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A ‘pointwise’ kinetic energy estimate and
applications to Schrodinger theory

By Manfred Requardt, Institut fiir Theoretische Physik,
Universitat Gottingen, D-34 Gottingen

(28. 1. 1983; rev. 18. VIIL. 1983)

Abstract. In this paper we provide a couple of estimates on eigenfunctions, eigenvalues,
expectation values and the number of bound states in Schrodinger theory. Our main tool will be an
almost ‘pointwise’ kinetic energy estimate which we prove to hold in all dimensions n=3.

Introduction

In this paper we want to provide a couple of estimates on eigenvalues,
eigenfunctions and the number of bound states of Schrodinger operators. Since
this field has been widely and intensely studied in the last decade the mathemati-
cal methods have become rather advanced and complex. A relatively complete list
of references can be found e.g. in the books of M. Reed and B. Simon (in
particular [4], the review article in [5], for more special questions see also [6]) and
the textbooks of W. Thirring ([7]).

A little bit in contrast to this we want to start in the following chapter from
an energy estimate which will be derived by applying only rather elementary
mathematics, more explicitly, we shall give an almost ‘pointwise’ lower bound of
the kinetic energy by the wave function itself, which, despite of being rather
natural, we have not found in the literature on partial differential equations.

This estimate turns out to be, owing to its ‘naturalness’, at the core of a
couple of only loosely connected subjects in Schrdodinger theory, which allows us
to provide a unified approach to a class of problems which have been treated up
to now by employing rather diverse methods. In particular, the approach does
work in all dimensions n =3, which is not merely academical having e.g. N-body
Hamiltonians in mind. Furthermore, the momentum space analogue of the
estimate yields bounds of the expectation of functions of the momentum operator
resp. Laplacian by (Q3).

In the remaining sections of the paper we shall apply the results of Chapter 2
to several topics of Schrodinger theory. We shall e.g. treat selfadjointness
questions and give lower bounds for Hamiltonians and eigenvalues in all dimen-
sions n=3 for various classes of potentials (in addition to the ‘usual’ atomic
potentials we discuss also potentials with V_=0 resp. V(r) — « for r — ). The
method allows furthermore to give simplified proofs for a couple of classical
results of which we mention e.g. the one of Jost and Pais which we slightly extend
to the case E=0.
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Along these lines one can also extend some of the classical estimates
concerning the number of bound states n; and the maximal angular momentum of
eigenstates; i.e. we can show (n =3):

n(V)y=»(1-1l(1+1)/2) - J. rV_dr if Z:=suprV_(r) <,

which is, taken the whole range of | values, stronger than e.g. the Bargmann
bound since it approaches zero quadratically with [. These and related topics as
well as an extension to N-body Hamiltonians will be discussed in more detail
elsewhere.

2. ‘Pointwise’ lower bounds for (V¢ | Vi) and (r - | 1 - ¢)

In this section we shall glve an a priori estimate of the kinetic energy
VY Vg drx by |@|? itself, which is in some respect more sensitive than the usual
lower bounds in terms of certain integrals over ||>. In the other direction it
provides an estimate of the magnitude of the wavefunction by the kinetic energy.
Furthermore, the result does apply to all dimensions n = 3; a special version holds
also for n =1. By performing the analogous manipulations in momentum space,
we shall derive an a priori inequality in which the expectation value of r* bounds
the expectation values of a large class of functions of the momentum.

Theorem 1. With s in the domain of definition D_,y of —iV as an operator on
L*[R") we have:

(@) S VUV A x =(n—2)r" 2 - m,(r) for & element of ¥ and more
generally

(i) J Vg Vipd"x =ess. supr, (n—2)r" 2 - m,(r) with my(r):={|y(r, Q> dQ,
d() the Lebesgue measure on the unit sphere in n dimensions.

Remarks. There do exist a couple of related results in the literature concern-
ing boundary value problems of part. diff. eq., running e.g. under the name
‘restricting to submanifolds’ (comp. [1] Chapter IV.9 or [8] Chapter 1.5), and by
which the L?-norm of functions on the boundary aQ can be dominated by the
Sobolev-norm W) in the interior ). However, at least as far as we can see, this
would yield only a term ™! in contrast to r" 2 in our results which is too weak in
this context. Furthermore the Wj-norm contains a nasty non-derivative term
which cannot be eliminated.

