BN(z)}N pour le carré de la masse m2h(z), zâO (voir équations (2.1) et (2.11)).
Ces constructions combinent

1

2°)

la sommabilité selon Borel de la série perturbative de m2h (voir Chapitre
1, Théorème 4) ;

la connaissance des coefficients perturbatifs an de m2h(z) (équations
(2.4), (2.11)) pour nrg4 (équation (2.12));

3°) les estimations actuellement pratiquées sur les an lorsque n —» oo

(méthode de Lipatov; voir notre hypothèse A, section 3.C).

Pour orienter ces diverses suites d'approximants vers un but précis, nous
avons décidé de les utiliser pour tenter d'évaluer le plus petit zéro positif zrr de
m2ph(z), voir la Fig. 1 (Acr zcrmf, cf. Chap. 2.A). Pour une suite {BN(z)}N donnée,
soit

zœ lim zN

zN étant le plus petit zéro positif de BN(z).
identifierons zcr à cette limite

Supposant qu'elle existe, nous

(3.1)

Dans l'état actuel des connaissances, cette identification est conjecturale. Nous
l'adoptons faute de mieux.

Les suites d'approximants {B^(z)}N que nous utiliserons seront adaptées au
problème d'évaluer zcr. Nous les ferons dépendre d'un quadruple de paramètres
désignés par cp, B', k', v'. Si l'on veut que les BN(z) convergent vers m2h(z) pour
les z d'un certain intervalle réel, il faudra restreindre le choix du paramètre cp. La
rapidité et le mode de convergence (monotone, oscillant, etc.) sera ensuite
influencé par tous les quatre paramètres. Si notre conjecture (3.1) est valable, z«,
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devrait, lui, en être indépendant. Tous ces aspects seront discutés abondamment
dans le présent chaptire.

La section A commence par un énoncé précis du résultat d'Eckmann-Epstein
sur la sommabilité de Borel de m2ph (voir Théorème 4); cet énoncé contient entre
autres la définition des trois paramètres cp, B', A'. Viennent ensuite l'introduction
de l'exposant critique v et du quatrième paramètre, v ainsi que la définition de la
suite {BN(z)}N correspondant à <£, B', k', v'. Dans la section B, nous expliquons ce
que nous entendrons par «paramètres optimaux». La section C introduit des
conjectures quantitatives sur des aspects mal connus du résultat d'Eckmann-
Epstein. En particulier, c'est ici que la méthode de Lipatov joue son rôle. Dans la
section D, nous donnons notre choix «optimal» des paramètres <f>, B' et A', et nous
avouons notre embarras concernant le choix «optimal» du paramètre v'. Le
comportement numérique des BN(z) que nous avons effectivement calculés pour
ÌV.S4 et OëzëzN sera analysé dans le chapitre suivant.

3.A. Les approximants de Borel BN(z) et les zéros zN

1. Du Théorème 4 il suit dans la formulation (4.1) à (4.5) de Hirsbrunner
(1982), les ouverts D„R, TaA et T^ étant définis par les figures 1 à 5 de
Hirsbrunner (1982):
Il existe R>0, a>0, 1/A>0 et OO, No>0 telles que pour tout zeD^ et

pour tout N>N0:

U2h(z)-N£«n'z"|=5C-N!-AN-|z|N; (3-2)
n=0

|on|SC-N!-AN; (3.3)

la transformée de Borel t >-» g(t) de {a„}„ est holomorphe dans l'ouvert TaA, où g
est définie, pour B'>-14) fixée et pour tout \t\<l/A, par:

g(t)= I (aJT(n+B' + l))-tn. (3.4)
n=0

Pour zeDn.R nous avons en plus:

m2ph(z) (1/z) • f exp (-t/z) ¦ (t/z)B' ¦ g(t) dt; (3.5)

nous pouvons évaluer (numériquement) le membre de droite de (3.5) par
l'intermédiaire d'une transformation conforme cp (fixée) qui applique T^ c Ta A
dans le disque unité {co\ |w|<l}:

m2ph(z)= lim BJz) (3.6)
N—*=o

OÙ
N

BN(z)= Z bmMm(z) (3.7)
m=0

avec

Mm(z) (1/z) • f exp (-t/z) ¦ (t/z)B' ¦ (t/cP(t))K' ¦ <P(t)m dt; (3.8)

4) La constante B' est due à Le Guillou-Zinn-Justin (1977)
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les coefficients bm sont définis par

(«-»(w)/«)-*' ' Sinico)) I bm ¦ co™ ; s) (3.9)

A' est une constante réelle fixée.6)
2. Ainsi, à chaque choix des trois paramètres cp, B' et A' correspond une

suite d'approximants de Borel {BN(z)}N, qui converge dans le disque D0R vers
m2h(z). Nous introduisons maintenant un quatrième paramètre, v', qui nous
permettra de tenir compte de la manière dont m2h(z) approche 0 lorsque z tend
en croissant vers zcr. Nous le faisons dans le cadre de l'hypothèse R, qui est l'une
des conjectures que nous avançons dans la section 3.C; cette hypothèse consiste à

admettre que zcr est soit dans DQR soit sur son bord.
L'idée est la suivante. On s'attend à ce que

m2phiz)~izcr-zY (3.10)

lorsque z tend en croissant vers zcr. L'exposant critique v est un nombre dont nous
imaginerons qu'il satisfait l=s v-^2.1) D'autre part, on a pour tout approximant de
Borel BN(z) qui s'annule en z =zN:

