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Elephants are always drawn
smaller than live

Johathan Swift

Prolog

Er entgeht auf natürliche Weise dem gewöhnlichen Schicksal der meisten
"Gefeierten", nur gerade in einem kalendarisch markanten Jahr literarisch
bedacht zu werden: als Folge des rühmlichen Beschlusses der Schweizerischen
Naturforschenden Gesellschaft *) vom 6. September 1909 erschien seit 1911 bis
heute (im Durchschnitt) jährlich ein Band von Eulers Opera omnia 2), und noch
immer ist das Gesamtwerk dieses Geistesgiganten im Druck nicht vollständig
zugänglich. Das Burckhardt-Verzeichnis 3) listet mehr als 700 Abhandlungen und
Bücher über Leonhard Euler auf, die zeitlich im allgemeinen regellos verteilt seit
Eulers Tod ihre-meist bewundernden - Verfasser gefunden haben, und als
äusseres Zeichen der Anerkennung schliesslich widmete 1979 die Schweizerische
Nationalbank dem grössten Basler aus dem kleinsten Kanton die kleinste Banknote

mit der grössten Auflage. 4) Muss es da nicht als selbstverständlich
erscheinen, dass Volk und Regierung des Stadtstaates Basel Leonhard Euler
anlässlich der 200. Wiederkehr seines Todestages einen stattlichen Gedenkband

5) gestiftet haben?
Die sogenannten exakten Wissenschaften sind in den letzten Jahrzehnten

infolge ihres Missbrauchs hinsichtlich technologischer und oekologischer Anwendungen

stark in Misskredit geraten-und leider nicht nur zu unrecht. Dennoch
soll und darf uns dieser Umstand nicht daran hindern, im Rahmen des
geschichtlichen Kulturganzen und in der Ziellinie eines (immer noch nicht veralteten)
"wissenschaftlichen Humanismus" die Leistungen der wahrhaft bedeutendsten
Vertreter des Menschengeschlechts gebührend zu würdigen; Euler war nämlich
nicht nur der weitaus produktivste Mathematiker der Menschheitsgeschichte,
sondern auch einer der grössten Gelehrten aller Zeiten. Kosmopolit im wahrsten
Sinne des Wortes-er verlebte die ersten zwanzig Jahre in Basel, wirkte insgesamt

über dreissig Jahre in St. Petersburg (heute Leningrad UdSSR) und ein
ViertelJahrhundert in Berlin (damals Preussen) - gelangte er wie nur wenige

x) Cf. J. J. Burckhardt, Die Euler-Kommission der Schweizerischen Naturforschenden Gesellschaft -
ein Beitrag zur Editionsgeschichte, in: Leonhard Euler 1707-1783, Gedenkband des Kantons
Basel-Stadt, Birkhäuser Basel 1983, p. 501ff. (Dieser Gedenkband wird hier künftig als "EGB
83" zitiert und das darin enthaltene "Burckhardt-Verzeichnis" kurz mit "BV").

2) Cf. EGB 83 p. 508 f.; Leonhard Euler, Opera omnia, Verlagsprospekt Birkhäuser, Basel,
Boston, Stuttgart 1982.

3) Cf. EGB 83 p. 511-552.
4) Angesichts der ehrenvollen Berücksichtigung Eulers durch die Schweizerische Nationalbank ist

man gerne geneigt, die zwei etwas peinlichen astronomisch-physikalischen Fehler zu verzeihen,
die sich in die so sinnreich und prächtig gestaltete Zehnfranken-Banknote eingeschlichen haben:
die falsche Richtung des Kometenschweifs und die Darstellung von fünf (statt der zu Eulers Zeit
bekannten vier) Jupitermonden (von welchen erst noch zwei in derselben Bahn laufen!). -
Denjenigen, die sich mit dem noch dickeren Fehler auf der englischen "Newton-Einpfund-
Jubiläumsbanknote" (1977) trösten wollen, auf welcher die Sonne im geometrischen Zentrum
statt in einem Brennpunkt der Ellipse steht, sei auf Euripides verwiesen, wo es etwa heisst:

"Ein Tor, der nach des Nachbars Kinderstreichen
sich Trost schafft für das eig'ne schwache Tun;
der immer um sich späht und schaut und nun
sich seinen Wert bestimmt nach falschen Zielen".

5) Cf. Anm. 1.
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Gelehrte zu einer Popularität und Berühmtheit, wie sie etwa mit derjenigen von
Galilei, Newton oder Albert Einstein verglichen werden kann.

Der Rahmen des hier vorliegenden Versuchs einer Würdigung ist folgender-
massen abgesteckt:

Zur Entlastung der Darstellung von biographischen Daten wie auch zur
allgemeinen Uebersicht wird zunächst eine tabellierte Kurzvita gegeben. Ihr
folgen zwei kurze Abschnitte über Eulers Charakter und sein (äusseres) Werk, 6)

begleitet von einer chronologisch aufgebauten Liste der Hauptwerke Eulers, 7)

deren dort angegebene "Kurztitel" im vorliegenden Text als Kennzeichnung
verwendet werden. Das eigentliche Kernstück bilden die sieben
"wissenschaftlichen Kapitel" in Uebersichten.

1. Zu Leben und Werk

1.1. Kurzvita Leonhard Eulers

1707 am 15. April in Basel (Schweiz) als Sohn des reformierten Pfarrers Paul
Euler und Margaretha Brucker geboren.

1720 Leonhard bezieht die Basler Universität, welche schon im Jahre 1460
gegründet wurde. Anfänglich studiert er Theologie, orientalische Sprachen
und Geschichte, bald jedoch Mathematik bei Johann Bernoulli (1667-
1748), der nach dem Tod von Isaac Newton (1643-1727) zum weltgrössten
Mathematiker avancierte. Bernoulli erkannte im jungen Euler schon früh
den zukünftigen "Mathematikerfürsten" und förderte ihn entscheidend
durch Hinweise auf die Werke der Meister, vor allem jedoch durch seine
persönliche Unterweisung in den damaligen Frontgebieten mathematischer
Forschung.

1727 Euler bewirbt sich mit einer Dissertation Ueber den Schall um die vakante
Physikprofessur in Basel, kam jedoch als erst Zwanzigjähriger nicht in die
Ränge. So folgt er einem durch die Bernoullis vermittelten Ruf an die 1725
von Peter dem Grossen gegründete Akademie der Wissenschaften in St.

Petersburg. Hier wirkt er zunächst als Adjunkt, dann ab 1731 als Professor
und Akademiemitglied (ohne Lehrverpflichtung, wenn man von der
Autorschaft elementarmathematischer Unterrichtmittel absieht). Die Hauptwerke

dieser "ersten Petersburger Periode" sind die zweibändige
"Mechanik", die "Musiktheorie" und die doppelbändige "Schiffstheorie",
die allerdings erst später im Druck erschien.

1734 Anfang Januar Heirat mit Katharina Gsell, einer Tochter des in St. Peters¬
burg wirkenden Schweizer Kunstmalers Georg Gsell. Ende November
Geburt des Sohnes Johann Albrecht, der als einziger Sprössling Leonhards
Mathematiker und in der Akademie sein Nachfolger werden sollte. Von

6) Umfassendere Information findet der interessierte Leser in EGB 83. Einen Gesamtüberlick über
Eulers Werke bieten die in Anm. 1 und 2 genannten Schriften.

7) Zuweilen werden die Bezüge auf die Werke Eulers hier abgekürzt zitiert, und zwar in der
Reihenfolge: Nummer des Eneström-Verzeichnisses (cf. EGB 83, p. 521), Serie der Opera
omnia, Band, ev. Seitenangabe. Ein Beispiel möge diese Praxis verdeutlichen: E.65/O.I,24,
p. 231 f. verweist auf Eulers Methodus inveniendi lineas curvas. im Band 24 der Serie I, Seiten
231 f. Eine Tabelle zur Auffindung der Abhandlungungen und Bücher Eulers in den Opera
omnia bei bekannter Eneström-Nummer ist in den beiden bis heute erschienenen Bänden O.IV
A,l, p. 529 f. und O.IV A,5, p. 525 f. leicht zugänglich.
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den insgesamt 13 Kindern Leonhard Eulers überlebten ihn bloss drei, die
ihm jedoch 21 Enkel hinterliessen.

1738 Verlust des rechten Auges durch einen gefährlichen Abszess.
1741 Im Hinblick auf die politischen Wirren im Russischen Reich akzeptiert

Euler einen Ruf Friedrichs des Zweiten an die neu zu gründende Preus-
sische Akademie ("Berliner Akademie") und siedelt mit seiner Familie
nach Berlin über. Dort amtiert er als Präsident der Mathematischen Klasse.
Maupertuis, der sich mit der spektakulären Lapplandexpedition von 1736
(Gradmessung zwecks Nachweis der Abplattung der Erde) einen Namen
gemacht hatte, wurde Präsident der Akademie - als Wissenschafter jedoch
weit unter Euler stehend.

In der Berliner Periode entstanden neben hunderten von Abhandlungen
Eulers Hauptwerke zur Variationsrechnung, zur Funktionentheorie, zur
Differentialrechnung, sowie die sogenannte "zweite Mechanik" und die
"Philosophischen Briefe". Auch das Konzept der so berühmt gewordenen
"Algebra" datiert noch aus der Berliner Zeit. Während dieser Periode
unterhielt Euler ohne Unterbruch aktive Beziehungen zur Petersburger
Akademie und wirkte als "goldene Brücke" zweier Akademien mit
Weltgeltung.

1766 Das Unverständnis und Fehlverhalten Friedrichs des Zweiten erleichtert
Euler die Annahme eines Rufes der russischen Kaiserin Katharina II nach
Petersburg, wo er bis zu seinem Tod verblieb.

1771 Als Folge einer missglückten Staroperation verliert der Mathematiker auch
sein linkes Auge und erblindet fast völlig. Während der grossen Feuersbrunst
in Petersburg wird er mit knapper Not vom Basler Handwerker Peter Grimm
aus dem brennenden Haus gerettet. Nun steigert Euler seine Produktion ins
Unvorstellbare: rund die Hälfte seines gewaltigen Opus entstand in der
"zweiten Petersburger Periode", darunter die dreibändige "Intergralrech-
nung", die ebenfalls dreibändige "Dioptrik" sowie die endgültige Fassung
der "Algebra".

