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On finite volume corrections to the equation
of state of a free Bose gas

By M. van den Berg, Dublin Institute for Advanced Studies,
10 Burlington Road, Dublin 4, Ireland

(6. VI. 1983; rev. 16. VII. 1983)

Abstract. We calculate and discuss the asymptotic behaviour of the finite volume correction term
to the equation of state of a free Bose gas in the bulk limit.

1. Introduction

In studying a phase-transition one is faced with an apparent dilemma: the
phase-transition manifests itself in a mathematically clean fashion as a singularity
in a thermodynamic function only in the thermodynamic limit, in which the
volume as well as the number of particles is infinite. On the other hand, any
practical detection of a phase-transition makes use of a sample consisting of a
finite number of molecules in a finite volume. The standard reply to such an
objection to the use of the thermodynamic limit is that this procedure yields the
first term in an asymptotic expansion of the thermodynamic functions. There is no
doubt that this is true in general; nevertheless it might prove troublesome to
demonstrate this in any particular case. The calculation of the correction term
would become important in a critical examination of experimental data near a
critical point.

For example: is the observed singularity in the specific heat (the so called
A-singularity) [1-3] in liquid helium due to a weak external gravitation field?

In this paper we will examine the finite volume corrections to the equation of
state for a free Bose gas. So we will neglect interaction between the particles.
However, we have shown elsewhere [4] that the behaviour of the free gas
pressure controls the phase-transition in the mean-field model. We expect this
also to be true in the interacting gas.

In studying the finite volume correction to the equation of state for a free
Bose gas previous workers [5, 6] have studied the grand canonical pressure at
fixed chemical potential; this approach runs into difficulties near the critical
density. It is necessary to study it at fixed mean density. We now formulate the
problem and state the results.

Consider a free boson gas in a d-dimensional convex region B in euclidean
space with volume V(B) and surface area S(B). For the single particle hamilto-
nian H(B) we take —A/2 with Dirichlet boundary conditions on the boundary dB
of B. The equation of state is given in the implicit form: The grand canonical
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pressure pg(p) is given by

1 (z (B p)"
V(B) nzx

where z(B' p) is the unique positive solution of

pe(p) = trace (e" /%), (1)

p= Z (z(B; p))" trace (e™ *?); (2)

V(B)

p is the mean particle density in the grand canonical ensemble. In the thermo-
dynamic limit in which we keep p fixed and in which we take for B a sequence B,
(By=B,< B; - - +) such that S(B,)/V(B,) — 0 one can prove [9] that

v ()"

lim ps,(0)=P(p)= L —o S5 3
where
1L p<p.
to={; P~ @
and ¢ is the unique solution in [0, 1] of
p= T . ©

o1 (2mn)¥?

We will only consider cases where the critical density p, is finite (d =3, 4, ...):

pcz'}:—l—— d=3,4,.... (6)

n=1 (2,”,")(1/2 ’

Clearly the right hand side of (3) is the first term of an asymptotic expansion of
ps,(p). In order to find the second term we have to solve equation (2) for z(By; p)
and substitute the value into (1). In previous papers [9-11] we have shown that
there exist different subsequences B; which lead to different asymptotic behaviour
of z(B;;p) (for p=p.). That is the reason that the condensate has different
structures for different subsequences (that was overlooked by previous workers
[7, 8]). We pick out one particular subsequence. Let B, be the dilation of a convex
region B, with unit volume:

Bl={xeRd:—?eB1}, (7)
so that in particular

Si=S(B) =1"""S(By), (8)

Vi=V(B)=1", 9)

EL =E.(B) = l—zEk(B1)7 (10)

where E (B,)<E,(B,)=<E,(B,)=- - - are the eigenvalues of —A/2 with Dirichlet
boundary conditions on dB,. We will also assume that the curvature at each point
of B, is bounded from above by 1/R; (R,>0). It is convenient to introduce a
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scaled fugacity:

4(p) = eﬁE‘[Z(Bz; p),

so that (1) and (2) can be rewritten as follows:

p(p) =pg(p)=

T7d
lnl k=1

and
1 ¢ -
=77 L @e)" X exp[-n(EL—EY)],
n=1 k=1
Our main result is contained in the following

Theorem 1. For | —

Z (C’(" L Y. exp[-n(EL—EY],

1153

(11)

(12)

(13)

p<p., (14)

p=p., (15)

Pt(ﬁ)’“
i T @y - neor
$.(2 12 n=1 < —(d+1)/2
p(o)+ 22T | 2 - T o) @y |,
< L @) a2
sl
p(p) —ﬂ- Z (2 n)(d+1)/2 s
and

Theorem 2. The occupation density of the ground state p,(1) is asymptotically

given by (Il — )

(1 )
° 1-£p)’
Silog
l. &(p) 4 4ol

T ,
I 1-¢4(p) j} Z ()2

kp ~ Po>

p(D)=

(16)
d=3 (17)
d=4 (18)
d=3. (19)

It is clear that Theorem 2 contains the asymptotic behaviour of {;(p). The
asymptotic behaviour of {(p) for p > p. was proved in [12] in the case where B, is
a star-shaped region with unit volume. Before we prove these theorems we would
like to mention that one can extract from [9] a bound on pg(p) which holds for all
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possible convex regions B:

S(B) V(B)
cs(p) VB 5B (20)
lps(p)—p(p)|< S(B)
ci(p) V(B)’ (21)

for positive functions c5(p), c4(p) . .. (which are bounded for finite p).