BNiz)~iz-zJ» (3.11)

pour z dans le voisinage de zN, p étant un entier positif (génériquement égal à 1);
en effet, BNiz) est holomorphe dans le demi-plan Re z >0, comme on le voit sur
les équations (3.7) et (3.8). Comme notre but est d'évaluer zcr moyennant la
conjecture (3.1)

zcr zœ lim zN
N—*o°

zN: le plus petit zéro positif de BNiz), nous pensons qu'il vaut mieux, pour des
raisons de convergence, étudier plutôt les approximants de Borel non pas de m2h

mais de m2lh"; en effet, m2/," aura alors en zcr un zéro d'ordre entier, qui
ressemblera davantage aux zéros éventuels des BN(z) correspondants. Cette
opinion est confirmée par l'étude de la fonction /„(z) présentée dans l'Annexe 1.

Malheureusement, nous ne connaissons pas à ce jour la valeur exacte de v.
Nous tenterons de procéder par tâtonnement, en jouant sur le paramètre v' que
nous allons maintenant introduire.

Définition de BN(z). Soit v' une constante réelle non nulle.

BN(z)4(B"(z)r' POUr °-Z-Z" (3-12)
[0 sinon,

où zN est le plus petit zéro positif du Ne approximant de Borel BN(z) de
(m2h(z))1/". La fonction (m2h(z))riv' est bien définie sur l'intervalle 0gzizcr. Si

5) On a donc bm £cm>„ ¦ a„ où les cm dépendent de <£, B' et A'.
6) La constante V a été introduite pour la première fois par Parisi (1977).
7) Dans un modèle voisin Glimm-Jaffe (1974) ont établi que v =___ 1 (résultat rigoureux) et ont

énoncé la conjecture v 2. La valeur v 1 est la valeur classique prédite par «l'image de
Goldstone» (Fig. 1) et v 2 est la valeur exacte de l'exposant critique v dans le modèle d'Ising à

deux dimensions, voir Stanley (1971) page 47. Notons que dans la littérature le symbole v est en
général réservé à l'exposant critique de mph (et non comme ici m2h!).
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1/v est un entier non négatif, elle a les mêmes propriétés d'holomorphie et de
sommabilité selon Borel que m2h(z) lui-même (en effet, m2h(0) 1, ^0), et l'on
aura pour 0 .ü z rS zcr .S R (hypothèse R de la section 3.C)

mlh(z)= lim BN(z).

Si 1/v' n'est pas un entier non négatif, ces propriétés subsisteront à condition que
m2h n'ait pas de zéro dans D0z Nous ne savons pas si cette condition est
satisfaite. Nous ferons comme si elle l'était.

Par abus de langage nous dirons que
-BJz) est le Ne approximant de Borel de mfh(z)
- zN est le zéro de BN(z).

3.B. Les paramètres optimaux

Le N-ème approximant de Borel BN(z) dépend des quatre paramètres (fixés)
cp, B', A', v'. La limite BN(z) lorsque N^^ne dépend bien sûr pas de ces quatre
paramètres! Le choix de l'application conforme cp est limité par la condition
T*c TaA où TaA est le domaine d'holomorphie de la transformée de Borel g. Le
choix des constantes réelles B', A', v' n'est limité que par la condition B'> — 1.

La rapidité de convergence de la suite {BN(z)}N dépend très sensiblement du
choix des quatre paramètres cp,B',k',v. Dans notre pratique ces paramètres
sont déterminés par tâtonnement «numérique». Nous dirons que le choix des

paramètres est optimal si ces paramètres sont tels qu'une variation de ceux-ci
n'améliore pas sensiblement la rapidité de convergence de la suite {BN(z)}N.
Notons que cette notion de «choix optimal» ne permet pas de déterminer ces
paramètres de manière unique: ce choix dépend non seulement du nombre k de
coefficients perturbatifs an connu,*) mais également de manière non négligeable
d'une appréciation subjective.

Afin de limiter le tâtonnement numérique, il est utile derappelerici brièvement
le «rôle» joué par les quatre paramètres cp, B', k', v Ces paramètres permettent
respectivement de tenir compte, voir Chap. 4.B de Hirsbrunner (1982):

-«cp»: du domaine d'holomorphie TaA de la transformée de Borel j»(r): en
particulier plus l'ouvert T^ est grand (en d'autres termes _plus a et 1/A sont
grands, puisque T^, <= TaA) plus la convergence de la suite {BN(z)}N est rapide.

-«B'»: du comportement de g(t) lorsque t\i-l/A.
-«A'»: du comportement de g(t) lorsque 0"°°.
- «V»: du comportement de m2h(z) lorsque zSz,.,, voir (3.10) à (3.12) ci-dessus.