1773 Nach dem Tod der Gattin Katharina heiratet Euler 1776 deren Halb¬
schwester Abigail Gsell.

1783 am 18. September erleidet Euler einen Schlaganfall und stirbt rasch und
schmerzlos.

1.2. Eulers Charakter

Ueber den Charakter Eulers äussern sich alle Zeitgenossen und Biographen
einhellig: er war ein Sonnenkind, wie die Astrologen sagen würden, von offenem
und heiterem Gemüt, unkompliziert, humorvoll und gesellig. Obwohl in seiner
zweiten Lebenshälfte recht wohlhabend, war er in materieller Hinsicht
bescheiden, stets frei von jeglichem Dünkel, niemals nachtragend, dabei selbst-
bewusst, kritisch und draufgängerisch. Zuweilen konnte er leicht aufbrausen, um
sich jedoch sogleich wieder zu beruhigen, ja über seinen eigenen Ausbruch zu
lachen. In einem Punkt aber verstand er keinen Spass: in der Frage der Religion
und des christlichen Glaubens. Eulers Strenggläubigkeit ist der Schlüssel zum
Verständnis vieler wichtiger Fakten in seinem Leben, so zum Beispiel für seine
unerbittliche Verfolgung der Leibniz'schen Monadenlehre Wolff'scher Prägung
wie auch für seine heftigen Attacken gegen gewisse Enzyklopädisten und andere
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"Freygeister", die er 1747 in seiner theologischen Schrift "Rettung der göttlichen
Offenbahrung..." ritt. Trotzdem war Eulers (gelebte!) Toleranz bei weitem
ehrlicher und ausgeprägter als diejenige seines königlichen Herrn, der sich ihrer
nur als Schlagwort bediente und sie stracks vergessen konnte, wenn ihm ihre
Anwendung auch nur im geringsten hinderlich war.

Auch in wissenschaftlichen Besitzansprüchen war Euler überaus bescheiden;
er kannte-im Gegensatz zu den meisten Gelehrten aller Zeiten-nie
Prioritätshändel, ja er verschenkte zuweilen generös neue Entdeckungen und
Erkenntnisse. In seinen Werken versteckt er nichts, sondern legt die Karten stets
offen auf den Tisch und bietet dem Leser die gleichen Voraussetzungen und
Chancen, Neues zu finden, ja er führt ihn oft dicht an die Entdeckung hinan und
überlässt ihm die Entdeckerfreuden - die einzig wahre Pädagogik: Das macht
Eulers Bücher dem Lernenden zum Erlebnis, unterhaltsam und spannend
zugleich. Das Gefühl des Neides muss diesem erstaunlichen Menschen absolut fremd
gewesen sein; er gönnte jedem alles und freute sich stets auch an den neuen
Entdeckungen anderer. Dies alles war ihm nur möglich, weil er geistig so
unermesslich reich und psychisch in selten anzutreffendem Masse ausgeglichen
war.

Das Phänomen Euler ist wesentlich an drei Faktoren gebunden: erstens an
die Gabe eines wohl einmaligen Gedächtnisses. Was Euler je gehört, gesehen

r^
ËSS
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m

%¦:¦ i %
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oder geschrieben hatte, scheint sich ihm für immer fest eingeprägt zu haben.
Davon gibt es unzählige zeitgenössische Zeugnisse. Noch in hohem Alter soll er
beispielsweise seine Familienangehörigen, Freunde und Gesellschaften mit der
wortgetreuen (lateinischen) Rezitation jedes beliebigen Gesanges aus Vergils
Aeneis entzückt haben, und Protokolle der Akademiesitzungen kannte er nach
Jahrzehnten noch auswendig - von seinem Gedächtnis für mathematische
Belange ganz zu schweigen. Zweitens war seine gewaltige Gedächtniskraft
gepaart mit einer seltenen Konzentrationsfähigkeit. Lärm und Betrieb in seiner
unmittelbaren Umgebung störten ihn kaum in seiner Gedankenarbeit. "Ein Kind
auf den Knien, eine Katze auf dem Rücken, so schrieb er seine unsterblichen
Werke", berichtet sein Freund und Kollege Thiébault. Der dritte Schlüssel zum
"Mysterium Euler" besteht schlicht in steter, ruhiger Arbeit.

1.3. Zum Werk

Allein schon im Hinblick auf seine Produktivität ist Euler ein einzigartiges
Phänomen. Das 1910-1913 erschienene Verzeichnis (Gustaf Eneström) von
Eulers damals gedruckt vorliegenden Schriften 8) weist 866 Nummern auf, und
die grosse (schweizerische) Euler-Werkausgabe, an welcher seit der letzten
Jahrhundertwende viele Fachleute verschiedener Nationen gearbeitet haben und noch
immer arbeiten, umfasst bis heute rund 70 Quartbände, denen noch 14 Bände
"Briefe und Manuskripte" folgen sollen. (Die Ausgabe erfolgt stets in Eulers
Originalsprachen, 9) also mehrheitlich in Latein und Französisch, selten deutsch).

Rein vom Umfang seiner Arbeitsleistung her gesehen bleibt Euler nicht
hinter den produktivsten Vertretern des Menschengeschlechts wie etwa Voltaire,
Goethe, Leibniz oder Telemann zurück. Hier sei eine nach Dekaden geordnete
tabellarische Uebersicht über die Quantität der von Euler druckfertig gemachten
Schriften wiedergegeben 10) (allerdings ohne Berücksichtigung einiger Dutzend
Arbeiten, die noch nicht datiert werden konnten):

Jahre Arbeiten % Jahre Arbeiten %

1725-1734 35 4 1755-1764 110 14
1735-1744 50 10 1765-1774 145 18
1745-1754 150 19 1775-1783 270 34

Auf die Fachdisziplinen bezogen ergibt sich der jeweilige prozentuale Anteil
etwa folgendermassen:

Algebra, Zahlentheorie, Analysis 40%
Mechanik, übrige Physik 28%
Geometrie, einschliesslich Trigonometrie 18%
Astronomie 11 %
Schiffswesen, Architektur, Artilleristik 2%
Philosophie, Musiktheorie, Theologie und anderes 1%

8) Gustaf Eneström, Verzeichnis der Schriften Leonhard Eulers, Jahresbericht der Deutschen
Mathematiker-Vereinigung, Ergänzungsband 4, 1. Lieferung 1910, 2. Lieferung 1913.

9) Sämtliche in der vierten Serie der Opera omnia edierten lateinischen Briefe und Dokumente
erscheinen simultan in moderner Uebersetzung (deutsch oder französisch).

ln) Wir folgen hier der Darstellung des wohl besten Eulerkenners unserer Zeit, A. P. Juskevië (cf.
EGB 83, p. 551).
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(In dieser Aufstellung sind die ca. 3000 bis heute bekannten Briefstücke sowie die
noch unedierten Manuskripte nicht berücksichtigt).

Hauptwerke Leonhard Eulers

(in Kurztiteln), chronologisch nach Druckjahren geordnet

1736 Mechanica (2 Bände)
1738Ì
1740J

1739 Tentamen novae theoriae musicae («Musiktheorie»)

1744 Methodus inveniendi («Variationsrechnung»)

1744 Theoria motuum planetarum et cometarum («Himmelsmechanik»)

1745 Neue Grundsätze der Artillerie

1141 Rettung der göttlichen Offenbarung gegen die Einwürfe der Freygeister

1748 Introductio in analysin infinitorum («Einführung», 2 Bände)

1749 Scientia navalis («Schiffsthéorie», 2 Bände)

1753 Theoria motus lunae («Erste Mondtheorie»)

1755 Institutiones calculi differentialis («Differentialrechnung», 2 Bände)

1762 Constructio lentium objectivarum («Achromatische Linsen»)

1765 Theoria motus corporum («Zweite Mechanik»)

1766 Théorie générale de la dioptrique («Linsentheorie»)

1768 Lettres à une Princesse d'Allemagne («Philosophische Briefe», 2 Bände)

1768 Institutiones calculi integralis («Integralrechnung», 3 Bände bis 1770)

1769 Dioptrica («Optik», 3 Bände bis 1771)

1770 Vollständige Anleitung zur Algebra («Algebra», 2 Bände, 1768 Vorab¬
druck einer russischen Übersetzung)

1772 Theoria motuum lunae («Zweite Mondtheorie»)

1773 Théorie compiette de la construction et de la manoeuvre des vaisseaux
(«Zweite Schiffstheorie»)

2. Reine Mathematik

2.1. Zahlentheorie und Algebra

In der Zahlentheorie führt eine direkte Linie von Diophant (um 250) über
Fermât (1601-1665) zu Euler. Fermât hinterliess seinen nach ihm benannten
"kleinen Satz", dass für irgendeine Primzahl p und jede dazu teilerfremde
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natürliche Zahl n die Zahl np — n durch p teilbar sei, ohne Beweis. Eulers
Beschäftigung mit diesem Satz, die mit einem eleganten Beweis gekrönt wurde,
führte schliesslich zur Theorie der Reste nach einem Modul und gipfelte in Eulers
wohl bedeutsamster Entdeckung auf diesem Gebiet: im Gesetz der quadratischen
Reziprozität. Euler selbst vermochte zwar das Gesetz nicht zu beweisen, und auch
A.-M. Legendre (1752-1833) gab 1785 bloss einen unvollständigen Beweis. Erst
C. F. Gauss (1777-1855) gelang 1801 der völlige Durchbruch, und eine
Ausdehnung des Gesetzes auf andere Zahlbreiche und höhere Potenzreste
bewerkstelligten Ernst Kummer (1810-1893), David Hilbert (1862-1943) und Emil
Artin (1898-1962). Von ungewöhnlicher Fruchtbarkeit war eine weitere, noch
berühmtere von Fermât hinterlassene Behauptung, der sogenannte "grosse Fer-
matsche Satz", der sich - ebenfalls ohne Beweis-als Marginalie in Fermats
Handexemplar der Diophant-Ausgabe von Bachet de Méziriac (1581-1638)
vorfindet. Es ist die Behauptung (oder Vermutung), dass die Gleichung

für kein natürliches n > 2 eine Lösung in von Null verschiedenen ganzrationalen
Zahlen x, y, z besitzt; (für n=2 geht die Gleichung in den pythagoreischen
Lehrsatz über und lässt unendlich viele Tripel zu). Euler beweist 1753 unter
Verwendung einer "descente infinie" die Unmöglichkeit für den Fall n 4,
später für weitere natürliche Exponenten. Für den allgemeinen Fall war der
Unmöglichkeitsbeweis trotz bedeutender theoretischer Fortschritte bis in unsere
Tage nicht zu erbringen.

