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On Callan’s proof of the BPHZ theorem

Andrze] Lesniewski, Mathematik, ETH-Zentrum, CH-8092 Ziirich
(Switzerland) ‘

(10. VI. 1983)

Abstract. We give an elementary proof of the BPHZ theorem in the case of the Euclidean Ag*
theory. The method of proof is based on an idea of Callan [3]. It relies on a detailed analysis of the
skeleton structure of graphs and estimates based on the Callan-Symanzik equations.

I. Introduction

The main result of renormalization theory, the BPHZ theorem [1], [5], [9]
states that the renormalized Green’s functions are free of ultraviolet divergences.
There exist quite a lot of more or less sophisticated proofs of this theorem. We
want to add to this collection another one, which seems to be particularly
pedagogical. Tt applies to any massive renormalizable theory, although for the
sake of simplicity we restrict ourselves to the A¢* theory with non-zero mass u>.
Our guide is a beautiful idea of Callan [3]. He suggested that the existence of
renormalized Green’s functions should follow from the fact that they satisfy the
Callan-Symanzik equations.

There are some advantages of the present approach. It contains no com-
binatorial part, and the problem of overlapping divergences is circumvented
altogether. Moreover, we do not merely prove the existence of Green’s functions,
but simultaneously we give some bounds on the behavior of the Euclidean p-space
Green’s functions. Finally, we show that the Green’s functions satisfy the Callan—
Symanzik equations.

Our approach is purely Euclidean, To come back to the Minkowski space one
may use the results of [4].

The paper is organized as follows. In Section II we summarize in considerable
detail some standard definitions and fix the notations. In Section III we introduce
the regularized Callan-Symanzik equations. Section IV contains the formulation
of our main result. The proofs are carried out in Sections V and VI. The appendix
contains a sketch of the proof of the Callan-Symanzik equations.

I1. BPHZ renormalization [7], [9]

We assume that the reader has some familiarity with Zimmermann’s formula-
tion of renormalization theory. The aim of this section is to fix the notation, and
not to provide an introduction to the subject.
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(a) Green’s functions. We are concerned with the following three Green’s
functions: T™(p, i, A), AJT™(p, u, A) and AFT™(p, p, A), where p=(py, ..., D),
i—1 p; =0 are external momenta, w is the mass, and A is the coupling constant.
'™ is the (Fourier transform of the) m-point vertex function, i.e. the proper
amputated part of the full Green’s function. A,I'"™ is the n-point vertex function
with an 3¢ insertion at zero external momentum, and AZI'™ is the n-point vertex
function with two 3¢? insertions at zero external momenta. All these functions are
defined perturbatively via the (formal power series) Gell-Mann-Low expansion.
For example

i

T, u,\)= 2, T TP, w,
k=0 K

where I'tV(p, w), the kth order vertex function is a sum of the corresponding
renormalized Feynman amplitudes I'{(p, u) =Yg I'(P, n | G). In a similar fash-
ion one defines ATV (p, ) and AT™(p, ). Let us note that

I'®(p, —p, n, 1) = 0(19), (I1.1)
T(py, ..., pay i, A) =0, (I1.2)
AT (p, —p, w, A) = 0(1°), (I1.3)
A()F(4)(P1: s Das My A) = 0(/\2), (I1.4)
ATT®(p, —p, w, ) = 0(AY). (IL.5)

(b) Graphs. Let G be a (proper) graph corresponding to one of the above
listed vertex functions. By £(G) we denote the set of its (internal) lines, by V' (G)
the set of its vertices. The numbers of elements of these sets are denoted by L and
V respectively. To each o € £(G) we assign a momentum [, (internal momentum).
To each v; € V'(G) we assign a momentum ¢; (external momentum), which is the
sum of those of basic external momenta p,, ..., p,. which enter v, I’s and q’s
obey the momentum conservation law at each vertex: Y [ = g,, where Y’ means
summation over all ¢’s entering v;. I, has the structure I, = k, + q,, where the k,’s
are (non-uniquely) determined by the equations Y k, =0, and the q,’s are
(non-uniquely) determined by Y“q, =g, k, is a linear combination of linearly

independent vectors ki, ..., k, (loop momenta), the integration variables: k, =
k,(Kk). g, is a linear combination of q, . . ., qv : 4, = 4, (@) (and hence q, = q,(p)).