3.C. Les trois hypothèses A, a, R

Le Théorème 4 nous assure que la série perturbative de z--> m2»,(z) est
sommable selon Borel, plus précisément que m2h(z) satisfait les relations (3.2) à

8) On peut essentiellement distinguer trois cas: fc petit (ks5), k moyen (fc~10) et fc grand
4.
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(3.9). Malheureusement les constantes A, a et R sont très mal connues.9) Une
connaissance, aussi précise que possible^des valeurs de A et a permet d'optimiser
la rapidité de convergence de la suite {BN(z)}N. La connaissance de la valeur de R
est nécessaire puisque les relations (3.5) et (3.6) ne sont valables que pour
zeDUR. Pour pouvoir déterminer le point critique zcr de m2ph(z) par
l'intermédiaire des approximants de Borel BN(z) nous sommes ainsi amenés à

admettre les hypothèses suivantes:

Hypothèse A: la singularité la plus proche de l'origine de la transformée de
Borel 11-> g(t) se trouve en t -1/A avec 1/A 1.4626.

Hypothèse a: a â ir/4.

Hypothèse R: R^zcr où zcr est le point critique de m2h, c'est à dire
m2h(zcr) 0.

Nous allons brièvement commenter ces trois hypothèses.10)

Hypothèses a et R: la seule argumentation heuristique qui nous permette de

«justifier» ces deux hypothèses est le fait que «la suite {BN(z)}N semble bien

converger vers m2h(z) pour 0<zS=zcr» (voir Figs. 4 et 5).

Hypothèse A: en 1976 Lipatov a développé une méthode heuristique qui
permet de déterminer le comportement asymptotique des coefficients des séries
perturbatives en théorie des champs.1112) En suivant cette méthode on obtient

pour les coefficients a„ de la série perturbative de m2h(z):

an (-A)"-r(n + B + l)-C-(l+0(l/n)) (3.13)
n—--oo

avec 1/A 1.4626, B 1 et C une constante positive (pour l'évaluation de la
valeur de A voir l'Annexe 2 de Hirsbrunner (1981a).13)

la démonstration du Théorème 4 est basée sur le développement en essaims («cluster
expansion») de Glimm-JafTe-Spencer (1973). Ce développement nous livre bien une borne
supérieure As pour A, mais cette borne est certainement beaucoup trop grande: As »A. En ce
qui concerne a il n'est guère possible, avec les techniques actuelles, de faire mieux que «il existe
a>0»: voir Eckmann-Magnen-Sénéor (1975) et Eckmann-Epstein (1979) pour le difficile
passage de a =0 à «il existe a>0».
Notons qu'à notre connaissance des hypothèses analogues ont été faites dans tous les travaux
publiés depuis 1976 et qui contiennent des applications numériques des approximants de Borel.
Dans tous ces travaux on admet même une version plus forte pour l'hypothèse a :a tt-e, f > 0.

Lipatov (1976). Voir aussi Zinn-Justin (1977). On peut trouver un excellent résumé dans
Zinn-Justin (1979).
Le méthode de Lipatov est une généralisation de la méthode du col aux intégrales de chemin de

Feynman. Cette généralisation n'est pas rigoureuse, mais elle a déjà été utilisée avec succès dans
de nombreuses applications en théorie des champs: notamment pour la fonction /3, les exposants
critiques, les développements en e, ; voir Brézin-Le Guillou-Zinn-Justin (1977) et les
références dans Herbst-Simon (1978), note 4, page 69. On peut trouver des justifications
partielles dans Parisi (1977), Auberson-Mahoux-Mennessier (1978) et surtout Spencer (1980),
Ellis-Rosen (1980).
Ce résultat a également été obtenu par Zinn-Justin (1981), tableau 1 page 129. Notons que

" — ^'^Zinn-Juslin-
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3.D. Le choix optimal des paramètres cp, B', A' et v'

1. Nous avons construit, pour commencer, les approximants de Borel BN(z)
de m2h(z) avec l'application conforme «minimale»

<M0 l-exp(-ß-0. (3-15)

Le choix est justifié par le fait que les hypothèses du théorème de Watson-
Nevanlinna n'ont été vérifiées, dans le cas de la masse m2h(z), que pour 3a >0
(voir Théorème 4, Section l.C). Ce cp correspond au cas où a 0 (voir Figs. 3 et 4
de Hirsbrunner (1982)).