Im Anschluss an die zahlentheoretischen Ueberlegungen von Marin
Mersenne (1588-1648) gelangte Fermât zur weiteren Vermutung, dass alle
Zahlen von der Form

p=22t + l
prim seien. Dies stimmt zwar für die Werte von k 0, 1, 2, 3, 4, doch schon für
k 5 ergibt sich die Zahl p 4'294'967'297, von welcher Euler nachwies, dass sie
den Teiler 641 besitzt und folglich keine Primzahl ist.

Ebenfalls von Fermât behauptet, aber erst durch Euler bewiesen, ist der
wahrhaft schöne Satz, dass alle Primzahlen von der Form p 4n + 1 in eine
Summe von zwei Quadratzahlen zerlegt werden können, dass also immer gilt

p 4n + l x2+y2. (1)

Der Satz gilt in einer Umkehrung: Jede ganze Zahl von der Form 4n +1, die auf
eine einzige Weise als Summe zweier teilerfremder Quadrate darstellbar ist, ist
prim. Mit dieser Einsicht gewinnt Euler ein wirksames Hilfsmittel zur
Charakterisierung grosser Zahlen. Ein Beispiel möge dies verdeutlichen: Die Zahl
2'232'037 ist prim, da nur die Zerlegung 2'232'037= 12+1'4942 nach obiger
Vorschrift möglich ist. Hingegen ist die Zahl 1'000'009 nicht prim, da sie auf zwei
Arten in eine Quadratsumme zerlegbar ist, nämlich

1'000'009 32 + l'OOO2 9722 + 2352.

Von hier aus gelangt Euler über die allgemeinere Darstellung von
Primzahlen der Struktur

p mx2 + ny2 (2)
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zur Entwicklung von wirksamen Methoden zur Entscheidung über den allfälligen
Primcharakter grosser Zahlen, was schliesslich die Grundlage für die allgemeine
Theorie der binären quadratischen Formen abgab, die in der Folge von Lagrange
und Gauss entwickelt und ausgebaut werden sollte. Für m 1 ergibt sich aus (2)
die Gleichung

p=x2+ny2, (3)

und Euler formulierte daraus das Problem, alle natürlichen Zahlen n anzugeben,
für welche gilt: Wenn eine Zahl p auf nur eine einzige Weise in der Form (3) bei
teilerfremden x und y darstellbar ist, dann ist sie prim. Beispielsweise erfüllen die
Zahlen n 1, 2, 3, 5 unter den angegeben Voraussetzungen die Gleichung (3),
nicht aber die Zahl n ll (Gegenbeispiel: 15 22+ ll.l2 ist nicht prim). Euler
nannte solche Zahlen numeri idonei ("passende" oder "taugliche" Zahlen) und
suchte nach einer Methode, sie zu bestimmen. Um nicht für jedes n unendlich
viele Zahlen p auf ihre Darstellbarkeit gemäss Gleichung (3) prüfen zu müssen,
stützte Euler die Untersuchung auf folgendes Resultat seiner Ueberlegungen ab:
Für jedes n, das nicht "tauglich" ist, gibt es ein natürliches m<4n, das nur auf
eine einzige Weise durch x2 + ny2 darstellbar ist, obwohl m keine Primzahl ist. Mit
diesem Kriterium rechnete Euler sukzessive bis m l'OOO und mehr durch und
machte dabei die unerwartete Entdeckung, dass nach n 1848 keine numeri
idonei mehr auftauchen: Insgesamt existieren deren nur 65, und Euler gab sie
vollständig an:

6, 7, 8, 9, 10,
21, 22, 24, 25, 28,
45, 48, 57, 58, 60,
93, 102, 105, 112, 120,

177, 190, 210, 232, 240, 253,
273, 280, 312, 330, 345, 357, 385, 408, 462, 520,
760, 840, 1320, 1365, 1848.

Es ist heute klar, dass Euler-und auch noch später Gauss-mit den ihnen
zur Verfügung stehenden Hilfsmitteln den Beweis für die Endlichkeit der numeri
idonei nicht erbringen konnten. Dies wurde erst 1934 durch Heilbronn und
Chowla geleistet.

Bei all diesen Untersuchungen operierte Euler mit elementaren arithmetischen

und algebraischen Methoden, doch war er auch der Erste, der analytische
Methoden in die Zahlentheorie eingeführt hat. So arbeitete er bereits während
der ersten Petersburger Periode mit der Beziehung

_L J_ J_ 1

lk +
2k

+
3fc

+ '

1, 2, 3, 4, 5,
12, 13, 15, 16, 18,
30, 33, 37, 40, 42,
70, 72, 78, 85, 88,

130, 133, 165, 168, 177,

(>-?)('-?X>-?>
kürzer geschrieben

StaMKi-i)}n=1n „ L V p /J
wobei die linke Seite die Riemannsche Zetafunktion Ç(k) darstellt und p die
Reihe der Primzahlen durchläuft. In diesem Zusammenhang stellt und studiert
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Euler bereits Probleme, die sich für die Theorie der transzendenten Zahlen als

wichtig erweisen sollten. Seine von 1744 datierende Kettenbruchentwicklung der
fundamentalen Transzendenten

lim (1+-) ¦ 2,71828...,

der Basis der natürlichen Logarithmen, wurde 1768 von Johann Heinrich Lambert

(1728-1777) für die Irrationalitätsbeweise der Zahlen tt und e aufgegriffen,
und Lindemann (1852-1939) benützte für seinen Transzendenzbeweis von tt die
von Euler 1728 gefundene Gleichung lg (—1) tri, wobei i die imaginäre Einheit
V—1 bedeutet.

Schliesslich verwendete Euler für die Lösung des 1740 von dem in Berlin
lebenden französischen Mathematikers Philippe Naudé (1684-1745) gestellten
Partitionsproblems die Koeffizienten der Potenzreihe

oo oo

n a-x*)= i (-DV(3^i)/2,
S l fc=-oo

worin die rechte Seite eine spezielle Thetafunktion darstellt, wie sie später C. G.
J. Jacobi in seiner Theorie der elliptischen Funktionen eingeführt hat.11) Heute
heisst diese Gleichung Eulersche Identität; in ihr begegnen wir erstmals in der
Geschichte der Mathematik einer Thetafunktion.

Als die Mathematiker des frühen 17. Jahrhunderts auf den fundamentalen
Satz stiessen, dass eine algebraische Gleichung n-ten Grades

a0xn + a1xn~1 + a2xn~2+- ¦ ¦ + an 0

im allgemeinen n verschiedene Wurzeln bezw. Lösungen hat (die auch
"imaginär" sein können), war es eine noch durchaus offene Frage, ob das Gebiet
der imaginären Wurzeln beschränkt ist auf die Zahlen von der Form a + bi, die
man (nach Gauss) komplexe Zahlen nennt. Viele namhafte Mathematiker schlössen

damals die Existenzmöglichkeit andersartiger imaginärer Zahlen nicht aus.
Euler hingegen glaubte seit spätestens 1743, dass alle Wurzeln einer algebraischen

Gleichung von dieser Form a + bi sind. D'Alembert (1748) und Euler (1751)
führten je einen lückenhaften Beweis an, doch sollte es noch über ein halbes
Jahrhundert dauern, bis dafür ein vollständiger Beweis erbracht werden konnte.
In diesem Kontext formulierte Euler erstmals streng den Fundamentalsatz der
Algebra, dass ein Polynom n-ten Grades als Produkt von n Linearfaktoren
darstellbar ist:

xn + a-.x"^1 + a2x"~2 + • • ¦ + an=(x-xt)(x-x2) ¦ ¦ ¦ (x-xn),
wo die xv die Nullstellen des Polynoms sind. Einen allgemeinen Beweis dieses für
die Algebra sehr wichtigen Satzes gab allerdings erst Gauss in seiner Doktordissertation

von 1799.
Mitte der dreissiger Jahre versuchte Euler-wie wir seit N. H. Abel (1802-

1829) und E. Galois (1811-1832) wissen, aus theoretischen Gründen vergeblich-
die allgemeine Lösung einer algebraischen Gleichung von höherem als dem
vierten Grad durch Radikale darzustellen. Denn wie alle seine Zeitgenossen war

') Fundamenta nova theoriae functionum ellipticarum, Königsberg 1829.
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er von der Möglichkeit der Auflösung solcher Gleichungen überzeugt, und er
schrieb es nur der vermeintlich mangelhaften Entwicklung der zeitgenössischen
Algebra zu, dass die Auflösung nicht gelingen wollte. Dennoch gelangte er zu
bemerkenswerten Teilresultaten: in einer relativ späten Arbeit (1762), in welcher
er versuchte, Gleichungen höheren Grades mittels der Substitution

n-l
x= Z ^Zfc

fc l
aufzulösen, fand er spezielle Formen der Gleichung 5. Grades, deren Wurzeln
durch Radikale darstellbar sind.

Euler arbeitete Näherungsmethoden für die Lösung numerischer Gleichungen
aus und bearbeitete ferner - wahrscheinlich von Daniel Bernoulli angeregt-das
Eliminationsproblem. So gelang ihm ein Beweis des bereits Newton (1643-1727)
bekannten Satzes, dass zwei algebraische Kurven vom Grad m bezw. n höchstens
m • n Schnittpunkte haben können. In diesem Zusammenhang gelangte er zum
wichtigen Begriff der Resultante. In zwei Abhandlungen vom Jahre 1748 gab
Euler eine stichhaltige Erklärung des sogenannten Cramerschen Paradoxons, dass
eine Kurve n-ter Ordnung (Cn) nicht immer durch n(n + 3)/2 ihrer Punkte
bestimmt zu sein braucht, da diese Zahl für n !£ 3 nicht grösser wird als n2, d.h. als
die Anzahl der Schnittpunkte der C„ mit einer anderen Kurve gleicher Ordung.
12) Die Tiefgründigkeit dieses Paradoxons wurde allerdings erst viel später
erkannt, nämlich 1818 von G. Lamé (1794-1870), 1827 von J. D. Gergonne
(1771-1859) und 1828 von J. Plücker (1801-1868).