(c) Unrenormalized Feynman amplitudes. To a graph G we assign its unre-
normalized regularized Feynman amplitude, defined as the integral:

0(15— k>
J(p;K!G):(2w)4dek [1 %2:%)
oeZ(G) toT M

= j dk [] 60(2—x»IK®).q@) |G) (IL.6)

oceZ(G)

j dKIK®), qp) | G),

where dk = d*k, - - - d*k,,, K={k,}, c#), and k*> <, We assign to G its dimension
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d(G) defined as d(G)=4m —2L. Tt is easy to see that
d(G)=4—n-2t, (I1.7)

where t is the number of the 3¢? insertions.

(d) Subgraphs. A subgraph v of a graph G is determined by the set of its
vertices V' (y) < V(G), and the set L(y)<=£(G) of its lines containing all lines
joining elements of ¥'(+y). To lines and vertices of y we assign momenta [, q7, k2,
and qY in a similar manner as in case of G. We require [Y=1,. Then, clearly
a?=q(q,K), kY=k)(q,K), where the dependence is linear. qY is a sum of
external momenta pj entering v; (py is either one of the p’s or, if the line
o e £(G) is external to vy, p¥=1,). It turns out [7], [9], that there exist such
assignments of momenta that kY = k)(K). Generally, we say that an assignment of
momenta is admissible, if 1<y implies k. =k (K"), for o€ £(7). We assume
henceforth that our assignment of momenta is admissible. The meaning of the
dimension d(y) of v is clear. We say that G is a skeleton graph, if it contains no
proper subgraph y with d(y)=0. A graph G has a skeleton expansion, if it

contains pairwise disjoint proper subgraph vy, ..., vy, with d(y;)=0, i=1,...,s,
such that the reduced graph G = G/{y,, ..., v} (i.e. the graph obtained from G
by shrinking v, ..., v, to points) is a skeleton graph.

(e) Renormalized Feynman amplitudes. We define a renormalized Feynman
amplitude corresponding to (I1.6) by RI(p; « | G) =J,. dkR(K(k), q(p) | G), where
R(K(k),q(p) | G) is given by Zimmermann’s forest formula [7]:

RE®).qp) | G) =S5 2, ] (-1578)IK®), q@) | ). (IL8)
ueU ycu

Here U is the set of all G-forests (a G-forest=a collection of non-overlapping
proper subgraphs of G with non-negative dimensions). S, is a substitution
operator: S,:K'—>K'(K"), " —q"(q",K"), if rcvy. I(K,q|u) is equal to
Ik, q | G), but the momenta are labelled in a special way. Namely, if y € u is the
smallest element of u containing o € £(G), then [, = 1% =kY+qX(q"). If for some
o € £(G) there is no vy € u containing it, then we put I, =k, +q,(q). t2* is the
Taylor operator, i.e. the operator which expands a function F(q") (say) around
zero up to order d(y) with respect to those of ¥ which are independent (if N(vy)
is the number of g"’s, then N(y)—1 of them are independent). The ordering of
factors in (IL.8) is such that if 7<vy, then —t4™’S  stands left to —t&™S ; if
TN~y =0, then the order is arbitrary.

Let us conclude this subsection with some simple properties of renormalized
Feynman amplitudes.

(i) RJ(p; k | G) is independent of the choice of admissible assignment of
momenta.

(i) If d(G)=0, then R(K(k), q(p) | G) has at p=0 a zero of order d(G)+1.