Avec ce cp, le choix optimal de ß et B' est donné par

ß A-ln2 et B' B-0.2 (3.16)

où A et B sont déterminés par l'équation (3.13); il est intéressant de noter que
<p(— 1/A) — 1. Pour les paramètres A' et v' nous n'avons pas trouvé de valeur
optimale; nous avons choisi ici

A' 0 et v' l (3.17)

2. Nous avons ensuite optimisé le choix de l'application conforme cp. Les
innombrables exemples que nous avons testés, notamment la fonction d'essai
/„(z) de l'Annexe 1 et l'oscillateur anharmonique du Chapitre 4.C de Hirsbrunner
(1982), nous ont permis d'exhiber une famille de fonctions particulièrement
bien adaptée à notre propos:

cP(t) (u-l)/u avec u ip ¦ t + l)M2),a' (3.18)

où p>0, a'>0. Avec (3.18), le choix optimal des cinq paramètres p, a' et B', A'
et v' est donné par

p A, 7r/4s=a'£.7r/2, (3.19)

B' B, A'«l, (3.20)

0.5ët/<6, (3.21)

où A et B sont déterminés par l'équation (3.13); il est intéressant de noter que
<£(-l/A) oo.

Ce choix n'est pas unique. Nous analyserons, dans le prochain chapitre, les
trois cas caractéristiques suivants

a' tt/4, v' 1 (3.22a)

a' tt/2, v' 1 (3.22b)

a'= tt/2, v' 2 (3.22c)

pour différentes valeurs de A' dans un voisinage de 1.

4. Résultats

Dans ce dernier chapitre nous analysons d'abord, dans la Section_ A, le

comportement numérique de diverses suites d'approximants de Borel {B^(z)},,



Vol. 57, 1984 Calcul numérique de la masse physique 19

pour le carré de la masse m2h(z), zSO (voir équations (2.11) et (3.12)).14) La
construction de ces BN(z) a été largement discutée dans le chapitre précédent;
nous n'y reviendrons donc pas.

Nous discutons ensuite, dans la Section B, la question de savoir avec quelle
précision ces BN(z), IVS4, approchent la masse m2h(z) pour 0^zâzc... En
particulier, nous portons notre attention sur le plus petit zéro zN de BN(z). Nous
hasardons une conjecture qui permet d'une part d'évaluer la limite

zœ= lim zN

à partir des zéros zN, NrS4 et d'autre part d'identifier cette limite z« avec le
point critique zcr de m2h(z). Cette conjecture, qui repose sur l'étude d'un exemple
développé dans l'Annexe 1, nous permettra d'évaluer zcr avec une précision que
nous estimons de l'ordre de 5 à 10%, à condition de connaître l'exposant critique
v de m2h(z) (y détermine la manière dont mfh(z) approche 0 lorsque z approche
zj.

Et enfin nous montrons, dans la Section C, dans quelle mesure la connaissance

supplémentaire des coefficients a5, a6 de la série perturbative de m2h(z)
permettrait d'améliorer nos résultats.

4.A. Le comportement numérique des BN(z)

1. A titre illustratif nous avons construit, pour commencer, les approximants
de Borel BN(z) de m2h(z) avec l'application conforme «mininaie» (3.15). La Fig.
4 montre que le comportement des BN(z) est bien du type qui nous est suggéré

z

B_,(z)

0.5

U-j

il .1

o.o
2.01.0 1.50.0 0.5

Figure 4
Les sommes partielles SN(z) En-o a„z" de 'a masse mph(z) et les approximants de Borei BN(z)
construits avec (3.15) à (3.17).

par l'image de Goldstone dans la région à une phase (Fig. 1), du moins pour z -S 1.

Toutefois pour z s 1 la convergence de la suite {BN(z)}N devient très lente et il
est en particulier impossible de localiser la limite z^ à partir des zéros zN de
BN(z), N__s4. Dans la Fig. 4 nous donnons également les sommes partielles

SN(z)= t a„zn. (4.1)

Le comportement de ces SN(z) se passe de tout commentaire!

4) Nous rappelons que iriph(mo. À) m^ • m^z) avec z À/mJ, voir Chapitre 2.A.



2(1 Béat Hirsbrunner t-H.H.P.A

5„(z)

i 1.11 ta.' 1.29
0.5

2
< B, < Bta

2 - »3 '-ii

0.0
0.0 0.5 1.0 1.5 2.0 z

(Z)

JL'- 1.38 .' 1.32
3.5 -

Sj < B3 < B4

D.O

0.0 0.5 1.0 .5

2
> S, > B^

B.,(Zl

1.35
0.5

2
< B„ < B3

(l.c
2.00.0 0.5 1.0 1.5

Figure 5a
Les approximants de Borel de la masse mj,(z) construits avec (3.18) à (3.20) et (3.22a).

2. Nous avons ensuite construit les approximants de Borel BN(z) de mlh(z)
en optimisant le choix des quatre paramètres cp, B', A' et v', voir équations (3.18)
à (3.22). Les résultats sont donnés dans les Figs 5a-c. Ces figures montrent très
clairement la convergence rapide des différentes suites {BN(z)}N.

4.B. Discussion

En regardant les Figs 5a-c de plus près, on s'aperçoit que le comportement
numérique de ces BN(z) est tout à fait analogue à celui des BN(z) de la fonction
d'essai /„(z) de l'Annexe 1, voir Figs 8 et 9. Ainsi on a pour 0<z <zN:

BN_)(z)<BN(z) pour A

BN_l(z)> BN(z) pour A '<y0i (4.2)

(Aó= 135, 1.05 resp. 1.07 dans le cas des Figs 5a, 5b resp. 5c). Pour A'~ A Ó

suite {BN(z)}%=2 est oscillante.
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Figure 5b
Les approximants de Borel de la masse m^h(z), construits avec (3.18) à (3.20) et (3.22b).

