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On Callan's proof of the BPHZ theorem

Andrzej Lesniewski, Mathematik, ETH-Zentrum, CH-8092 Zürich
(Switzerland)

(10. VI. 1983)

Abstract. We give an elementary proof of the BPHZ theorem in the case of the Euclidean A<p4

theory. The method of proof is based on an idea of Callan [3]. It relies on a detailed analysis of the
skeleton structure of graphs and estimates based on the Callan-Symanzik equations.

I. Introduction

The main result of renormalization theory, the BPHZ theorem [1], [5], [9]
states that the renormalized Green's functions are free of ultraviolet divergences.
There exist quite a lot of more or less sophisticated proofs of this theorem. We
want to add to this collection another one, which seems to be particularly
pedagogical. It applies to any massive renormalizable theory, although for the
sake of simplicity we restrict ourselves to the A.94 theory with non-zero mass p2.
Our guide is a beautiful idea of Callan [3]. He suggested that the existence of
renormalized Green's functions should follow from the fact that they satisfy the
Callan-Symanzik equations.

There are some advantages of the present approach. It contains no
combinatorial part, and the problem of overlapping divergences is circumvented
altogether. Moreover, we do not merely prove the existence of Green's functions,
but simultaneously we give some bounds on the behavior of the Euclidean p-space
Green's functions. Finally, we show that the Green's functions satisfy the Callan-
Symanzik equations.

Our approach is purely Euclidean. To come back to the Minkowski space one
may use the results of [4].

The paper is organized as follows. In Section II we summarize in considerable
detail some standard definitions and fix the notations. In Section III we introduce
the regularized Callan-Symanzik equations. Section IV contains the formulation
of our main result. The proofs are carried out in Sections V and VI. The appendix
contains a sketch of the proof of the Callan-Symanzik equations.

II. BPHZ renormalization [7], [9]
We assume that the reader has some familiarity with Zimmermann's formulation

of renormalization theory. The aim of this section is to fix the notation, and
not to provide an introduction to the subject.
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(a) Green's functions. We are concerned with the following three Green's
functions: T(n)(p, p, A), A0TM(V, p, A) and A2TM(p, p, A), where p (Pl,..., pn),
Zr= i P. 0 are external momenta, p is the mass, and A is the coupling constant.
r(n) is the (Fourier transform of the) n -point vertex function, i.e. the proper
amputated part of the full Green's function. Aor(n) is the n-point vertex function
with an |<p2 insertion at zero external momentum, and Ao-T'"' is the n-point vertex
function with two \cp2 insertions at zero external momenta. All these functions are
defined perturbatively via the (formal power series) Gell-Mann-Low expansion.
For example

rnP,P,A)=Z^r!fW).
k=0 K!

where rjt°(p, p), the fcth order vertex function is a sum of the corresponding
renormalized Feynman amplitudes Tkn)ip, p) Yg r!in)(p, p | G). In a similar fashion

one defines AQTkn)(p, p) and A2Tkn)(p, p). Let us note that

r<2)(p,-p,p,A) 0(A°), (II. 1)

r(4)(Pi,...,p4,P,A) 0(A1), (II.2)

Aor(2)(p,-p,p,A) 0(A°), (II.3)
Aor(4)(pi,...,p4,p,A) 0(A2), (II.4)
A2r(2)(p,-p,fA,A) 0(A1). (II.5)

(b) Graphs. Let G be a (proper) graph corresponding to one of the above
listed vertex functions. By J£(G) we denote the set of its (internal) lines, by T(G)
the set of its vertices. The numbers of elements of these sets are denoted by L and
V respectively. To each cr s i?(G) we assign a momentum la (internal momentum).
To each uf g V(G) we assign a momentum q; (external momentum), which is the
sum of those of basic external momenta pl5..., pn, which enter vt. Vs and q's
obey the momentum conservation law at each vertex: £<l) k Qt, where £(l) means
summation over all o-'s entering vt. la has the structure la ka + qCT, where the kCT's

are (non-uniquely) determined by the equations £<0 ka 0, and the q^'s are
(non-uniquely) determined by YMac <?¦• fcCT is a linear combination of linearly
independent vectors kx,... ,km (loop momenta), the integration variables: kCT

kCT(k). qa is a linear combination ofqi,...,qv:qa q<r(q) (and hence qa qCT(p)).