Noch in seiner letzten Berliner Zeit - wahrscheinlich 13) 1765 -ging Euler an
die Abfassung seiner zweibändigen Vollständigen Anleitung zur Algebra, die er
seinem Gehilfen, einem ehemaligen Schneidergesellen, in die Feder diktiert
haben soll. Dieses Buch - besonders bemerkenswert im Hinblick auf Eulers
meisterhaftes didaktisches Geschick - wurde ein Bestseller. Es erschien 1768/69
zuerst in russischer Uebersetzung, 1770 in der deutschen Originalfassung und
schliesslich in englischer, französischer und holländischer Sprache in vielen
Auflagen. Die "Algebra", wie man das Buch kurz zu nennen pflegt, führt den
absoluten Anfänger Schritt um Schritt von den natürlichen Zahlen über die
arithmetischen und algebraischen Grundsätze und Praktiken bis in die sublimsten
Details der unbestimmten Analysis ein; sie gilt-nach dem Urteil heutiger
erstrangiger Mathematiker - noch immer als die beste Einführung in die Algebra für
einen "mathematischen Säugling". Sinnigerweise wurde die grosse Euler-Ausgabe
1911 mit diesem Band eröffnet. Kein Geringerer als Lagrange, Eulers Nachfolger
als Direktor der Mathematischen Klasse der Berliner Akademie, versah das Buch
mit wertvollen Zusätzen. In dieser Form ist es den romanischen Lesern in den
Ausgaben von Johann III Bernoulli noch immer zugänglich, und für den

2) G. Cramer, Introduction à l'analyse des courbes algébriques, Genève 1750.-Das Paradoxon
findet sich schon bei Colin Maclaurin, Geometria organica sive descriptio linearum curvarum
universalis, London 1720, p. 135-137. (Cf. P. Speziali in EGB 83).

3) Es ist ein weitverbreitetes Märchen, Euler habe die "Algebra" unmittelbar nach seiner Erblin¬
dung in St. Petersburg zur Selbstkontrolle verfasst bezw. seinem "Gehilfen" in die Feder
diktiert. Erstens hatte Euler eine solche "Selbstkontrolle" in keiner Weise nötig, und zweitens
erblindete er fast völlig erst nach der Staroperation 1771 (cf. R. Bernoulli in EGB 83), als das
Buch schon mehrfach gedruckt war. Drittens finden sich im Text der "Algebra" einige Stellen, die
als Hinweis auf die Abfassungszeit 1765 und 1766 gedeutet werden können.
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Abb. 2

deutschen Sprachkreis am ehesten in der verbreiteten Reclam-Ausgabe, wo es als
einziges mathematisches Buch figuriert. 14)

2.2. Reihenlehre, Funktionentheorie und Analysis

Den unendlichen Reihen kam schon in der zweiten Hälfte des 17. Jahrhunderts

eine stets wachsende Bedeutung zu, und im anbrechenden "goldenen
Zeitalter der Analysis" wurde ihre Theorie zum schlechthin unentbehrlichen
Hilfsmittel zur Lösung vieler einschlägiger Probleme der mathematischen
Wissenschaften.

Ueber die ersten Reihenstudien Eulers informiert uns glänzend J. E.
Hofman 15) (1900-1973). Eulers Studien über die bereits oben erwähnte
Zetafunktion nehmen ihren Anfang beim "Baslerproblem", die Summe der
nichtabbrechenden Folge der reziproken Quadratzahlen zu bestimmen, also den
Summenwert

_ 1111 111 f 1

2 X2 22 32 42 4 g 16 ^ik2
zu berechnen. Dass diese Summe endlich ist, d.h. dass die Reihe konvergiert,
ergibt sich sofort durch Vergleich mit einer bekannten geometrischen Reihe. Das

4) Ansprechend für den modernen Leser ist die sprachlich revidierte Reclam-Ausgabe von J. E.
Hofmann, Stuttgart 1959 (leider vergriffen).

5) J. E. Hofmann, Um Eulers erste Reihenstudien, Sammelband der zu Ehren des 250. Geburtstages
Leonhard Eulers vorgelegten Abhandlungen, Berlin 1959, p. 139-208.
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Problem wurde bereits 1650 von Pietro Mengoli (1625-1686) erwähnt und war
spätestens 1673 auch in England bekannt, doch trat es erst durch die
nachdrücklich formulierte Stellung 16) in der ersten Reihendissertation (1689) von
Jakob Bernoulli ins Bewusstsein der Mathematiker. Weder Jakob noch Johann
gelang die Lösung - trotz grösster Anstrengungen -, und in der Folge bemühten
sich auch Nikiaus I und Daniel Bernoulli mehr oder weniger erfolgreich um das
Problem, doch den Vogel schoss erst Euler, ab, indem er 1735 das überraschende
Resultat

durch die Bewältigung eines viel allgemeineren Problems als Spezialfall erhielt.
Dieses Problem war die Bestimmung der Summe S2k, das heisst der Summe der
reziproken Potenzen der natürlichen Zahlen mit geradzahligen Exponenten.
Euler erhielt

t-^k C(2k) a2kir2k,
n

wo a2k die Koeffizienten der "Euler- Maclaurinschen Summenformel" darstellen.
Etwas später gelang ihm derselbe Nachweis mit Hufe der mit den a2k eng
verwandten Bemoullischen Zahlen. Die reizvollen Teilresultate

S2 - und S4 -
meldete Euler 1736 Daniel Bernoulli nach Basel, dem Eulers Verfahren undurchsichtig

blieb, doch erriet der alte Fuchs Johann eine Variante der Eulerschen
Methode, meldete seine Nachentdeckung nach St. Petersburg sowie an seine
nächsten Freunde und liess 1742 die ganze Sache seinen Opera einverleiben, 17)

ohne seinen Lieblings- und Meisterschüler auch nur mit einer Silbe zu erwähnen.
-Die Geschichte hat eben nie ihr letztes Wort gesprochen.

Im Zusammenhang mit der Zetafunktion - das Problem der Bestimmung von
£(2k + l) ist bis heute ungelöst - findet Euler die heute nach ihm bennante
Konstante C 0,577'215'644 die in der asymptotischen Formel

C= lim |X—lgn]= lim {|t + ^ + ^+- • -+-|-lg n\
n^°° In J n^~ ILI 2 3 ni J

als "Schlüssellimes" auftritt und für die Theorie der Gammafunktionen, der
Riemannschen Zetafunktion und für den Integrallogarithmus von grösster
Bedeutung ist. Obwohl man die Zahl C auf hunderte, ja tausende von Dezimalen
kennt, ist es bis heute unbekannt, ob sie rational, irrational oder transzendent ist.
(Cf. Abb. 3).

Von grosser Tagweite sind Eulers schon 1734 aufgenommene Studien über
die harmonischen Reihen, die 35 Jahre später mit einer weiteren Abhandlung

16) Jakob Bernoulli, Opera, Genf 1744, Bd. 1, p. 398.
,7) Johann Bernoulli, Opera, Lausanne und Genf 1742, Bd. 4, p. 20-25.
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Abb. 3

Dritte Seite des Briefes von Euler an Johann Bernoulli vom 20. Juni 1740 (alten Stils). Im
Zusammenhang mit seiner Beschäftigung mit der Zetafunktion fand Euler bereits 1734 oder früher
die heute nach ihm benannte, wichtige Konstante C 0.577 215. die er hier auf 17 Dezimalen
nach dem Komma angibt, von denen die ersten 15 richtig sind (19. Zeile von oben).
[Das Original gehört zu den Beständen der Basler Universitätsbibliothek und trägt die Signatur Ms. L
la 657 Nr., 15*. Wir danken der UBB für die Publikationsgenehmigung und Herrn Marcel Jenni für
die Reproaufnahme].
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gekrönt wurden. Solche Reihen haben die Form

b,b + c,b + 2c,'",b + kc'""
Man nennt sie harmonisch, weil das n-te Glied An das harmonische Mittel des
(n - l)-ten und (n + l)-ten Gliedes ist, weil also gilt

An-i — An An_x

An An+i An+i

Als Spezialfall (a b c 1) ergibt sich die bekannte Folge der reziproken
natürlichen Zahlen

111 1

1, r\ - r, _ • • * .*-•.2 3 n

die man schlechthin als "die harmonische Reihe" bezeichnet. Dass sie divergiert,
hatte schon Nicole D'Oresme (13237-1382) gezeigt, und Johahn Bernoulli mühte
sich nicht ohne Erfolg damit ab, die Summe ihrer ersten hundert Millionen
Glieder methodisch zu berechnen. 18) Euler allerdings hatte bereits 1734 den
Zusammenhang zwischen der harmonischen Reihe und dem (natürlichen)
Logarithmus mittels seiner (oben erwähnten) Konstanten C herausgefunden,
nämlich

-. + _+_+.. ^_ lg(k + 1) + r(k) + C; mit |r(fc)|<—.

In der angeführten späteren Abhandlung gab Euler der harmonischen Reihe die
Gestalt folgender asymptotischer Entwicklung:

wo die taß; die vorerwähnten Bernoullischen Zahlen bedeuten, denen Euler in
seiner "Differentialrechnung" von 1755 im Zusammenhang mit der
Potenzreihenentwicklung für den Cotangens den Namen gab. Im gleichen Werk tauchen
auch erstmals im Druck die Eulerschen Zahlen als Koeffizienten der Secansreihe
auf. Diese Zahlen erwiesen sich als sehr nützlich zur Summation von Reihen aus
den Potenzen der natürlichen Zahlen und ihren Reziproken.