Et comme dans le cas de la fonction d'essai /„(z), nous devons distinguer
deux intervalles: 0<zsl et lsz<z„. Pour 0<zsl, les BN(z) ne dépendent
que très faiblement de v'; tout porte à penser que l'on a, indépendemment de v':

BN l(z)<BN(z)<mph(z) pour k'>k'0
BN(z) m2ph(z) pour A' A(',

BN 1(z)>BN(z)>m2ph(z) pour k'<k'0
(4.3)

pour Nâ4 et 0<zsl. Dans le second intervalle, l=£z<zcr, les BN(z), Nâ4,
dépendent par contre très fortement de v' et les relations (4.3) ne sont certainement

plus valables pour tout v'; ceci est clairement illustré par les Figs 6a-c, où
nous donnons les plus petits zéros zN des BN(z) des Figs 5a-c.

Nous hasardons la conjecture suivante.

Conjecture. Pour v'=v (v étant l'exposant critique de m2h(z)), les relations
(4.3) sont également valables dans l'intervalle lsz<zcr; pour c'^fon a par
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Figure 5c
Les approximants de Borel de la masse rriph(z), construits avec (3.18) à (3.20) et (3.22c).

contre, indépendemment de A':

BN(z)<mlh(z) pour v'<i/l
BN(z)>m2h(z) pour v'>vi

pour N ë 4 et 1 s z < zcr. (Cette conjecture est compatible avec les discussions du
Chapitre 3.A et de l'Annexe 1).

Cette conjecture nous permet d'évaluer facilement le point critique zcr de la
masse m2h(z):

zcr x(v') + 8x(v') pour v'~v
où par définition

x(v') (zsup + zinf

8x(v') ±(zs,

nf)l2 1

z.„f)/2J

(4.5)

(4.6)
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Figure 6a
Less zéros zN des approximants de Borel BN(z) de la Figure 5a. Les zéros z. ont été calculés en posant
a5 64±2 (estimation, voir Annexe 2).

zinnf (resp. zsup) étant le plus petit zéro de B4(z) pour A'>A(', (resp. A'<AÓ). Nous
avrons évalué x(v') et 8x(v') pour différentes valeurs de v'. Nous avons trouvé

x(v') + 8x(v') -

1.73 ±0.07 pour j/=l
2.03±0.10 pour »/'=1.25

2.32±0.15 pour v'=1.50
2.59±0.21 pour v'=1.75
2.85 ±0.30 pour v' 2

(4.7)

c'eest à dire, par un ajustement par le méthode des moindres carrés

x(i/)=1.12i/ + 0.62 1

(i/) 0.016- exp (1.46i/)J8x(v')
(4.8)
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2.00

l 80

1.70

1.50

Figure 6b
Les zéros zN des approximants de Borel BN(z) de la Figure 5b. Les zéros z5 ont été calculés en posant
a5 64±2 (estimation, voir Annexe 2).

4.C. Peut-on améliorer ces résultats!

Nous pensons qu'il n'est guère possible d'améliorer ces résultats en n'utilisant
que l'information dont nous disposons actuellement.

D'après l'Annexe 2.D la connaissance supplémentaire des coefficients perturbatifs

as, a6 n'apporte (probablement) aucune amélioration décisive: certe:
l'évaluation de zcr serait plus précise, mais elle resterait dépendante de v\
D'après l'Annexe l.C cette difficulté ne peut être résolue que si k est suffisamment

grand, k ~ 10? (fc étant le nombre de coefficients perturbatifs an connu).
Dans ce cas il est probable que la resommation selon Borel de la série perturbative

de la masse m2h permettrait de déterminer non seulement le point critique zcr
mais également l'exposant critique v.

En principe il est bien sûr possible de calculer autant de coefficients a„ que
l'on désire. Mais il se trouve que:

-la difficulté liée au calcul (exact) des an croît avec n;
-déjà le calcul (exact) de a5 est non trivial;15)

5) Nous pensons notamment au graphe non planaire de la Fig. 3.
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Figure 6c
Les zéros zN des approximants de Borel BN(z) de la Figure 5c. Les zéros z5 ont été calculés en posant
o5= 64±2 (estimation, voir Annexe 2).

- le calcul (exact) de a„ n'est intéressant que si Veneur 8a„ i est suffisamment
oetite (voir Annexe 2.C).

Ceci nous amène à penser que l'énorme effort que nécessite(rait) le calcul
des an, n=S5, est nettement disproportionné par rapport aux (nouveaux) résultats
que l'on peut escompter. Il est certainement préférable de porter l'effort sur
l'évaluation de l'exposant critique v par d'autres méthodes (telles par exemple les
méthodes du groupe de renormalisation16)).