(c) Unrenormalized Feynman amplitudes. To a graph G we assign its
unrenormalized regularized Feynman amplitude, defined as the integral:

/(p;K|G) (27r)-4'"fdk ft ^- ^J CTeÄ(G) '<t+P

dk fl Ö(/2-K2)J(K(k),q(p)|G) (II.6)
aeX(G)

dkI(K(k),q(p)|G),

where dk d4kj • • • d4km,K {ka.}a.e<e(G), and k2<°°. We assign to G its dimension
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d(G) defined as d(G) 4m — 2L. It is easy to see that

d(G) 4-n-2f, (II.7)

where t is the number of the |cp2 insertions.

(d) Subgraphs. A subgraph 7 of a graph G is determined by the set of its
vertices V(y) c Y(G), and the set S£(y) <=¦ S£(G) of its lines containing all lines
joining elements of V(y). To lines and vertices of 7 we assign momenta Q, qy, kZ,
and qZ in a similar manner as in case of G. We require IZ l„. Then, clearly
^-^i^q, K), kl=kZ(q, K), where the dependence is linear. qy is a sum of
external momenta py entering vt ipy is either one of the p's or, if the line
treS£(G) is external to 7, pjj=k). It turns out [7], [9], that there exist such
assignments of momenta that kZ kZ(K). Generally, we say that an assignment of
momenta is admissible, if t<-7 implies k^=k^(Ky), for ct<e5£(t). We assume
henceforth that our assignment of momenta is admissible. The meaning of the
dimension d(7) of 7 is clear. We say that G is a skeleton graph, if it contains no
proper subgraph 7 with d(y)^0. A graph G has a skeleton expansion, if it
contains pairwise disjoint proper subgraph ylt..., ys with d(7;)â0, i 1,..., s,
such that the reduced graph G G/{y1,... ,ys} (i.e. the graph obtained from G
by shrinking 71,..., 7S to points) is a skeleton graph.

(e) Renormalized Feynman amplitudes. We define a renormalized Feynman
amplitude corresponding to (II.6) by RJ(p; k | G) JK dk_R(K(k), q(p) | G), where
-R(K(k),q(p) I G) is given by Zimmermann's forest formula [7]:

R(K(k), q(p) I G) SG Z û (~tdyMSy)I(K(k), q(p) | u). (II.8)
M-ì£ -yeu

Here °U is the set of all G-forests (a G-forest a collection of non-overlapping
proper subgraphs of G with non-negative dimensions). Sy is a substitution
operator: Sy :K7 -^KT(IT), qT->qT(qMF), if tct. I(K,q|u) is equal to
I(k, q I G), but the momenta are labelled in a special way. Namely, if 7 e u is the
smallest element of u containing o-<e££(G), then la lZ= kZ + qZi^C)- If for some
o-<=S£(G) there is no 7 e u containing it, then we put L, ka + q„iq). td(y) is the
Taylor operator, i.e. the operator which expands a function F(qT) (say) around
zero up to order d(7) with respect to those of q^ which are independent (if Niy)
is the number of q^'s, then N(7)-l of them are independent). The ordering of
factors in (II.8) is such that if tct, then -tdMSy stands left to -tdW)ST; if
t Pl 7 0, then the order is arbitrary.

Let us conclude this subsection with some simple properties of renormalized
Feynman amplitudes.

(i) -RJ(p; k [ G) is independent of the choice of admissible assignment of
momenta.