Die im 18. Jahrhundert studierten Funktionen waren mit wenigen
Ausnahmen analytisch, weshalb sich Euler vorwiegend der Potenzreihen bediente.
Ein ganz spezielles Verdienst Eulers besteht nun in der Einführung einer besonders

wichtigen Klasse von trigonometrischen Progressionen, die man heute
Fourier-Reihen nennt und denen heute grundlegende Bedeutung in der

1 1 „ 1 D\ -Do D3-+• ¦ -+x-lgX C + 2x"
1

3 2x2 4x4 6x6

8) In seinem Brief vom 31. August 1740 an Euler gelangte Bernoulli (mittels eines Theorems, über
das er schon Jahrzehnte zuvor mit Leibniz korrespondiert hatte) zu den beachtlichen
Teilresultaten

Ì2.1 ta£7i 2 ™81

£- 14.392 726 722 865 723, £—16- und £—-19.
i X i X j i X
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Mathematik sowie in der gesamten Physik, insbesondere auch in der Elektrotechnik,
zukommt. In seinem Brief an Goldbach vom 4.7.1744 drückte Euler erstmals

eine algebraische Funktion durch eine solche Reihe aus, nämlich

tt x sin 2x sin 3x ^ sin kx
— — - sinxH 1 r---= >
2 2 2 3 fct*i fc

Im Druck erschien dieses historische Beispiel einer Fourier-Reihe erstmals in
Eulers "Differentialrechnung" von 1755. Seiner Umwandlung von Potenzreihen
in unendliche Produkte kam später grosse Wichtigkeit für die Theorie der
analytischen Funktionen zu, wie aus dem Beispiel der oben erwähnten Eulerschen
Zahlen, also den Koeffizienten der Entwicklung

sec2=_L=£M)nE^z
cos z n=0 (2n)!

ersichtlich ist. (Die ersten vier Eulerschen Zahlen sind: E0 l, E2 -l, E4 5,
E6 —61. Die Eulerschen Zahlen mit ungeraden Indices sind sämtlich Null.)

Die Meinungen der Mathematiker des 18. Jahrhunderts über die Zulässigkeit
divergenter Reihen, d.h. von Reihen, die keinen endlichen Summenwert
aufweisen, gingen stark auseinander. Viele Mathematiker wandten sich grundsätzlich
gegen jede Verwendung divergenter Reihen, doch Euler, der sich auch davon
zuverlässsige Resultate versprach, stellte ihre Anwendung ausser jeden Zweifel.
Wenn er jedoch in einzelnen Fällen divergente Reihen heranzog, pflegte er sich
darüber deutlich auszusprechen. Die einzige Angriffsfläche für seine Kritiker war
seine Meinung, dass jede "vernünftige" Summationsmethode für eine divergente
Reihe zum gleichen Resultat führen müsse. Natürlich besass Euler kein Kriterium
für eine solche "Vernünftigkeit", was er jedoch mit einer immensen Erfahrung in
derartigen Dingen und einer bewundernswerten Intuition kompensieren konnte.
Das befähigte ihn, über die damals bekannten Konvergenzkriterien hinaus eine
neue, erweiterte Definition einer Reihensumme vorzuschlagen und zwei Sum-
mationsmethoden zu skizzieren, deren exakte Begründung und Festigung erst um
die letzte Jahrhundertwende geleistet werden konnte. 19) Auch hier hat Euler eine
Pionierleistung ersten Ranges vollbracht.

Die Funktionentheorie beginnt überhaupt erst mit Euler. Seine grosse
Trilogie - Introductio, Differentialrechnung und Integralrechnung 20) - ist eine
grossartige Synopsis der wichtigsten mathematischen Entdeckungen in der
Analysis bis zur Mitte des 18. Jahrhunderts. Von besonderer Bedeutung ist hier
die Ausarbeitung des analytischen Funktionsbegriffs sowie die klare Feststellung,
dass die mathematische Analysis als eine "Wissenschaft von Funktionen"
aufzufassen ist, und geradezu eine mathematikhistorische Zäsur ist Eulers Konzeption

der komplexen Funktionen.
Am Beispiel des damals hochaktuellen Problems der schwingenden Saite

erwies sich die Klasse der analytischen Funktionen für die mathematische
Behandlung vieler Anwendungen als unzureichend. Euler behalf sich sofort mit
sogenannten "willkürlichen", d.h. nichtanalytischen Funktionen, die sich
stückweise geometrisch annähern liessen. Ueber die Möglichkeit der analytischen

9) Cf. G. Hardy, Divergent Series, Oxford 1949.
°) Cf. die Werktabelle im Abschnitt 1.3.
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Darstellung solcher nichtanalytischer Funktionen stritten sich damals viele
Mathematiker - nicht zuletzt Euler, d'Alembert und Daniel Bernoulli. Ein Resultat

der Kontroverse um die Theorie der schwingenden Saite war Eulers
allgemeine Definition einer Funktion als Grösse, deren Werte sich irgendwie mit
den Aenderungen der unabhängigen Variabein ändern.

Der grösste Teil des ersten Bandes der Introductio ist der Theorie der
elementaren Funktionen gewidmet, ohne dass jedoch von der Infinitesimalrechnung

Gebrauch gemacht wird. Euler skizziert hier erstmalig die analytische
Theorie der trigonometrischen Funktionen und gibt 1743 eine einfache, wenn
auch nicht ganz strenge Herleitung der Formel

e±IX =cos x±i sinx,

die sich substantiell 1716 auch schon beim jungen, genialen Roger Cotes 21)

findet, jedoch erst von Euler vielseitig verwendet und in der Analysis
eingebürgert worden ist. (Diese Formel ziert übrigens die schweizerische
Jubiläums-Briefmarke von 1957). Aus dieser Beziehung liess sich dann als

Spezialfall (x 77) sehr leicht eine schöne Formel finden, nämlich

ei"7 + l 0,

besonders schön deswegen, weil sie lediglich aus den Hauptsymbolen e, tt, i und
den Fundamentalziffern 0 und 1 besteht und sich zudem durch grösstmögliche
Einfachheit auszeichnet.

Schliesslich gelangte Euler im Kontext mit seinen Studien über Funktionen
einer komplexen Variabein, die teilweise von d'Alembert antizipiert wurden,
mittels der schon von Johann Bernoulli verwendeten Substitution z x + jy zum
imponierenden Resultat

J'°°sinx ttdx=~.
0 x 2

In diesem Zusammenhang sei erwähnt, dass Euler mittels mehrfacher Anwendung

der elementaren Formel

-, x x
sin x 2 sin — cos -2 2

auf die Funktionen

y=Sin2fc"

zu der sehr eleganten und fruchtbaren Darstellung

sin x xxxJv X, jC 1 i X,

cos — cos - cos - • • • II cos ——

x 2 4 8 fcJi 2k

gelangte.

l) Roger Cotes (1682-1716), Physiker und Mathematiker, seit 1706 Professor für Astronomie in
Cambridge und seit 1711 Mitglied der Royal Society, ibi hauptsächlich bekannt als der
Herausgeber der zweiten Auflage von Newtons Principia mathematica (1713).
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Beide Gebiete der Analysis, die Differential- wie die Integralrechnung,
wurden von Euler enorm bereichert. Seine 'Differentialrechnung' enthält, neben
zahlreichen neuen Sätzen und Details eine Grundlegung der Differenzenrechnung.
In der 'Integralrechnung" finden sich die Methoden der unbestimmten Integration

in moderner Form erschöpfend dargestellt für die Fälle, in denen die
Integration auf elementare Funktionen führt. Viele Methoden sind erst von Euler
entwickelt worden, und noch heute kennt jeder Mathematiker die "Eulersche
Substitution," mit deren Hilfe gewisse irrationale Differentiale rationalisiert werden

können. Bereits als Zweiundzwanzigj ähriger führt er die-wie sie heute
gennant werden - "Eulerschen Integrale erster und zweiter Art" (Beta- und
Gammafunktion) im Kontext mit seinen Studien über die Interpolation der
Fakultäten ein. Diese Funktionstypen bildeten zusammen mit den Zeta- und den
Bessel-Funktionen die wichtigsten transzendenten Funktionen im Eulerschen
Zeitalter

Ein neues und weites Feld tat sich auf, als Daniel Bernoulli behauptete, dass
die Lösung irgendeiner beliebigen Wellengleichung durch trigonometrische
Funktionen ausdrückbar sei. Zu Unrecht bestritten Euler und d'Alembert diese
bedeutungsvolle Einsicht, und die später von Lagrange, Laplace und anderen
weitergeführte Diskussion wurde erst durch die epochemachenden Arbeiten von
Fourier (1768-1830) im ersten Jahrzehnt des 19. Jahrhunderts zungunsten
Bernoullis entschieden. Mathematisch definitiv fundiert wurde dieser Problemkomplex

allerdings erst gegen die Jahrhundertmitte von G. P. L. Dirichlet (1805-1859)
und B. Riemann. (1826-1866).

(Zum Additionstheorem der elliptischen Integrale, einer mathematischen
Hauptleistung Eulers, sowie zur Variationsrechnung sei auf EGB 83, p. 47-52.
verwiesen.)

2.3. Geometrie

Die Mehrzahl seiner Entdeckungen in der Geometrie machte Euler durch die
Anwendung algebraischer und analytischer Methoden. Das Lehrgebäude sowohl
der ebenen wie auch der sphärischen Trigonometrie verdankt seine heutige
Form - einschliesslich der Notationsweise - Leonhard Euler. Seine-von Johann
Bernoulli angeregten - Studien über geodätische Linien auf einer Fläche waren
richtungweisend für die später einsetzende Entwicklung der Differentialgeometrie,

und von noch grösserer Bedeutung waren seine Entdeckungen in der
Flächentheorie, von welcher Gaspard Monge (1746-1818) und andere Forscher
in der Folge ausgehen sollten. In seinen späten Jahren schliesslich nahm Euler
seine Arbeiten über die allgemeine Theorie der Raumkurven exakt dort wieder
auf, wo Clairaut 1731 aufgehört hatte - allerdings wurden sie erst posthum
gedruckt.

Im zweiten Band der Introductio gab Euler eine methodisch geschlossene
Darstellung der analytischen Geometrie der Ebene wie auch des Raumes sowie
die vollständige Durcharbeitung und Ausdehnung der Descartesschen
Koordinatenmethode auf den dreidimensionalen Raum. Im Anhang findet sich
erstmalig die Einteilung der Flächen zweiten Grades in fünf Geschlechter sowie die
Eulerschen Formeln zur Koordinatentransformation, und durch die Einteilung der
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Kurven dritten Grades wie auch durch seine Lehre von den Asymptoten
algebraischer Kurven wurde Euler zum Vorläufer Julius Plückers (1801-1868).