(iii) If G has a skeleton expansion, then

RE®X), qp) | G) = SoIKC®), ¢° () | &) [| RE®W), @) [v) (L)

i=1
with natural definitions of K® and q°. We choose the integration variables



Vol. 56, 1983 On Callan’s proof of the BPHZ theorem 1161

(ky, ..., k) =(kl,.... ki, kiyy. oo kiay .o s kers-.., k) in such a way that
i,..., ki are integration variables for I(K“(k),q“(p)| G), and ki1, . .., ki, are
integration variables for R(K"(k), " (p*) | v)), i=1,...,s.
All this is well known and follows directly from (IL.8).

IIl. Callan-Symanzik equations

Denote by I'™(p, w, A; ), AJ™(p, w, A; k), and AT (p, w, A; k) the sums
of the corresponding renormalized regularized Feynman amplitudes. Define

d
r(u, A; k)= — [F AT (p, —p, , A; K)] , (I11.1)
p p=0
s, A &) = A L(0, 1, A5 &), (I11.2)
t(, A5 k) = AT2(0, 0, p, A; k). (I11.3)

Observe that r(A)=0(A?%), s(A)=0(A>), t(A)=0(A"). Introduce also the following
functions

alw, A ) ={1—ur(u, A; )}, (T11.4)
B, A5 1) = w(2Ar(p, A k)= s(p, As k)1 —p2r(p, A; €))7, (IIL5)
Y, A k) =307 (, A k{1 — wr(p, A; )} (I11.6)

A scaling argument shows that «, B, v, and w?t are independent of u. Moreover,
we have (cf. (I11.1)—(IT1.3) and (IL.3)—(I1.5))

a(X)=0(1"), (11L.7)
B(A)=0(A?), (I11.8)
y(A) =0(A%). (I11.9)

Proposition. The regularized Green’s functions obey the following (Callan—
Symanzik [2], [8]) equations:

___,__.._m{,_ . e . a
{u o B(A,K)a/\ ny(A; <) (TP, w, As k)

=—p2a(; k) AT ™ (P, 1, A; k), (I1.10)
0 0
{2 L5800 10 - (230 10— wPalhs 0t A3 10}
o aA
X AT ™(p, w, A; k) =—pa(X; k) AT (P, p, A; k). (IIL11)
We sketch the proof of (II1.10) and (IT1.11) in the appendix.

Remark. The choice of the regularization is crucial for proving the reg-
ularized Callan-Symanzik equations. In particular, the Green’s functions with the
Pauli-Villars regularization used originally by Callan [3] do not satisfy the
regularized Callan-Symanzik equations.
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IV. Main result

Theorem. Let o >0. The Green’s functions T™(p, u, A), AJT™(p, u, A), and
AST™(p, w, A) (defined as the k — = limits of the corresponding regularized objects)
exist and satisfy the Callan—-Symanzik equations (equations (II1.10), (III.11) with
Kk — ). Moreover

(a) For any k=2 and arbitrary 0 <e <1 there is a constant C, = C,(g, k) >0,
such that for all p

TP, W) =Cy p/ul’,
where |p|>=pi+- - -+pi.

(b) For any k=1 and arbitrary 0 <ge <1 there is a constant C, = C,(g, k) >0,
such that for all p

1A (p, —p, W) =G |p/ul®.

(¢c) For any k=2 and arbitrary 0<e <1 there is a constant C; = Cs(g, k) >0,
such that for all p

I (p, —p, w)| = Csp? [p/u|®.

(d) Let F(p, ) denotes either T (p, u) with n=6, or AT (p, n) with n= 4,
or AJTY(p, w) with n=2. For arbitrary 0<g<1 there is a constant C,=
Cu(g, k)>0, such that for all p

|F(p, w)| = Cap* " (1 +p/ul®).
The constants C,, i=1,...,4 are independent of p.

Remark. The F(p, w) of part (d) are just the Green’s functions with negative
dimensions.