(ii) If d(G) ä 0, then R(K(k), q(p) | G) has at p 0 a zero of order d(G) +1.
(iii) If G has a skeleton expansion, then

R(K(k), q(p) I G) SG7(Kö(k), qô(p) | G) f{ R(K^(k), q*(p*) | 7.) (Ü.9)
i=l

with natural definitions of Kö and qô. We choose the integration variables
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(ki,... ,km) (k'u k'a, ku,. klai,. ,ksl,.. z, fcsa>)_ in such a way that
k\,...,k'a are integration variables for I(KG(k),q°(p) | G), and kn,..., k^ are
integration variables for JR(KT'(k),qT,(pT0 I 7.X i l,. ¦ ¦ ,s.

All this is well known and follows directly from (II.8).

III. Callan-Symanzik equations

Denote by T(n)(p, p, A; k), Aor(n)(p, p, A; k), and Agr(n)(p, p, A; k) the sums
of the corresponding renormalized regularized Feynman amplitudes. Define

r(p,A;K)=-[-^A0r<2)(p,-p,p,A;K)] (III.l)
L«P -lp=o

s(p, A ; k) A0r(4)(0, p, À ; «), (III.2)
t(p, A ; k) A§r(2)(0, 0, p, A ; k). (III.3)

Observe that r(A) 0(A2), s(A) 0(A2), t(X) 0(\1). Introduce also the following
functions

a(p,k; k)={1-p2r(p,X; k)Y\ (HI.4)
ß(p, A ; k) p2(2Ar(p, A ; k) - s(p, A ; «)){1 - p2r(p, A ; k)}~\ (III.5)
7(p, A; K)=ip2r(p, A; k){1-pMp, A; K)}'1. (III.6)

A scaling argument shows that a, ß, y, and p2t are independent of p. Moreover,
we have (cf. (III.1)-(III.3) and (II.3)-(II.5))

a(A) 0(A°), (III.7)
ß(A) 0(A2), (III.8)
Y(A) 0(A2). (III.9)

Proposition. The regularized Green's functions obey the following (Callan-
Symanzik [2], [8]) equations:

{p2-^5+ß(A; K)^--ny(k; /<)}r(n)(p, p, A; k)

-p2a(k ; k) Aorw(p, p, A ; k), (III.10)

|p2-pI+ß(A; K)-~-(n~2)y(\; K)-p2a(\; x)t(p, A; «)}

X Aor(n)(p, P, A; k) -p2a(A; k) Agr(n)(p, p, A; k). (III. 11)

We sketch the proof of (III. 10) and (III. 11) in the appendix.

Remark. The choice of the regularization is crucial for proving the
regularized Callan-Symanzik equations. In particular, the Green's functions with the
Pauli-Villars regularization used originally by Callan [3] do not satisfy the
regularized Callan-Symanzik equations.
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IV. Main result

Theorem. Let p >0. The Green's functions T(n)(p, p, A), Aor(n)(p, p, A), and
Aor(n)(p, p, A) (defined as the k —» °° hmits o/ fhe corresponding regularized objects)
exist and satisfy the Callan-Symanzik equations iequations iIII.10), (III. 11) with
k —* oo). Moreover

(a) For any k ä 2 and arbitrary 0<s < 1 there is a constant C1 C1ie,k)>0,
such that for all p

!r<4>(p,p)!ëCi|P/ph
where |p|2 p\ + - • • + pi

(b) For any k =5 1 and arbitrary 0 < e < 1 there is a constant C2 C2(e, k) > 0,
such that for all p

\A0rk2\p,-p,p)\^c2\p/p\r,
(c) For any k iS 2 and arbitrary 0< e < 1 there is a constant C3 C3(e, k) > 0,

such that for all p

!n2)(p,^p,p)itaSc3p2ip/pie.

(d) Let F(p,p) denotes either Tkn)(p, p) with n^6, or A0Itn)(p, p) with n^4,
or Aor£.n)(p, p) with n=S2. For arbitrary 0<e<l there is a constant C4
C4(e, fc)>0, such that /or au p

|F(p,p)|.rSC4p4-"-2t(l + |p/p|E).

The constants Cit i 1,. 4 are independent of p.

Remark. The F(p, p) of part (d) are just the Green's functions with negative
dimensions

The proof of the theorem is inductive Let us make the following

Inductive assumption. Let r â 1.