Conclusion

Les approximants de Borel BN(z), NS4, de la série perturbative de la masse
physique

m2ph(mf, k) mf ¦ m2ph(z) avec z=k/mf, mf fixé,

Après avoir terminé ce travail, j'ai appris que Le Guillou-Zinn-Justin (1977) ont obtenu à l'aide
du groupe de renormalisation: v 1.94±0.16 (voir tableau I, page 3985).
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Figure 7
Le zéro x(v') + Sx(v') de la masse mj,(z), pour l_Si/_s2 (voir relation (4.7)).

dans le modèle A :<p4:2, nous ont permis de minoriser resp. majoriser mph(z) dans
l'intervalle Oâzsl. Pour zal, cet encadrement n'est par contre plus «garanti».
Plus précisément, nous pensons que pour 1 ä z < zcr nos BNiz) n'encadrent
Wph(z) que si v'~v (voir la conjecture du Chap. 4.B; v est l'exposant critique de
mlhiz) et v' est le paramètre introduit dans le Chapitre 3.A). Dans le cas où
l'exposant critique de mp\(z) est connu, il est alors possible d'évaluer le point
critique zcr de m2h(z) avec une précision que nous estimons de l'ordre de 5 à 10%.
Ces résultats ont été obtenus en utilisant:

1) la sommabilité selon Borel de la série perturbative £ a^z" de m2h(z), voir
Chapitre 1 (résultat rigoureux établi par Eckmann-Epstein (1979));

2) les coefficients perturbatifs a„ pour n S 4 (ces a„ ont été calculés dans le
Chapitre 2);

3) le comportement asymptotique des a„ lorsque n —*¦ °° (résultat heuristique
basé sur les travaux de Lipatov (1976) et Zinn-Justin (1977));

4) les hypothèses A, a, R du Chapitre 3.C;
5) la conjecture du Chapitre 4.B (basée sur l'étude de la fonction d'essai fv(z)

de l'Annexe 1).
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Annexe 1. La fonction d'essai /„.

A. Définition de fv

Soit la fonction d'essai fv définie par

/„(z) (1 - z/zjv • (3/2 -1/2 • [ exp (-t) ¦
1 + z[A.t dt)

00

n=0

avec zcr, v et A telles que fv(z) soit «proche» de la masse mlh(z):

zcr>0, v>0 et 1/A 1.4626.

B. Quelques propriétés de fv

Pout tout zcr > 0 et v > 0 on a:
1. fv(z)~Yéan- zn satisfait le théorème de Watson-Nevanlinna et les

hypothèses A, a, R (Chap. 3.C) avec 1/A 1.4626, a<ir, R^zcr.
2. Les a„ possèdent le même comportement asymptotique que les coefficients

perturbatifs de la masse m2h, voir (3.13):

a» (-A)n-r(n + B + l)-C-(l + 0(l/n)),

lorsque n —»00, avec 1/A 1.4626, B 1 et ici C 0.5. Notons que ce comportement

est indépendant de zcr et v.
3. /v(Zcr) 0 et fv(z)~(zcr-zY lorsque z /zcr.
4. /v(z)~ 1.5 • (-z/zcr)" lorsque z /"oo. pour v 1,2,...

C. Les approximants de Borel de f„

Dans cette section nous discutons le choix optimal des paramètres cp, B', k',
v'et le comportement numérique de diverses suites d'approximants de Borel
{Bn(z)}n=0 de la fonction d'essai fv(z), et ceci pour différentes valeurs de fc17). On
peut essentiellement distinguer trois cas: fc s 5, fc ~ 10 et fc ä 20. Pour zcr e [1,10]
et v e [0.25,4] nous avons obtenu les résultats suivants.

1. fc petit (fcs5)
Pour fcs5, le choix optimal des paramètres est donné par (3.18) à (3.20),

v'e[~v/2, ~2v] et il existe Aó (Aó~l, la valeur exacte est donnée par l'examen

Pour les définitions de la notion «optimal» et de l'approximant de Borel BN(z) voir les sections
3.A et 3.B; il suffit de lire /„(z) à la place de mph(z).
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Figure 8
Les approximants de Borel de la fonction d'essai f,.(z) avec zcr 1.8 et v l, construits avec (3 18) à

(3.20) et (3.22b).

numérique) tel que la suite {Bn(z)}n-=2 est

-croissante pour A'>AÓ;
-décroissante pour A'<A(',.

Plus précisément on a pour !Vë5 et 0<z<zN:
BN^(z)<BN(z) pour A'>A(',i
BN_)(z)>BN(z) pour A'<AóJ (AV1.1

Pour A'~AÓ, la suite est oscillante. Ceci est très clairement illustré par la Fiig. 8
On a même mieux: les suites d'approximants de Borel (Al.l) minorisent rresp
majorisent /„(z), du moins pour z «pas trop grand». Plus précisément il e?xistt
zd>0 (la valeur exacte de zd est donnée par l'examen numérique) tel que ipoui
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Figure 9
Les approximants de Borel de la fonction d'essai fv(z) avec zcr 1.8 et v 2, construitsavec (3.18) à

(3.20) et (3.22b) respectivement (3.22c). Le traitillé indique que dans le cas v' — 1 les BN(z) dévient
fortement de /„(z) pour z a 0.6.