Aus der Fülle der Eulerschen Entdeckungen in der elementaren Geometrie
sollen hier nur fünf genannt werden:

1) Es ist bekannt, dass Euler rein mathematisch die zuerst von Jakob
Bernoulli und Christiaan Huygens (1629-1695) studierte 22) Kreisevolvente

x a(cos d> + d> sin cp); y a(sin dy — d> cos cp)

als günstigste Profilform der Flanken bei Zahnrädern eruiert hat. 23) Diese Kurve
liefert - sinnvoll verwendet - optimale mechanische Eigenschaften bezüglich
Reibungsverlust, Geräuscharmut und Kraftübertragung. (Technisch realisiert
wurde diese Entdeckung bezw. Erfindung Eulers erst im letzten Jahrhundert mit
der Evolventenverzahnung). Weniger bekannt ist aber, dass Euler in dieser bereits
1762 entstandenen Arbeit (E.330/0.II,17) die heute nach Felix Savary (1797-
1841) benannte Gleichung antizipiert hat. Sie dient zur Bestimmung des

Krümmungsradius einer Rollkurve und ermöglicht eine elegante Konstruktion
deren Krümmungszentren.

2) In einer Arbeit von 1763 (E.325/O.I,26) begegnen wir dem aus der
Schulmathematik wohlbekannten und berühmten Satz, dass in einem beliebigen
ebenen Dreieck der Höhenschnittpukt (H), der Umkreismittelpunkt (U) und der
Schwerpunkt (S) auf einer Geraden liegen (Eulersche Gerade). Un zwar sind die
Punkte, wie Euler nachweist, auf der Geraden so verteilt, dass immer gilt
SH 2SU.

3) Die sicher populärste Entdeckung Eulers im Gebiet der
Elementargeometrie ist der nach ihm benannte Polyedersatz. Sei bei einem beliebigen,
durch lauter ebene Vielecke begrenzten, konvexen räumlichen Körper die
Flächenanzahl /, die Eckenzahl e und die Kantenzahl fc, so gilt stets

e+/-fc=2.
Dieser verblüffende Satz war zwar schon Descartes (1596-1650) in etwa bekannt,
doch hatte Euler davon keine Kenntnis, und ein Beweis wurde von Descartes
auch nicht gegeben. Euler teilte zunächst das wunderhübsche Resultat seinem
Freund Goldbach am 14.11.1750 brieflich mit samt einer (induktiven) Herleitung,
hingegen fügte er hinzu, dass er dafür noch keinen strengen Beweis erbringen
könne: "... Dieses ist klar, weil keine hedra aus weniger als 3 Seiten und kein
angulus solidus aus weniger als 3 angulus plants bestehen kann. Folgende
Proposition aber kann ich noch nicht recht rigorose demonstrieren: 6. In omni
solido hedris planis incluso aggregatum ex numero hedrarum et numero angulorum
solidorum binario superat numerum acierum, seu est H + S A +2,...".

Eine in diesem Sinne abgefasste Abhandlung präsentierte Euler bereits am
26.11.1750 (E.230/0.I,26), der er-nachdem er den Beweis für die Formel

22) Cf. etwa E. A. Fellmann, Christiaan Huygens, Humanismus und Technik 22,3, Berlin 1979.
23) Cf. O.II,17.
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»2S
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gefunden hatte-im September 1751 eine zweite, entscheidende folgen liess 24)

(E.231/O.I,26).
Tatsächlich gehört der Eulersche Polyedersatz aus heutiger Sicht in einen viel

allgemeineren Zusammenhang. Ist nämlich ar die Anzahl der r-dimensionalen
Zellen eines endlichen Komplexes K, so heisst die Zahl xCK)=X. (~l)r«r die
"Eulersche Charakteristik von K". Die "Formel von Euler-Poincaré"

X(K) X(-Drprtï0
vermittelt die Beziehung zwischen x(K) und den sogenannten "Bettischen
Zahlen" pr(K). Der Eulersche Polyedersatz kann somit folgendermassen
formuliert werden: Ein konvexes Polyeder im dreidimensionalen euklidischen Raum
hat stets die Charakteristik 2.

4) In seinem Brief vom 8.9.1679 an Huygens hatte Leibniz die Idee zu einer
neuen geometrischen Analysis angeregt, die "uns unmittelbar den situs ausdrückt,
wie die Algebra die Magnitudo". 25) Huygens scheint sich nichts von dieser neuen
characteristica geometrica versprochen zu haben, und Leibniz liess dann diesen
Gedanken wieder fallen. Euler griff-nach seinen eigenen Worten-unter
Beibehaltung des Namens auf diese analysis situs zurück. 26) In seiner Studie

4) In seiner Einleitung zum Band O.I,26, p. XVI, stellte Andreas Speiser die Schlüssigkeit des
Eulerschen Beweises in Frage. Seitdem (1953) sind viele Kommentatoren und Geschichtsschreiber

der Mathematik dieser Meinung gefolgt. Allem Anschein nach wurde Speiser durch ein
Urteil von Lebesgue (1924) beeinflusst, das jedoch von letzterem selbst wieder relativiert
worden ist. Der erste, der Speiser öffentlich widersprochen hat, war Delone in seiner Arbeit BV
Delone (Delaunay) 1958. Cf. auch I. Lakatos, Proofs and Refutations, Cambridge University
Press, London 1976, (Deutsche Uebersetzung: Beweise und Widerlegungen, Vieweg,
Braunschweig und Wiesbaden 1979, Kapitel 1).

*5) Cf. Oeuvres de Chr. Huygens, Bd. VIII, p. 219-224.
î6) Der Mathematiker und Mathematikhistoriker Hans Freudenthal (Utrecht) vertritt recht

überzeugend die Ansicht, dass Eulers topologische Ansätze nichts mit dem zu tun haben, was
Leibniz unter seiner Analysis situs verstanden hat. Cf. Hans Freudenthal, Leibniz und die
Analysis situs, Studia Leibnitiana, Bd. IV, Heft 1, 1972, p. 61-69.
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(E.53/O.I,7) der als "Königsberger Brückenproblem" überlieferten Aufgabe
liegen die ersten systematischen Ansätze zur Topologie vor, einer Disziplin, die
heute eine Hauptrolle in der mathematischen Forschung spielt und der F. B.
Listing 1847 den Namen gegeben hat. Es handelte sich bei Euler um die Frage,
ob die Stadt Königsberg durchwandert werden könne, wenn jede der sieben
Brücken über den Pregel (Fig. 1) genau einmal überschritten werden soll. Euler
fand 1735, dass diese Forderung unerfüllbar ist, unabhängig davon, ob an den
Ausgangs-punkt zurückgekehrt werden soll oder nicht. Die Beschäftigung mit
diesem Problem und dessen Verallgemeinerung führte Euler zu wichtigen Sätzen
der Graphentheorie. 27)

5) In einer 1763 verfassten Studie (E.324/O.I,26) fand Euler die Beziehung
zwischen den Seiten eines Dreiecks, von welchem zwei Winkel ein
vorgeschriebenes Verhältnis haben. Diese Relationen, für welche Euler über

cos na ± i sin na (cos a ± i sin a)n
eine rekurrente Reihe fand, sollten später auf die Kreisteilungsgleichung (Gauss)
führen.

3. Mechanik

3.1. Allgemeine Mechanik

Der Beginn der Hauptstudien Eulers zur Mechanik lässt sich bereits in der
ersten Petersburger Periode ansetzen. In der Einleitung zum ersten Band seiner
Mechanica (1736) entwirft Euler ein umfassendes Programm dieser Wissenschaft,
das als Hauptmerkmal die systematische und fruchtbare Anwendung der Analysis
auf die damals aktuellen sowie auf neue Probleme der Mechanik trägt. Die
Vorgänger Eulers verfuhren - summarisch gesprochen - synthetisch-geometrisch,
wozu die unsterblichen Principia mathematica Newtons als prägnantes Beispiel
dienen können, und auch der Basler Jakob Hermann, Eulers Kollege in Petersburg,

vermochte sich trotz seiner angestrebten Modernität in der Phoronomia von
1716 vom barocken Stil à la Jakob Bernoulli, seinem einstigen Lehrer, nicht zu
lösen. Euler verfährt auch hier-wie später in der Optik - analytisch und fordert
für die Mechanik einheitliche, analytische Methoden, die zu klaren und direkten
Darstellungen und Lösungen der einschlägigen Probleme führen sollen. Aehnlich
wie später in der Methodus, 2S) der "Variationsrechnung", enthält der Buchtitel
schon das ganze Programm: Mechanik oder die Wissenschaft von der Bewegung,
analytisch dargestellt.

Euler beginnt mit der Kinematik und der Dynamik 29) eines Massenpunktes

27) Cf. D. König, Theorie der endlichen und unendlichen Graphen, Leipzig 1936.
28) Cf. die Werktabelle im Abschnitt 1.3.
29) Zur Präzisierung der Einteilung der Mechanik verweise ich auf G Hamel, Elementare Mechanik,

Leipzig 1912, p. 9f„ Sowie auf das moderne Werk von I. Szabó, Einführung in die Technische

Mechanik, Berlin, Heidelberg, Wien 1975, 8. Aufl., p. 3. Demgemäss ist die Mechanik folgen-
dermassen einzuteilen:

Mechanik

Kinematik Dynamik

_l
Statik Kinetik



1120 Emil A. Fellmann H. P. A.
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A. 173-î. Abb. 4

und behandelt im ersten Band die freie Bewegung eines Massenpunktes im
Vacuum und im widerstehenden Mittel. Der Abschnitt über die Bewegung eines
Massenpunktes unter der Einwirkung einer nach einem festen Punkt gerichteten
Kraft ist eine brillante analytische Um- und Neuformulierung der entsprechenden
Kapitel in Newtons Principia und war ursprünglich als Einleitung zu Eulers
bereits früher erschienenen Himmelsmechanik gedacht. 30) Im zweiten Band
studiert er die erzwungene Bewegung eines Massenpunktes und löst im Kontext
mit den Gleichungen für die Bewegung eines Punktes auf einer vorgegebenen
Fläche eine Reihe von differentialgeometrischen Problemen der Flächentheorie
und der Theorie der geodätischen Linien. Fast dreissig Jahre später gab Euler in
der Theoria motus von 1765, der sogenannten "zweiten Mechanik", eine neue
Darstellung der Punktmechanik, 31) indem er nach dem Vorbild von Maclaurin

°) In diesem Zusammenhang sei darauf hingewiesen, dass von Eulers Mechanik eine deutsche
Uebersetzung von J. Ph. Wolfers, Greifswald 1848/1850, vorliegt.