(a) For any 2tataSktaSr + l the limits ll4)(p, nl^im^Cfp.n; k) exist. For
arbitrary 0<e <1 there is a constant CY Cx(e, fc)>0, such that for all p

|r<4W.K)!sc.|p/p!e, (iv.i)
uniformly in p and k.

(b) For any 1 ë k â r the limits Aork2)(p, -p, p) lim*^,. Aork2)(p, -p, p ; k)
exist. For arbitrary 0<e<l there is a constant C2 C2(e, k)>0, such that for
all p

|AoH2)(p. -p, p; K)|_gC2|p/p!e, (IV.2)

uniformly in p and k.
(c) For any 2 ë k rs r the limits T(k2)(p, -p, p) limK_»co r(k2)(p, -p, p ; k) exist.

For arbitrary 0 < e < 1 there is a constant C3 C3(e, fc) > 0, such that for all p

|U2)(p, -p, p; K)\râC3p2\p/p\e, (IV.3)

uniformly in p and k.

Remark. It follows from the second part of the induction hypothesis that
rk(p) exists for all fcSr.
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V. Proof of the theorem

Lemma 1. Let G be a skeleton graph. Define

J>|G) (2^)-4~[dk FI 775T^-

If 1 —l/2L<T|gl, then Jv exists and

Jvip\G)^Cpd(a)+2U1^\ (V.l)
for all p and p>0, with C>0 independent of p and p.

Proof. The lemma follows directly from an elementary application of the
method of Hepp sectors [5]. Let us describe this standard argument. By scaling
(la. -> pia) we extract the factor ^d(a>+21La-r,) _ Using the a-representation

a2+l)--==^-r- f daa^e-a(lx+1\
T(t/) J0

changing the order of k and a integrations (this is legitimate, since the integrand is
positive) and performing the k integration explicitly, we find [1]:

J„(p| G) (41r)-2mr(Ti)-Vd<G)+2L(l^)^(p/p I G),
where

Kn(p|G)=f-- f°°d« û «r'D^expl-^- £ al
J0 JO a-Gtataif(G) L UK**) o-taEtaSeCG) J

Here A (a, p) and D(a) are the Symanzik polynomials [1]. Recall, that A (a, p),
D(a)s0 in the domain aCT^0 (ae2(G)), and A(a,0) 0. Hence K^ip/p \ G)
may be estimated by K„(0 | G). To prove the lemma it is thus sufficient to show
the existence of K„(0 | G). To this end, represent -K^O \ G) as a sum of integrals
over the sectors {ot\a„{1)^- ¦ ¦S,a„,L)}, where -rr runs through the permutations
of {1,..., L} (we choose some ordering of the elements of 5£(G)). Consider the
sector {a | a.i_S- • -SaL} (other sectors are dealt with in a similar manner).
Substituting ax txtl+l ¦ ¦ • tL, l 1,..., L, we find that the integral over our sector
becomes

'o Jo h
dh--- dt!.-! dtLf[ tJ(T|-1)-id(G.)-1[l + P(t)]-2e-,J1+Q(t)],

where P(t), Q(t)S0 (in the domain of integration) are some polynomials. G[ is
the subgraph of G formed by the lines cru cr(. By our assumptions li-n — 1) -
I d(Gi)> -è(l + d(Gi))âO, so the integral is convergent. Q.E.D.

Lemma 2. If a graph G corresponds to T(n} with n â 6, or A0T(n) with n ê 4, or
to Aor(n), with n s 2, then G is either a skeleton graph, or has a skeleton expansion
(in terms of T(4\ T(2) and A0T(2)).

Proof. Otherwise there are two overlapping maximal proper subgraphs 71, 72
with d(7i), d(72) tag 0. Since 7! and 72 are proper, 71D 72 has at least four external
legs. Hence, by (II.7) d(7iri72)_g0. This, however, implies that d(7iU72)
d(7i) + d(72) — d(7i n 72) iä 0 in contradiction with maximality of the 7's. Q.E.D.
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Assume now that the statements of the inductive hypothesis hold true for all
rSl.