The proof of the theorem is inductive Let us make the following

Inductive assumption. Let r=1.
(a) For any 2=k =r+1 the limits T’(p, u) =lim, _.. T{’(p, w; k) exist. For
arbitrary 0<<e <1 there is a constant C, = C,(g, k) >0, such that for all p

TP, ks I=C |p/uls, (IV.1)

uniformly in w and «.

(b) For any 1=k=r the limits AJJP(p, —p, w) =lim, .. AT (p, —p, w; k)
exist. For arbitrary 0 <<e <1 there is a constant C, = C,(g, k) >0, such that for
all p

AT (p, —p, w3 =Gy lp/pls, (IV.2)

uniformly in u and «.
(c) For any 2=k =r the limits '®(p, —p, u)=lim,_.. [®(p, —p, u; k) exist.
For arbitrary 0<g <1 there is a constant C; = C5(g, k) >0, such that for all p

IT&(p, —p, ws = Cap? p/pl, (IV.3)
uniformly in w and k.

Remark. It follows from the second part of the induction hypothesis that
r.(w) exists for all k=r.
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V. Proof of the theorem

Lemma 1. Let G be a skeleton graph. Define

1,0l G)=@m [ax [

e (A
If 1-1/2L<m =1, then J, exists and
J.(p| G)= Cpd@+2ra-m | (V.1)
for all p and w>0, with C>0 independent of p and pu.

Proof. The lemma follows directly from an elementary application of the
method of Hepp sectors [5]. Let us describe this standard argument. By scaling
(I, = nl,) we extract the factor p®“*2-@™_ Using the a-representation

[+.2]

(P+1)™ ZI‘—(l ) I doaa™ te «@*FD
n

0

>

changing the order of k and « integrations (this is legitimate, since the integrand is
positive) and performing the k integration explicitly, we find [1]:

L] G)=@m)"T(n) "pd@2L0K (p/u| G),
where

K,(p| G)=J. R J da [] a2 'D@exp {_A(a, P)_ Y a,,}.
0 0 o E(G) D() T B(G)
Here A(a, p) and D(«) are the Symanzik polynomials [1]. Recall, that A(e, p),
D{(e)= 0 in the domain &, Z0 (o€ £(G)), and A(a, 0)=0. Hence K, (p/p | G)
may be estimated by K, (0| G). To prove the lemma it is thus sufficient to show
the existence of K, (0| G). To this end, represent K, (0| G) as a sum of integrals
over the sectors {et| o,y =" -=a, ), where 7 runs through the permutations
of {1,...,L} (we choose some ordering of the elements of £(G)). Consider the
sector {a|a;=---=a;} (other sectors are dealt with in a similar manner).

Substituting o =, -+ t;, [ =1, ..., L, we find that the integral over our sector
becomes -

1 1 poo L
J’ T .L L dtl ey dthl dtL l_[ ti(n-—l)*%d(Gl)fl[l+P(t):|—26—tL[1+Q(t)]’
0

=1

where P(t), Q(t)=0 (in the domain of integration) are some polynomials. G; is
the subgraph of G formed by the lines o, ..., . By our assumptions [(n—1)—
2d(G)>—-3(1+d(G)))=0, so the integral is convergent. Q.E.D.

Lemma 2. If a graph G corresponds to T™ with n =6, or A,L™ with n=4, or

to AJT™, with n=2, then G is either a skeleton graph, or has a skeleton expansion
(in terms of T'®, T'® and A,JT?).

Proof. Otherwise there are two overlapping maximal proper subgraphs v, v»
with d(vy,), d(y,)=0. Since vy, and vy, are proper, v, Ny, has at least four external
legs. Hence, by (IL.7) d(y,Nv,)=0. This, however, implies that d(y,U~vy,) =
d(y1)+ d(vy,) —d(y; N y,) =0 in contradiction with maximality of the ¥’s. Q.E.D.
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Assume now that the statements of the inductive hypothesis hold true for all
r=1.