Proof. For all n, &, the space of functions which decrease rapidly together
with their derivatives is a domain of essential selfadjointness for —iV (with D_;y
defined by [ |k|?|§[? (k) d"k <, s the Fourier transformation of ). So we start
with a Yy F(R").

Choosing instead of x new coordinates r:=|x|, { the coordinates on the
unit sphere, we have for every x:

Vapl* (x) =Vl + [Vplal(x) = Vil (x) (1)
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where the indices r, ) denote the projections of Vi on the directions which span
the local coordinate frame. Hence we get:

jgw,gz d™x zjgw!? d"x = ||opl2 dQr ' dr (2)

For () fixed we have:

2 2

lp(r, I =

J (', Q) dr'| = J Ay, QD (12 L gy
, r @)

SI |2 r Y j P dpt — (g —2) " j 1,07 r g

r

and

j Vil? dnx = jdﬂj 0, Y dr' = (n - 2)r -jdﬂ TCA) Y
x|>r r

from which also [ [V/|* d"x =supr., (n —2)r" 2 - m,(r) follows.
To derive this last result for all e D_,v we need the following simple
lemma:

Lemma 1. With e L?, 5. — o in the L?-norm, the following holds:
S :=ess. supr. j\({ﬂ,z (r, Q) dﬂs@n Sk

with s :=ess. supr., { | |* (r, Q) dQ.

Proof. By definition of the essential supremum there exists for all £ >0 a set
0. =R with Lebesgue measure #0 st [|[¢* (r, Q) dQ>s—¢ for re0,. Let us
assume the statement were wrong, i.¢., that s >1im, s,. With £ : = 1/2(s — lim, s.) we
get:

0=tim (14w d"x =tim [ 4= ([ i, ) - ws.r O a0))
zlignL drr (- - ). (5)
The inequality la —bl=||al—|b|| for normed spaces yields:
1/2 1/2
(1w 00— w0, 0P ao=|( [l @F a0) || ([l 0P an)
and with { |(r, Q> dQ>T | (r, D> dQ+ £/2 for all k >k, re 0., which holds by

the above definition of e, we arrive at lim, § |y —ys|* d"x#0, that is, a contra-
diction. This implies that, for y e D_;v and ¢ — ¢, Vi — Vi in L2, . € F:

2

J IV|* d'x = 11;{11[]‘7%!2 d"x = liIEnJIVd;k!z d"x

zl_ikn—1 ess. supr. (n—2)r" 2 jl¢k(r, Q)> dQ=ess. supr. (n —2)r" >m,(r).
(6)
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The practical use of the result derived above lies mainly in the fact that a
knowledge about ™2 [ |y|* (r, Q) dQ gives direct access to bounds on expressions
containing the potential V. In particular, the rhs of (6), which is in general only
implicitly known, does not show up in the final expression of the results derived in
the following chapter.

Before starting with the applications of our, up to now, technical result we
want to give the momentum space analogue of Theorem 1 without providing the
details of the proof. We get: '

Theorem 2. (i) (n—2)ess.supr. |k|™ 2 my (k) <] Viah Vidh d"k = (s | r*¢)
with € D2,

(ii) For rotational symmetric F, that is in particular F(—4), (¢ |r*¢)=
Ce |(¢ | F(=iV)4)| holds with

cF:=<n_2>(j:|kl AFQkDId [k])  <oo )

being assumed and Y€ D,-N Dg_iv,.

Proof. The proof of (i) is analogous to the proof of Theorem 1. As to (ii) we
have with (i):

(! ECml= | 198 0Fw) ak)
<ess.supr. [kl - mg(kD) - | Ikl [EQKDI d Ik
=@ P9 (-2 [kl EGKD] d K ®)

Remarks. This is in some sense a generalization of the uncertainty principle
lemma to a large class of functions of momentum (which reads (Y| —Ay)>
1/4( | r2¢) from which the inverse statement follows at least heuristically, i.e.,
(W | ) >1/4(¢ | (=A)"4)).

B. Simon kindly informed us that by using Hardy’s inequality one can even

prove that r ' - p~2-r ! is bounded (comp. e.g. [9]).