Proof of the theorem. The theorem is obviously true for T(4), Aor(2) and T<2). By
Lemma 2 all the other Green's functions have skeleton expansions. Let F(p, p) be
such a function (it corresponds to the Vth, say, order of the perturbation
expansion). Using (iii) of Section II (e), and factorizing the integrals (which is
legitimate for k2<c°), we can write

F(p, p) Z f dk'/(Kö(k'), qö(p) I G)
G JK

xrïFf(Pi(k',p),p;K).

Here Xe denotes the summation over all skeleton graph corresponding to
Fip, p ; k). F° denotes one of the functions Tk4\ T(k2) or Aor(k2> with fc g I. k' is the
set of the loop momenta of G. Let FG(p, p; «) be any summand in the above
sum. Choose 0 < e < 1/L (L is now the number of lines of a graph corresponding
to F(p, p; k)). Using (IV.1)-(IV.3) we bound the integrand of F°(p, p; k) by

cp-M n (12+L-Ju'(pf+^2r,2P-%
Weï(G,) Wo-+P J i

where we have used the fact that p2|p/p|E â(p2 + p2)1+e/2 _and
(Pi + - • -+P4)E/2p~eân?=i (pf + p2T'2p~e. Gx is the graph obtained from G by
cancelling vertices which come from the T(2) insertions, Lx is the number of its
lines. Clearly Gi is a skeleton graph. Yi/ is the product over those external
momenta of F(p, p; k) which are also external momenta of some of Fp(p;,p; k),
i 1,..., s. The last expression is intégrable by Lemma 1. Hence FG(p, p)
limK_+0OFG(p, p; k) exists. This implies the existence of F(p, p). Using Lemma 1

(t) 1 - e/2) we obtain

\aF°(p, p; K)|rgC4p4-~2tn' (P2 + P2yl2p-
i

ë C4p4-n~2t(|p|2 + p2)n'e/2p""'e (V.2)

where n' is the number of factors in YÌÌ, and C4 does not depend on k. This
implies the bound on Fip, p). Q.E.D.

VI. From r to r + 1

We come now to the proof of the inductive step.
1. Let us start with T(4>. Using (II.2), (II.4), and (III.7)-(IIL9) we may write

(III. 10) in the (r + 2)th order as

p2-^ r<4)2(p, p ; k) -p2 t «.-.(*) A0r^2(p, p; k)
Bp i=o

- Z [(m)ßr+2_1-(K)-47r+1-.MJ£\(p. p; k). (vi.i)
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We claim that all the quantities on the RHS of this equation have limits as k —> oo.

Indeed, by the induction hypothesis r[+i(p, p), i 0,..., r exist. By Lemma 1

graphs corresponding to AorJt}2, i 0,..., r have skeleton expansions. Hence,
using the argument of Section V one proves that Aor[+2(p, p), far exist and
|A0r^2(p, p)|gCp~2|p/p|E for |p/p|Sl. By the definitions and the inductive
hypothesis ak, ßk, and 7k, fc 1,..., r exist. The only potentially dangerous terms
are ßr+1, yr+1, and ßr+2. However, looking at the definitions we see that ßr_n
involves only sk (kgr+1), which exist (because they have skeleton expansions),
and rk (fcgr), which exist by the induction hypothesis. yr+1 and ßr+2 involve also
sr+2 (which has a skeleton expansion), and yT+1, whose existence we shall state
below. From the induction hypothesis and what we have said above it follows that

p — Tr%($,p;t<)
op

=§Cs|p/ph (VI.2)

for |p/p|êl. However, it follows from (ii) Section II (e) that T(r+2ip, p; k) has a

simple zero at p 0. Hence, (VI.2) holds for all p. Denoting the RHS of (VI. 1) by
é%r+2(jt, p ; k), using again (ii) Section II (e) and a scaling argument, we find

r<ï2(p,p;K) r<4+)2(p/p,l;K/p)

^rf*2(p/èl;^)