Proof of the theorem. The theorem is obviously true for I'®, A,I'® and I''®. By
Lemma 2 all the other Green’s functions have skeleton expansions. Let F(p, w) be
such a function (it corresponds to the ['th, say, order of the perturbation
expansion). Using (iii) of Section II (e), and factorizing the integrals (which is
legitimate for k?<®), we can write

Fp,w =3 [ a1&°0),a°w)| G)

G Yk

[ Fema, p), s ).
i=1
Here ) s denotes the summation over all skeleton graph correspondlng to
F(p, u; k). FS denotes one of the functions T, T2 or A2 with k =1 K is the
set of the loop momenta of G. Let FC(p, u; ) be any summand in the above
sum. Choose 0<<e <1/L (L is now the number of lines of a graph corresponding
to F(p, u; k). Using (IV.1)-(IV.3) we bound the integrand of F°(p, u; «) by

—-Le ____1_} P ) 2\e/2,, —€
Cu {GGI;!GJ Br ) on n (pi+ w7 ns,
where we have wused the fact that p?|p/ul®=@E*+ud)'** and
(pi+- - +p)uc =T, (P2 +ud*?u"=. G, is the graph obtained from G by
cancelling vertices which come from the I'® insertions, L, is the number of its
lines. Clearly G, is a skeleton graph. [[/ is the product over those external
momenta of F(p, w; k) which are also external momenta of some of F G(_pl,pt K),
i=1,...,s The last expression is integrable by Lemma 1. Hence FC(p, u) =
limk_,oc> F S(p, w; ) exists. This implies the existence of F(p, w). Using Lemma 1
(n =1-—¢/2) we obtain

IFG(p, w; K)lé C4M4—n_2t H’ (p12+ ‘LZ)S/ZM“E

= C4'u'4fn~2t(lp\2 A MZ)n's/2u~n’s (V.Z)

where n’ is the number of factors in [[/, and C, does not depend on . This
implies the bound on F(p, n). Q.E.D.

VL. Fromr to r+1

We come now to the proof of the inductive step.
1. Let us start with I'®. Using (I1.2), (IL.4), and (II1.7)~(I11.9) we may write
(II1.10) in the (r+2)th order as

r

d
FLZE)_Mzrfi?z(Pa “‘; K) = _‘u‘?. Z O, _ !(K) A0F1(+2(p3 [ L7 K)

_Z[(l+1)6r+2 () =4y, 1 (KO, s k). (VL1)
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We claim that all the quantities on the RHS of this equation have limits as k — .
Indeed, by the induction hypothesis I'?,(p, w), i =0, ..., r exist. By Lemma 1
graphs corresponding to A,JT4,, i=0,...,r have skeleton expansions. Hence,
using the argument of Section V one proves that Al (L (p, w), i =r exist and
AT (P, w)|=Cu 2 |p/n|® for |p/w|=1. By the definitions and the inductive
hypothesis oy, By, and y,, k =1, ..., r exist. The only potentially dangerous terms
are B..1, Y.+1, and B,.,. However, looking at the definitions we see that f3,,,
involves only s, (k=r+1), which exist (because they have skeleton expansions),
and r, (k =r), which exist by the induction hypothesis. vy,,; and B, ,, involve also
S,+» (which has a skeleton expansion), and ¥,.,;, whose existence we shall state

below. From the induction hypothesis and what we have said above it follows that

=Cs lp/ul, (V1.2)

)
lua—;ﬂ‘?z(p, w;K)

for |p/u|=1. However, it follows from (ii) Section II (e) that T'‘?,(p, w; k) has a
simple zero at p=0. Hence, (VL.2) holds for all p. Denoting the RHS of (VL.1) by
%, -, 1; k), using again (ii) Section II (e) and a scaling argument, we find

T, w; ) =T/, 1; x/w)

= d
_ j dE— T(p/E, 1; k/p)

w  0€
P . .
“ZJ.M g g:r+2(p’ ga K)-

It follows from (VI.2) that

= d 1
Ftate, 3 = Cslpl | 1= C il

§1+s £
[T
for all k. Hence, T, (p, 1) exists and (IV.1) holds.