2. The asymptotic behaviour of the ground state density
and the pressure

In order to prove the Theorems 1 and 2 we need some sharp estimates on

Z(t)=trace (e'2?) = ) e FE, t>0. (22)

k=1

These will be given in the following lemmas.

Lemma 1. For any region B with a regular boundary

__V(B)
Z(t) < 2w’ t>0. (23)

For the proof we refer to [13].

Lemma 2. For convex regions B

V(B) e?? - S(B)

= t>>0. 24
(2111)‘”2 2. (27Tt)(d_1)/2 > ( )

|Z(t)—

For the proof we refer to [14] or [15].

Lemma 3. For convex regions B with a boundary 8B such that at each point of
dB the curvature is bounded from above by 1/R(B) (R(B)>0) one has

v®B) _ sm)
(27Tt)d/2 4- (zﬂ,t)(d-—l)m

_ t-S(B) 3
”b-@mW%Rwﬁw Dbg@+

Lemma 3 was proved in [15].

‘Z(t)—

2R?*(B)

)+ w‘/z-d(d3’2+§)}. (25)

Lemma 4. For B, convex, R(B,)>0 and B, the dilation qf B, we have

(1<)
1 :
[ & o ~>r+o(7) o
1§ s 4
[} S| © (1—ddys2 log? |
pc—4—l Z] (27n) +0 l—2 (27)

Proof. Let [I*] be the greatest integer equal or less than [*. By Lemma 3, (6),
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(8), (9) and (10) we get

[12] oo

LA Y Y e
k=1

n=1k=1
> @myv-y >
2 A — ==
T O N T
58 21°R?
5ol )
n 1+log |1+
oy IRy g n
v
S < log? [ 26)
0
0. —4—; Z} (211‘}1)(1”‘”/2-—0( lgz ), d=4.
We obtain an upperbound by Lemmas 1, 3 and (6), (8), (9) and (10):
s (eF—1)" <— e "Ex 4 —_—
1 k=1 n=1k=1 n=[1?]+1 (2W")d/2
© v S 21°R}
<p, —S— Z (2an) P2+ 1—-121121 nl"’m(l +log (1+ - 1))
1
" log? [ 3
0
pe — Z (27n) P2 O( gz ), d=4.
41 l
Proof of Theorem 2. For p=p, we use inequality (12) of [9]:
e Fi<f(p)<l, p=p.. (30)

Thus
17 Y, G B —4(o) -1 T (B -1
k=2 k=1

< l—d (eE; _ 1)—1 + l~d Z {(eElg—E} _ 1)-1 _ (eE,L _ 1)-1}
k=2

<THED T+ ), eBe®—1)(e™ —e®) 7 - (B 1)
k=2
eEvi—l = eFi(eFi—-1)

eBn— e k=2 (eE'l‘”l)z

-‘g_lidﬂLz(E})_] +1- —d (e _1)(6 ) 1) i —nEl2 | Z e—nEt/Z
=1 k=

(El E

<[™ED T+ sy

E}-E; c
—d+2r1h—1 EL/[2 1 2 1— dl2 —nEl/(21?)
=1 (El) Tem = El"'“El 12 da/2 z "
2 =

El . (E1)1/2 1
BN 14 By, B2 B 1
( 1) (< Eé_E} l 2

=E3 E7 1 1212
eEYl Ei— El 12 log [ = e El@l ))’ d=4.
31—

Q

=3

l—d+2(ED_1“‘ (31)
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We have used the inequality e* — 1 <xe* and Lemma 1. The combination of (31),

Lemma 4 and (13) proves (17), (18) and (19) of Theorem 2. Line (16) follows

simply from the convergence of {(p) — {(p) (see [9] or [12] for the proof).
Without proof we state a result (sharper than (16)) for p <p,:

m)'? (& e S .
6(0)~ o)+ = —( L @y - n2) - ( T oy - n )
n=1
(32)
We see that there are two essential features in the proof of Theorem 2: the scaling
of the eigenvalues (relation (10)) and the non-degeneracy of the ground state.

From this it follows already that the occupation density of the second level p(2)
becomes small:

_l &(p) Sy 1
W= G ) <TE D

This is of course not true for general subsequences B; (see [9]).

=0(* %), (33)

Proof of Theorem 1. We start with an estimate:

1 o = ,
‘pl(p)__d Z (Q(P)) Z ¢ —EL

k=1

1 ¢ l —n(E}—E! —nE!
<l—d‘ ;1 Zl (C (P)) n( )(1 e )

/

E—d S 3 @eyenmen<Eie (34)

n=1k=1 12
Consider p=p.: We use (30) and Lemma 1 to obtain:
1 ¢ @) v _.&
IR
k=1
1 E1 & - 1
= e —nE} + B —— 35
I n§“:1 h kzz:l ¢ n=[1?1+1 1 ° (277")‘1/2 ’ (39)
and

_1_ < (Cl(p))n < ﬁnE!
ld nzl kZI

_1_

n T

[L2] oo E
T

RE1Feme

Furthermore we obtain (as in Lemma 4):

— oo

Z —nE!

152
Y

27n) "2, (36)

1 “22:31 < 1 .
~ e — 3 FIHZ . B
Lk L Z( ™ 1

(37)

The combination of (34)—(37) proves Theorem 1 for p = p.. One proves Theorem
1 for p<p, using (32), (34) and the Lemmas 2 and 3.
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Estimate (34) illustrates that Theorem 1 states an asymptotic expansion of
pi(p) for large | at fixed mean density p. Hence, for [ fixed one can always find a
large mean density p, for which the expansion is a bad approximation to p;(p).
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