It follows from (VI.2) that

-r•v
2 J ^r+2(p, è; k).

|rr(4+>2(p, p; K)|gCs |p|e f-r^g- C5 |p/ph
J e•*(X \>

for all k. Hence, Tr+2(p, p) exists and (IV.l) holds.
2. Let us consider A0r*2)x. Using (II.3), (II.5), and (III.3) we find that (III.ll)

in the (r + l)-th order takes the form:

P2 r~2 àoTr+iiP, ~ P, P ; k)
dp

-P2 Z ov-tWCAgr^R-p, p; k)- A^2\(0,0, p; k)]

r

- Z [ift+i-,(K)-Ar_i(K)] A0r,<2\(p, -p, p; k),
i=0

where A(A) p2a(A)t(A). The only term on the RHS of the above equation,
which is not obviously convergent is ßr^_i. However, in the first part of the proof
we have shown that its existence follows from the induction hypothesis. As in the

-•(4,
r+2case of rr% we find that

P — Aor^2\(p, -p, p;k)
dp

icip/ph

and hence, Aor'2\(p, -p, p) exists and (IV.2) holds.
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3. Finally, let us discuss r'2\. In this case (III. 10) takes the form
d r+1

p2—5^2)i(p, -p, p;k) -p2 Z ar+i-i(K)Aorp)(p,-p, p;k)
op .=o

r

- Z (ißr+2-iM-2yr+1-i(K))Tl2)(p,-p,p;K).
i=0

Using the second part of the proof (to conclude the existence of Aor-2)(p, — p, p),
ig r+1), the induction hypothesis, and the definitions of a, ß, and 7 we find that
everything converges. Moreover,

p j- T(2Mp, - p, p ; k) g Cp2 |p/p |e (VI.3)
dp

for |p/p| ë 1. But r£2)i(p, - p, p ; «) has a zero of the third order at p 0. Hence,
(VI.3) holds for all p's and we may repeat the argument of the first part of the
proof. This completes our proof.

Appendix

Sketch of the proof of the Callan-Symanzik equations. We need three
other vertex functions (see [6]): A2r(n)(p, p, A ; «), A3r(n)(p, p, A; k), and
Air(n)(p, p, A;k). A2r(n) and A3r(n) are the n-point vertex functions with the
~2.(Bq>)2 and <p4 insertions respectively. AiF(n) is essentially the same thing as
Aor(n) but the renormalization prescription is different. Graphs corresponding to
it are oversubtracted, i.e. to each (sub)graph 7 containing the vertex \cp2 we assign
dimension <5(7) 4-n(7) (instead of d(7) 2-n(7)). Similarly we define
A2 A0r(n), A3 Aor(n), and Ax Aor(n). The following relations hold:

(i) — r(n)(p, p, A ; k) -Air(">(p, P, A ; k),
dp

-^ A0TM(p, p, A ; k) -Ai A0TM(p, p, A ; k),
dp

(ii) ~ r(">(p. P, A ; k) -A3r(")(p, p, A ; k),

~ Aorw(p, p, A ; k) -A3 Aor(")(p, p, A ; k),
Ba

(iii) nTM(p, p, A; K) -[2p2 Ai + 2A2 + 4A A3]rw(p, p, A; k),

(n - 2) Aor(n)(p, p, A ; k) -[2p2 A, + 2A2 + 4A A3] A0TM(p, p, A ; k),

(iv) ArTM(p, p, A ; k) [Ai + r(p, A ; k) A2 + s(p, A ; k) A3]TM(p, p, A ; k),

A^r(n)(p, p, A; k) [Ai + r(p, A; k) A2 + s(p, A; k) A3] A0TM(p, p, A; k)
+ t(p,A;K)Aor(")(p,p,A;K).

Now, (III. 10) and (III. 11) follow from (i)-(iv) by algebraic operations on formal
power series.
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Properties (i)-(iii) follow by inspection of graphs. The proof of (iv) is just the
standard proof of Zimmermann's identities, and can be found in many places, see
e.g. [3], [7], [10].
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