2. Let us consider A,I'?,;. Using (I1.3), (IL.5), and (II1.3) we find that (IT1.11)
in the (r+ 1)-th order takes the form:
_9_
o’

w>=— AT (p, —p, 1 k)

= "_IJ"Z Z ar—i(K)[AgFi(gr)l(pa - D, K K)—A%Fl(-z’-)l (0: 0: s K)]

i=0
- 'Zo [iByr1-i(k) — A, (k)] Aori(—z&(p, D> s K),

where A(A) = w?a(A)t(A). The only term on the RHS of the above equation,
which is not obviously convergent is 3,.,. However, in the first part of the proof
we have shown that its existence follows from the induction hypothesis. As in the
case of ', we find that

3
o AT (p, —p, ;)| =C lp/e 7,

and hence, AT, (p, —p, ) exists and (IV.2) holds.
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3. Finally, let us discuss I''?;. In this case (II1.10) takes the form

r+1

B
n? P T2(p,—p,w; k) =—p2 Y, api(K) AP (p,—p, 13 k)
1=0

= 2 (iBri2-il) = 29,1k (0, —p, 3 ).
i=0

~ Using the second part of the proof (to conclude the existence of AT P(p, —p, 1),
i =r+1), the induction hypothesis, and the definitions of «, B8, and y we find that
everything converges. Moreover,

3
u«aszi’l(p, —p, 13 k)| = Cp? |p/ul (VL3)

for |p/w|=1. But I'®,(p, — p, u; k) has a zero of the third order at p =0. Hence,
(VI.3) holds for all p’s and we may repeat the argument of the first part of the
proof. This completes our proof.

Appendix

Sketch of the proof of the Callan—Symanzik equations. We need three
other vertex functions (see [6]): A T™(p, u, A; k), AsT™(p, u, A; k), and
AT®(p, w, A; k). A,T™ and A;T™ are the n-point vertex functions with the
—3(3¢)* and ¢* insertions respectively. A;T'™ is essentially the same thing as
AoT'™ but the renormalization prescription is different. Graphs corresponding to
it are oversubtracted, i.e. to each (sub)graph y containing the vertex 3¢~ we assign
dimension 8(y)=4—n(y) (instead of d(y)=2—n(y)). Similarly we define
Ay AT, Ay AJT™, and A; AJT™. The following relations hold:

N
(i) FF( P, w, A; k) =—AT™(p, u, A; k),

0
5—“-’_2 AOF{")(p> L, )\9 K) = "_Al Aor(n)(l)s L, A: K)5

o O
(ii) ™ T(p, w, A; k) =—AT™(p, u, A; k),

0
éx AOF(M(I’: L, /\-9 K) = _A3 A()F(n)(p’ L, As K)a

(ii)) nT™(p, w, A; k) =—[2u? A +2A,+41 A TT™(p, w, A; &),
(n=2) AT ™ (p, 1, A5 &) = —[2u> A+ 28, + 4 A;] AT ™ (P, , A; 1),
(iv) AT (P, w, A5 k) =[A;+r(i, A 1) A+ 5(i, A &) A IT™(p, p, A k),
ATT™(p, w, A5 &) =[A1+r(p, s k) Ag+s(p, X5 k) As] AT ™ (P, e, A &)
+t(, As k) AT ™(p, 1, A5 k).

Now, (IT1.10) and (II1.11) follow from (i)—(iv) by algebraic operations on formal
power series.
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Properties (i)—(iii) follow by inspection of graphs. The proof of (iv) is just the
standard proof of Zimmermann’s identities, and can be found in many places, see
e.g. [3], [7], [10].
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