1) Istvän Szabó (1906-1980), der ein vorzüglicher Kenner von Eulers Schriften mechanischen
Inhalts war, wies mich seinerzeit darauf hin, dass Euler die vektorische Darstellung der Kinetik
bereits in seiner Arbeit E. 177 (cf. hier Anm. 38) gegeben hat.
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(1742) die Kraftvektoren auf ein festes, rechtwinkliges Koordinatensystem in drei
Dimensionen projizierte, und stellte im Zusammenhang mit den Untersuchungen
der Rotationsbewegung die auf die Hauptträgheitsachse bezogenen Differentialgleichungen

der Dynamik auf, die diese Bewegung charakterisieren. Er
formulierte ferner das durch elliptische Integrale ausdrückbare Gesetz der Bewegung
eines starren Körpers um einen festen Punkt ("Eulersche Winkel"), auf das er
anlässlich des Studiums der Präzession der Aequinoktien und der Nutation der
Erdachse geführt wurde. Andere Fälle der Kreiseltheorie, in denen die
Differentialgleichungen integrierbar sind, wurden später von Lagrange (1788)
und von der Weierstrass-Schülerin S. V. Kovalevskaja (1888) entdeckt und behandelt.

32)

In einem der beiden Anhänge der bereits oben im Zusammenhang mit der
Variationsrechnung erwähnten Methodus regte Euler eine Formulierung des
berühmt-berüchtigten Prinzips der kleinsten Aktion an für den Fall der Bewegung
eines Massenpunktes unter der Einwirkung einer Zentralkraft: die entsprechende
Bahnkurve minimalisiert das Integral J mv ds, während Maupertuis das erwähnte
Prinzip fast zur gleichen Zeit in einer viel spezielleren, also weniger allgemeinen
Weise aufstellte. Im zweiten Anhang der Methodus wandte Euler - auf Anregung
Daniel Bernoullis - die Variationsrechnung auf die Theorie der Balkenbiegung
an, die er bereits seit 1727 studierte, und gelangte über die Beziehung

f ds f y"2dx
— I (.R ist Krümmungsradius)J R2 J V(l + y'2)5

ë

zur wahrhaft spektakulären, aus den Ingenieurwissenschaften bis zum heutigen
Tag nicht wegzudenkenden "Eulerschen Knickungsformel" für die Kraft P

P
ta^Efc2

4/2 '

worin Ek2 die "absolute Elastizität" (Steifigkeit) und 2/ die Länge eines beidseitig
gelenkig gelagerten Stabes ist. Neben dieser ersten Berechnung eines elasto-
statischen Eigenwertes war Euler auch der Erste, der in den Eigenfrequenzen des
transversal schwingenden Balkens elastokinetische Eigenwerte berechnet hat.

In der Domäne der Hydromechanik war Eulers erste grössere Arbeit sein
umfassendes Opus über das "Schiffswesen", die Scientia navalis. Im ersten Band
behandelt er die allgemeine Gleichgewichstheorie schwimmender Körper und
studiert - damals ein novum - Stabilitätsprobleme sowie kleine Schwingungen
(Schwankungen) in der Nachbarschaft des Gleichgewichtszustandes. In diesem
Zusammenhang definiert Euler über den (richtungsunabhängigen)
Flüssigkeitsdruck die "ideale Flüssigkeit", was zweifellos später Cauchy für die
Definition des Spannungstensors als Vorlage diente.

Der zweite Band bringt Anwendungen der allgemeinen Theorie auf den
Spezialfall des Schiffes. 33) Mit der Scientia navalis hat Euler eine neue Wis-

2) J. L. Lagrange, Mécanique analytique, in: Oeuvres, t. 12, Paris 1889; S. V. Kovalevskaja, in:
Acta mathematica 12, 1889, p. 177-232.

3) E. 110,111/O.H, 18, 19, ed. C. A. Truesdell. Cf. ferner die 200-seitige Einleitung von W.
Habicht zu diesen zwei Bänden in O.II,21, ed. W Habicht.
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senschaft begründet und auf die Entwicklung der Seefahrt sowie des
Schiffsingenieurwesens nachhaltig eingewirkt, und nur wenigen Spezialisten ist die
Tatsache bewusst, dass wir das technisch realisierbare Prinzip des Flügelradantriebs
und der Schiffsschraube keinem andern zu verdanken haben als Leonhard Euler.
Natürlich waren diese kühnen Projekte zu Eulers Zeit dazu verurteilt, im Theoretischen

stecken zu bleiben, da die zur Realisierung nötigen Antriebsenergien noch
nicht zur Verfügung standen. 34) In der Technikgeschichte wohlbekannt sind
hingegen Eulers Versuche über die Segnersche Wasserkraftmaschine und seine
daran anknüpfende Theorie der Wasserturbine. Jakob Ackeret (1T981) hat eine
solche Turbine nach Eulers Vorschriften anfertigen lassen und festgestellt, dass der
Wirkungsgrad der Eulerschen Maschine über 71% beträgt 35)-ein sensationelles
Resultat, wenn man bedenkt, dass man heute mit den modernsten Mitteln und
vergleichbaren Dimensionen den Wirkungsgrad einer solchen Turbine mit wenig
über 80% ansetzen muss.

In die frühen Fünfzigerjähre fällt die Abfassung einiger wahrhaft klassischer
Abhandlungen über eine analytische Theorie der Fluidmechanik, in welchen
Euler ein System von grundlegenden Formeln zur Hydrostatik wie auch der
-dynamik entwickelt (cf. infra). Darunter finden sich die Kontinuitätsgleichung für
Flüssigkeiten konstanter Dichte, die - gewöhnlich nach Laplace benannte-
Gleichung für das Geschwindigkeitspotential sowie die allgemeinen "Eulerschen
Gleichungen" für die Bewegung idealer (also reibungsfrei strömender) kompressi-
bler oder inkompressibler Flüssigkeiten. Kennzeichnend auch für diese Gruppe
von Arbeiten ist die Anwendung gewisser partieller Differentialgleichungen auf
die anfallenden Probleme. Auf diese Dinge war Euler, wie wir aus Selbstzeugnissen

wissen, besonders stolz - und das mit Recht.

3.2. Hydromechanik

3.2.1. Bemerkungen zur sogenannten "Bemoullischen Gleichung"
Bevor wir einige von Eulers Hauptleistungen auf dem Gebiet der

Hydromechanik resümieren, seien einige Bemerkungen vorausgeschickt. Die
kompetentesten Darstellungen des Gegenstandes finden sich bei C. A. Truesdell 36)

und I. Szabó 36) (1T980). Dieser hat auch mit der mehr als fragwürdigen,
weitverbreiteten Behauptung gründlich aufgeräumt, Johann Bernoulli (1667-1748)
habe sich gegenüber seinem Sohn Daniel 37) (1700-1782) des Plagiats schuldig
gemacht (cf. Szabó, Prinzipien, Kap. Ill, B).

Auch hinsichtlich eines andern Punktes soll hier differenziert werden: es
betrifft die sogennante "Bernoullische Gleichung". Ihr werden in der Lehrbuchliteratur

nach Lust und Laune (bezw. nach Wissen und/oder Nichtwissen) drei
verschiedene Gleichungen zugeordnet:

34) Cf. W. Habicht, Einleitung zu O.II,20, p. 50.
35) Cf. J. Ackeret, Untersuchung einer nach den Eulerschen Vorschlägen (1754) gebauten Wassertur¬

bine, Schweizerische Bauzeitung 123, 1944, p. 9-15.
36) Eulers Leistungen auf dem Gebiet der Hydromechanik sind treffend gewürdigt worden von C.

A. Truesdell in den Bänden der Eulerausgabe O.II, 112. 12 und 13, in seinen hervorragenden
Essays in the History of Mechanics, Springer Berlin 1968, sowie von I. Szabó, Geschichte der
mechanischen Prinzipien und ihrer wichtigsten Anwendungen, Birkhäuser, Basel 19792, p. 225-
257. Dieses vorzügliche Buch wird im folgenden kurz zitiert als "Szabó, Prinzipien".

37) Daniel Bernoulli, Hydrodynamica, Strassburg 1738.
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cbbccxLix,
Abb. 5

1) Unter dem Namen "Bernoullische Stromfadengleichung" zirkuliert der
Energieerhaltungssatz idealer (reibungsfreier) inkompressibler Flüssigkeiten

v2 p v2 ö
— +- + z=-— + -+z H konst., (1)
2g 7 2g 7

wo v (Fig. 2) die Strömungsgeschwindigkeit, g die Erdbeschleunigung, p der
Druck, y das spezifische Gewicht und z eine systembezogene Niveauhöhe
bedeuten. Die Gleichung (1) stammt von Daniel Bernoulli und beherrscht in
Verbindung mit der Kontinuitätsgleichung vQ vQ (Erhaltung der Masse) die
stationären Strömungsvorgänge, soweit v _L Q über dem Querschnitt Q als
konstant betrachtet werden kann.

2) Von Vater Johann Bernoulli stammt die Erweiterung der Gleichung (1)
für bezüglich der Zeit t instationäre Strömungen mit der Geschwindigkeit u
w(s, t)

v2 p v2 p 1 ("du
— + ^+z= — +^+z+-\ -ds, (2)
2g y 2g 7 g Js dr
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FQ9

s

Fig. 2

und das ist Johanns ureigenste Leistung, mit welcher er-in dieser Beziehung-
zweifelsfrei über Daniels Hydrodynamica von 1738 hinausging.