/Va5 et 0<z<zd on a

BN_1(z)<.BN(z)</„(z) pour A'>A^
I?N(z)«/,,(z) pour A' Ai ¦

BN_j(z)>BN(z)>/v(z) pour A'<A(V

On pourrait espérer que zdl£zN; malheureusement ceci n'est vrai que si

v' v

Dans le cas v j= v, nous avons obtenu dans l'intervalle ouvert z e (zd, zj:
BN(z)<fv(z) pour v'<v
BN(z)>f„(z) pour

(Al.2)

v>v\ (Al.3)

pour /Vë5 et pour tout A'. Une discussion analogue au point 2 du chapitre 3.A
permet de comprendre ce résultat, à défaut de l'expliquer! Un exemple avec v'< v
et v =v est donné par la Fig. 9. Regardons, pour un instant, cette figure de plus
près. Le traitillé indique que dans le premier cas, v'<v, les BN(z) dévient
fortement de /„(z) pour z5:0.6; on a «donc» ici zd=0.6, c'est à dire

zd zcr/3.

Dans le deuxième cas, v' v, on a BN(z)~f(z) pour 0^z«zcr et N^2 (!); c'est
à dire

Zd Zcr-

En résumé, si l'on s'intéresse à évaluer zcr à l'aide des zéros zN des approximants de
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Borei BN(z) de /„(z), NS5, une connaissance aussi précise que possible de la
valeur numérique de v est nécessaire. De plus, à supposer que la valeur de v soit
inconnue, l'étude numérique du choix optimal du paramètre v' ne donne qu'une
vague idée sur la valeur possible de v.

2. k moyen (fc ~ 10)

Pour fc ~ 10, le choix optimal des paramètres est le même que dans le cas «fc

petit», sauf que

AiëpâA, -)T/2Sa'âiT, B'^B et i/ v±v/10.

avec

A 1/1.4626 et A, (1-2(a')/ir) • A

(Notons que cp(-l/A) -l si p A[ et <p(-\/A) °° si p A). Comme dans le
cas «fc petit» il est possible de construire des suites d'approximants de Borel
croissantes, oscillantes respectivement décroissantes, et de minoriser respectivement

majoriser la fonction fv(z). Mais un tel choix ne correspond plus, ici, à un
choix optimal.

Il est intéressant de noter que la valeur optimale de v' se situe maintenant
dans un «petit voisinage», de l'ordre de —10%, de l'exposant critique v. Notons
aussi que l'évaluation de zcr ne nécessite plus la connaissance «précise» de la
valeur v (zcr peut être évalué avec une «relative grande précision», même avec v'
«très différent» de v).

3. fc grand (fcS:20)

Pour fcs20, le choix optimal des paramètres est analogue (mais pas identique)

au cas «fc moyen». Il est encore possible de construire des suites d'approximants
de Borel croissantes, oscillantes respectivement décroissantes, et de min-oriser

respectivement majoriser la fonction /„(z); mais un tel choix ne correspond plus
du tout à un choix optimal.

Si les valeurs de zcr et v sont inconnues, alors une étude minutieuse du
comportement des suites {Bn(z)}n'=o dans un voisinage des zéros z z2() permet
de déterminer zcr et v avec une «très grande précision».

D. Sur la dépendance en zcr et v.

Dans cette section nous discutons la dépendance en zcr et v de différentes
quantités intéressantes. Nous nous limitons au cas v' 1 ; les approximants de
Borei BN(z) sont alors définis par les relations (3.6) à (3.9).

1. Les quantités suivantes ne dépendent que très faiblement de zcr et v:
an : le comportement asymptotique des a,, lorsque n —» °° est indépendant de zcr el
v; pour n petit (n =0,1, 2...) la dépendance est faible, voir tableau 4.

2. Les grandeurs suivantes dépendent très fortement de zcr et v:
fv(z):zcr détermine le zéro de fv et v détermine le comportement de /„ lorsque
z /*zcr (et lorsque Z/*°°).
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Tableau 4
an sont les coefficients de la série perturbative de la fonction d'essai /„(z) et bn sont les coefficients des
approximants de Borel BN(z) construits avec (3.18) à (3.20), (3.22b) et V 1.

n an a
n

b
n

b
n

(Z ¦cr ¦ 5) (Z •cr
1 .8) (Zct= 1.5) (Zcr= 1.8)

(V .0] (v 1.2) (v 1.0) (u 1.2)

0 1 000 1 000 0.6837 0.6837
1 0 017 0 017 - 0.6752 - 0.6752
2 1 858 1 821 - 0.4530 - 0.4439
3 4 770 4 801 - 0.0278 - 0.0160

- 15 668 - 15 715 - 0.0111 0.0022
5 62 528 62 663 - 0.0056 0.0089
6 - 293 281 - 293 747 - 0.0032 0.0123

BJz):on a BN(z) £bm • Mm(z) où les Mm(z) sont indépendants des a„, donc
indépendants de zcr et v. Les coefficients bm, par contre, dépendent très sensiblement

de zcr et v, voir tableau 4. (Dans le Chap. 3.B de Hirsbrunner (1982) nous
avons vu qu'une petite variation 5a„ des coefficients a„ entraîne en général une
grande variation 8bJ8)).