3. Lower bounds on eigenvalues and selfadjointness questions
of Schrodinger operators

We split the potential V into V, — V_ with the obvious meaning for V.. For
many questions only V_ is of relevance. Furthermore in many cases the potential
becomes singular only in x =0, as e.g. in atomic physics. Another case of interest
is where the potential goes to infinity for |x| — . We want to apply our inequality
to these typical classes and compare it with the well-known uncertainty lemma
approach (see e.g. [1], [2]).

To demonstrate how our inequality can be applied we discuss a typical
problem of Schrodinger theory. With H,:=—A, Q(H,) the form domain of H,
which is identical with D(|—iV])=D(-iV) (comp. [10], Chapter VI1.2.6) we
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assume V to be defined on Q(H,) in the form sense. If we have |(¢| V{)|=
a(y | Hy)+b(y | ) with a <1 then we can define an operator H by means of
the so called (KLMN) theorem (comp. [1] p.167) with Q(H)= Q(H,) and
—b=(y| Hy)= (¢ | Hy)+ (¢ | V&) on Q(H,) (since H and H, define equivalent
graph norms on Q(H,)).

Theorem 3. Let V be rotational symmetric and defined on Q(H,) in the form
sense. Furthermore we assume rV(r)e L*(0, ¢) for some c=n—2=1 and that for
all §>0 sup,~5| V| (r) <x. Then we have:

(i) V is infinitesimally form bounded with resp. to H,.

(i) H is bounded from below by —sup,., _|V|(r), (i.e. e =n—2 below).

Proof. With € Q(H,;) we have

(@ | V)| = U (wa(r, )| dﬂ) - V(r)rm ! dr\
= J:IW (Nt my(r) dr+ r(- -2) dr (9)

=<ess.supr. r" - my(r) J r |V| (r) dr+sup | V]| (r) - ¢l (10)
r=r. ) r=r,

where, according to our assumption, there exists for every €>0 a r, s.t.

e r|V]dr<e With (| Hygr) =ess. supr., (n—2)r" >m,,(r) we get:

(W | Vi)l =e/n=2(¢ | How) +sup V| (1) - [¢?; this proves (i).

We have proved in addition that for e/n—2 =<1, (¢ | H{) =—sup,-.. | V| (r), hence
(it).

Remarks. The condition imposed on V is natural; the border-line case is
|VI~r2 in r=0, which is however not included. The relevant part of V will
usually be V_. We could have done the discussion with V_ instead of V and
afterwards forming a s.a. operator H via the e.g. Friedrichs extension, (modulo
certain domain questions).

While it is not intended here to give excellent lower bounds for the hamilto-
nian one should nevertheless remark that the lower bound of Theorem 3 is for the
interesting potentials considerably better than the one derived from the uncert.
princ. lemma; e.g. for potentials —r™* and n =3 our bound is (i) —(1/2—a)** % in
contrast to (if) —4**~*. For « =1 this yields (i) —1, (ii) —4, with the exact lower
bound —1/4 (H=—-A—r ). For a =7/4 the bounds become equal. In any case
the bounds are easy to calculate,

Corollary 1. For V(x) not rotationally symmetric Theorem 3 does also apply if
|V (r) is replaced by |V|(r):=supq|V]|(r, Q).

The above inequality can also be applied to Schrédinger operators in an

electromagnetic field (A, ®). This problem is discussed e.g. in [1]. The hamilto-
nian reads:

H=(p-AP+®=—-A-2iA -V—i(V- A)+ A2+ ®. (11)



Vol. 56, 1983 A ‘pointwise’ kinetic energy estimate 1137

Performing the analogous splitting of the various parts of H as in Theorem 3 we
can show that H is formbounded from below and that all terms of the interaction
part are infinites. formbounded with resp. to —A provided that A; can be split into
a part lying in L™ and a contribution with a singularity at the origin <r~" which
means roughly A; e L>+L>. (For example for the sing. part, with Ag,,=0 for
P>y,

(W] A -Vl A - (| A and (| A%¢)'?
= (Ir r- (sgp A") dr)m- (ess. supr. r" 7 - m, (r)'?

0
=(- )2 (| A" thatis (4] A - V)| =e'(¢] )

Another application is the following

Corollary 2. With (5r-|V|(r)dr resp. [5r-|V|(r)dr<n—2 H=—-A+V is
positive, i.e. (| Hy)>0. That is, for a large class of potentials this excludes bound
states (E =0 being included!).