Annexe 2. Sur le calcul de a5,a6.

Dans cette annexe nous développons un argument heuristique qui permet
d'évaluer (avec une fiabilité relativement grande) les coefficients as, a6 de la série
perturbative de la masse m2h(z). Nous discutons ensuite la question de
l'opportunité d'un calcul exact de a5, a6.

A. Une estimation de a5, a6

La connaissance des a„, nS4, et du comportement asymptotique de a„
lorsque n —>œ (voir la relation (3.13)) nous permet d'estimer très facilement a5 et
a6. En effet soit

Cn a„/[(-1.4626)-"'(n + l)!].
De (3.13) il suit

C„ C-(l + 0(l/n)).
Pour n suffisamment grand on a donc Cn~C. Or on a C0=l, Ci=0, C2
0.5348, C3 0.5327, C4 0.5589. B est ainsi plausible de poser C5 C6
0.60±0.10 d'où a5 65±ll et a6 -309±52 Cette estimation n'est
évidemment pas très fiable. Mais on peut faire mieux en extrapolant les coefficients

bm qui interviennent dans la définition des approximants de Borel BN(z).
Nous nous contentons ici de donner le résultat (le détail de cette délicate étude est
donné dans l'Annexe 4 de Hirsbrunner (1981a)).

18) On peut trouver d'autres illustrations dans les tableaux 7 à 9 de Hirsbrunner (1981a) et dans le
Chapitre 3.C de Hirsbrunner (1981b).
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Conjecture :

a5 64.0±2.0 et a6=-326±30 (A2.1)

B. La répercussion des erreurs {8aJ"=0 sur le zéro zN.

De la définition de l'approximant de Borel B5(z),

B5(z) B4(z) + b5-M5(z),

il vient en évaluant le membre de gauche en z z5 (rappel: zN est le zéro de
BN(z), c'est à dire BN(zJ 0) et en développant par Taylor le membre de droite
autour de z zA (en négligeant les termes d'ordre supérieur):

z5 z4-d ¦ bs,

avec d —M5(z4)/B4(z4). Le coefficient b5 est une combinaison linéaire des an,
nri5

5

b5= L Cm,n ' On-
n=0

Pour n .S 4 les erreurs 8a„ peuvent être négligées; il suit alors que l'erreur ôz5 due
à Sun, n ë5, est donnée par

8zs (-d ¦ c5J ¦ 8a5

Le coefficient — d • c5-5 dépend des paramètres cp, B', A', v'. Dans le cas (3.18) à

(3.20), (3.22b) et avec 0.95 â A'S 1.15 (ceci correspond aux valeurs utilisées dans
les Figs 5b, 6b) on trouve

Ôz5 0.011-Ôa5. (A2.2)

Un calcul analogue donne pour l'erreur <5z6 due aux erreurs 8an, n§6:
5z6 0.045 ¦ 8as + 0.0018 • 8a6 (A2.3)

(Le détail de ces calculs est donné dans l'Annexe 4 de Hirsbrunner (1981a)).

C. La précision souhaitable de as, a6

Le calcul exact de as (resp. a5 et a6) n'est intéressant que si |5z5| (resp. \8z(,\
est suffisamment petit. D'après la Fig. 6b il est raisonnable d'imposer au moin.
|Ôz5|<0.01 (resp. |ôz6|<0.01). De (A2.2), (A2.3) il suit |ôa,|<0.91 (resp
|ôa5|<0.11 et !<5a6!<2.8), c'est à dire

\8a5/a5\< 1.4% (A2.4

respectivement

\8a5/as\< 0.2% et !ôa6/a6|<0.9% (A2.5

D Conclusion

La connaissance (exacte) de a5, a6 permettrait de diminuer l'erreur 8x(v')
voir Fig. 7, d'un facteur 2 à 5. Par contre elle ne permettrait pas d'évaluer le poin
critique zcr indépendemment de l'exposant critique v. Et étant donné la grandi
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difficulté liée au calcul de as, a6 (nous pensons notamment au graphe non planaire
de la Fig. 3) et la grande précision exigée (voir (A2.4) et (A2.5)), nous pensons que
l'énorme effort que nécessiterait) le calcul de a5, respectivement a5, a6 est
nettement disproportionné par rapport aux (nouveaux) résultats que l'on peut
escompter. Le calcul de as ne présente un certain intérêt que dans la mesure où
cela permettrait de confirmer (ou infirmer) notre conjecture (A2.1) et notre
confiance que nous avons en évaluant le point critique zcr par

zcr x(v') + Sx(v') pour v'~v
voir Chapitre 4.B; pour cela un calcul de a5 avec une faible précision, disons
\8a5/a5\~3%, serait suffisant.
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