Remarks. This is a classical result (for n =3!) derived by Jost and Pais ([3])
for eigenstates with E <0 by using, however, completely different methods as e.g.
convergence of the Born series; furthermore E =0 is automatically included in
our approach.

We learned from B. Simon that in higher dimensions one can exploit
dimensional relations (e.g. for n, n —2) between the various Beltrami operators in
R", R"2 to lift results like these from e.g. n=3 to n=>5, (as to the Beltrami
operator for general n see e.g. [8]), provided one has already the Bargmann
bound for n =3.

Proof. We have

\( | Vib)| <ess. supr. ¥ P m,, (r) -Ir |V dr

< (=2 | —Ag) - j r- |V dr (13)

and therefore (¢ | (H,+ V)¢)>(¢|—Adt) 1-(n—=2)"'fr-|V|dr} Since {-- -}>
0 an eigenvalue E =0 would in particular imply (¢, | —Aus,) =0, that is Vnpo—
almost everywhere which is impossible for normalizable ¢,.

A further useful estimate can be accomplished by observing that there is
nothing special about using |V| in the above calculations. In particular, for
potentials going to +% for r->w, especially positive potentials, we can use
another version to provide lower bounds.

Corollary 3. With F(r) an arbitrary positive function s.t. Cp:=(n-—
2) ' fr-F(r)dr<o and (| F) <o on Q(H,) we have:

(i) (¢ |—A)=CF" - (¢ | F(r)¢) and

(i) (¢ | Hp)=Ce' - (¢ | Fp)+ (¢ | Vi) =inf, o {Cr' - F)+ VL [Wl*  with
Q(H) = Q(Ho)-
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Proof. The proof is obvious.

Remarks. (i) For many potentials where the other methods do not lead to
sensible results (e.g. V_=0, V(0)=0 etc.) one can easily give lower bounds by
choosing an appropriate F(r) s.t. F(r) is large where V/(r) is small resp. zero, thus
making inf {Cz' - F(r)+ V(r)} as large as possible. A definite supremum is usually
attained because Cg' becomes smaller when F(r) grows.

(ii) To give a simple example where the exact lower bound is known take the
harmonic oscillator for n =3 (H :=—A+r?). The exact lower bound is 3. With e.g.
F(r):=sup {—ar*+b, 0}, where a, b >0, we get as a lower bound the value 2 for
optimized a, b.

In the last section of this chapter we want to give an application to estimating
all eigenvalues simultaneously. Sometimes one has the situation that the eigen-
values of the original hamiltonian —A+ V, can be computed while one is in-
terested in the eigenvalues of —A+ V,+AV,.

Corollary 4. Given a hamiltonian H, :=—A+V,+AV, and H® :=—eA+ V,,
0<e<1. We assume, for simplicity, that Q(H,) = Q(—A) = Q(H*’) for a certain
A-interval [0, Ay] and that H® is bounded below; then we have:

H =—(1—-e)A+V, for A=e(n—2)- {J r [_\_/_2I dr}l, A el0, Ay].

If HY®, H, have eigenvalues {E,(H,)}, {E.(H" )} below the inf. of the ess.
spectr., numbered from the bottom of the discrete spectrum, this implies E, (H,)=
E, (H"*) provided both H,, H"™® have at least n eigenvalues.

Proof. We have
(| —Ap)=(1—e) | —Ap)+ (| —AY)
=1l -ap e[ r Vil ar) lwivanl a9

hence

| ) =(1—e) - (] ~00) + @ | Vi)
Heo-2([rviiar) -2} iwl vaul

That is, we can eliminate AV, for sufficiently small A. The result for the
eigenvalues follows from the min.max. principle (comp. e.g. [4]).

Remark. A typical case in point is e.g. the Coulomb problem with an
additional perturbation.

4. Summary

We have given in this paper various applications of an a priori estimate of the
kinetic energy which holds in all dimensions n=3. While we have discussed
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relatively abstract topics of Schrodinger theory we want to emphasize that the
estimate can also be successfully applied to more concrete problems as e.g.
estimating the [-dependent number of bound-states n; in a central potential or the
spreading of eigenfunctions as a function of I. These topics as well as applications
to N-body hamiltonians shall be discussed elsewhere. As a last remark we want to
mention that kinetic energy estimates are also of relevance in the realm of non
linear part. diff. equations, hydrodynamics etc.
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