3) Aus den Eulerschen Bewegungsgleichungen (cf. infra) folgt als erstes
Integra] die für reibungsfrei und stationär strömende inkompressible und kom-
pressible (gasförmige) Fluide gültige Energieaussage

-+l/ + P konst.
2

(3)

worin U das Potential der Massenkraft und P J dp/fip) das sog. Druckintegral
bedeuten. Auch diese-von Euler stammende - Beziehung trägt den Namen
"Bernoullische Gleichung".

3.2.2. Das "Nouveau principe"
Von Johann Bernoullis 1742 gedruckter Hydraulica, die er allerdings schon

zwei Jahre zuvor als Manuskript einsehen konnte, wesentlich angeregt, verfasste
Leonhard Euler eine kurze Arbeit, 3S) welche "die ganze Mechanik quasi
revolutionieren sollte". Dieses "nouveau principe" lautet schlicht

dX dm d^x
dt2' dY= dm

a^y
dt2'

dZ dm
t¥z
dt2'

(4)

wo die Variablen x, y, z die Koordinaten des Massenelementes dm und dX, dY,
dZ die an diese angreifenden Kräfte bedeuten. Zwar trägt die Formelgruppe (4)
heute fälschlicherweise den Namen "Newtonsches Grundgesetz", doch ist selten
jemandem bewusst, dass dieses Prinzip in Verbindung mit dem Momentensatz
ausreicht, die Bewegung eines "wirklichen Körpers" zu berechnen, was weder
Newton noch irgendeinem seiner unmittelbaren Nachfolger möglich war. Zudem
benötigt man zu seiner Formulierung das Eulersche Schnittprinzip, d.h. das

8) Découverte d'un nouveau principe de mécanique, Mém. Ac. Sc. Berlin 6, (1750) 1752,
(E.177/O.II.5).



Vol. 56, 1983 Leonhard Euler 1707-1783 - Schlaglichter auf sein Leben und Werk 1125

(gedankliche) Herausschneiden eines Körperelementes aus dem Gesamtverband
mit den am Element angreifenden Kräften. I. Szabó:

"Mit der Phantasie des grossen Künstlers lehrte [Euler] uns, in Gedanken in die
Materie hineinzuschauen, wohin weder Auge noch Experiment eindringen
können, und hatte damit den Grundstein zur einzig wahren, nämlich der
Kontinuumsmechanik gelegt."

Greift die aus Oberflächen- und Massenkräften resultierende Kraft dK an ein
solchermassen "herausgeschnittenes" Massenelement dm an, so postuliert Euler
via Beschleunigung a das "neue Prinzip"

\d2x d2y d2z~
dK dm-a dm, -Idt2 dt2 dt2

]. (5)

Erst 25 Jahre später drang Euler zur definitiven Erkenntnis durch, dass es zur
vollständigen Bewältigung der Kontinuumsmechanik noch eines weiteren, von (5)
unabhängigen Prinzips bedarf, nämlich des Drehmomenten- oder Drallsatzes. 39)

3.2.3. Hydrostatik

Euler eröffnet seine Scientia navalis 40) mit einem wahrhaft fundamentalen
Lemma als erster Säule mit dem (modernen!) Begriff des hydrostatischen
Druckes :

"Der Druck, den das Wasser auf einen eingetauchten Körper ausübt, ist an den
einzelnen Stellen senkrecht zur Oberfläche, und die Kraft, die ein beliebiges
Element des eingetauchten Körpers erfährt, ist gleich dem Gewicht eines
geraden Wasserzylinders, dessen Grundfläche gleich dem Element der
Körperoberfläche und dessen Höhe gleich der Tiefe des Elementes unter dem
höchsten Wasserspiegel ist."

Einen weiteren Grundstein legt er bald mit seiner Definition der Stabilität einer
Gleichgewichtslage: eine solche ist stabil, wenn bei einer kleinen Auslenkung a
(sin a~a) aus den zur Ruhelage zurücktreibenden Kräften eine harmonische
Schwingung resultiert - und das versteht Euler unter seiner "Methode der kleinen
Schwingungen".

Die zweite Säule errichtet er mit der Darstellung der
Gleichgewichtsbedingungen inkompressibler und kompressibler Fluide. Kurz und
modern notiert lassen sich Eulers Ideen etwa so wiedergeben:

P Pix,y,z), Q Q(x,y,z), R R(x,y,z)
seien die Orthogonalkomponenten der auf das Fluid pro Masseneinheit
einwirkenden Kräfte. Die Gleichgewichtsbedingung am Element in der x -Richtung
fordert

Pq dx dy dz dx dy dz 0 (q Dichte, p Druck),

39) Cf. B. L. van der Waerden, Eulers Herleitung des Drehimpulssatzes, EGB 83, p. 271-281.
40) Cf. die Werktabelle Abschnitt 1.3, (E.110, lll/O.II, 18,19).
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somit

— qP,
dx

M

und entsprechend für die y- und z-Richtung

f qQ und d/ qR.
dy dz

Also gilt für das totale Differential

dp — dx +— dy +— dz q(Pdx + Q dy + R dz). (6)
dx öy dz

Euler zieht die Schlussfolgerung, dass mögliches Gleichgewicht an die
Integrabilität von (6) gebunden ist, und das wiederum hängt von gewissen
Relationsbedingungen der Funktionen P, Q und R ab. Im positiven Fall etwa ist

dV dV dV
Pdx + Qdy + Rdz=dV — dx + — dy +— dz

dx 3y dz

ein totales Differential und integrierbar, wenn die Beziehungen

dPdQ dPdR dO dR

ôy dx ' 3z to' dz ôy

statthaben. Jedoch muss in (6) dp q dV die Dichte q noch immer derart sein,
dass rechts ein totales Differential auftritt; dies trifft z.B. zu unter den
Bedingungen

d(qP)_d(qO) djqP) djqR) djqQ) JjqR)
3y dx ' dz dx dz 3y

Ist q beispielsweise konstant, so liegt Inkompressibilität vor. Im Schwerefeld ist
P Q 0, R —g, sodass (6) dp —g dz liefert, und für den Fall q (=p) konst.
ergibt sich mit der Intergrationskonstanten h die wohlbekannte Formel

p pg(h-z) y(h-z),
d.h. der Druck nimmt mit der Tiefe linear zu.

3.2.4. Hydrodynamik 41)

Die fundamentalen Bewegungsgleichungen der Fluide hat Euler in einer
Arbeit 42) von 1755 niedergelegt. Mittels seines oben dargelegten Schnittprinzips
und der Anwendung des "neuen Prinzips" (4) ermittelte Euler-wenn wir es
stilisiert betrachten - den Geschwindigkeits-, Druck- und Dichtezustand in jedem
Punkt des Fluides, der durch die Koordinaten x, y, z zum Zeitpunkt t unter der
Einwirkung der gegebenen spezifischen Orthogonalkraftkomponenten P, Q, R
charakterisiert ist. Die Geschwindigkeitskomponenten seien u, v, w, p der Druck

1) Cf. die ausführlichere Darstellung in Szabó, Prinzipen, III, E,3.
2) Principes généraux du mouvement des fluides, Mém. Ac. Sc. Berlin 11, (1755) 1757,

(E.226/O.II.12).
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und q die Dichte. Alle diese Grössen einschliesslich P, Q und R sind als
Funktionen von x, y, z, t zu betrachten. Nun führt Euler (sehr modern gedacht!)
für irgendeine dieser Funktionen / f(x, y, z ; t) das totale Differential

df ^-dt + ^-dx+^-dy+^-dz (8)
dt dx ay dz

ein und erläutert daran sehr ausführlich die Anteile der lokalen (mit df/dt
verbundenen) und der konvektiven Aenderung, die zusammen die-wie man es
heute nennt - substantielle Aenderung

-V=-U+K^+Vdy+dldz
dt dt dx dt ôy dt dz dt

ausmachen. 43) Befindet sich nun ein Fluidelement mit den Geschwindigkeitskomponenten

u, v, w zur Zeit t am Ort x, y, z und zur Zeit t + dt am "Nachbarort"
x + dx, y + dy, z + dz, dann gilt für ein und dasselbe Fluidteilchen

vdt, dz w dt,dx - udt, dy-
also

dx
dt

'- u,
dy
7rv>

dz
Jt W>

und es folgt in Verbindung mit (9) die "Eulersche Differentiationsregel"

df df df df Bf
— h U+— V-\ W, (10)
dt dt dx ôy dz

woraus sich sofort die Beschleunigungskomponenten ergeben:

du

dt
du du du du

1 u-\ v-\ w
dt dx By dz

dv

dt
dv dV dV dV
—l— u-\— v-\— w
dt dX ôy dz

(11)

dw dW dW dW dW
—— 1 u-\ v-\ w.
dt dt dx ôy dz

Betrachten wir nun gemäss Eulers "neuem Prinzip" (6) ein quaderförmiges
Fluidelement mit den Kantenlängen dx, dy, dz, so haben wir beispielsweise in der
x-Richtung

du _ 3p
q dx dy dz— q dx dy dzP dx dy dz

dt dx

und erhalten daraus, unter Verwendung der entsprechenden y-, z-Analogien, die
Eulerschen Bewegungsgleichungen

du_T>\Bp, eü-ri----^-- dw-T2 *dP. /io)
dt q dx ' dt q By

' dt q dz '

3) Das Symbol d für die partielle Differentiation benutzte Euler noch nicht.
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hier sind die substantiellen Ableitungen nach (11) zu bilden. Allerdings reichen
diese drei Gleichungen zur Bestimmung der fünf Variablen u, v, w, p und q nicht
aus, und Euler wusste das natürlich sehr wohl. Er behalf sich wie folgt: Das
Volumenelement dV dx dy dz zur Zeit t ergibt sich nach Ablauf der Zeit t + dt
mittels einer linearen Transformation als

,rr, l\ (du Bv Bw\ ,1dV'=\l + — + — + —)dt \dxdydz,
L \Bx 9y dz I JBy

und die Dichte q wird dann zu

q' q +
3q ôq dq Bq \

— + —u+—v + —w\ dt.
dt dx 3y Bz I

Nach dem Massenerhaltungssatz ist aber q dV q' dV, und die Kombination
dieser drei Gleichungen liefert direkt die Kontinuitätsgleichung

dq
|

d(uq)
|

d(pq)
|

d(wq)
Q

dt dx öy dz

Handelt es sich um inkompressible Fluide (q konst.), so vereinfacht sich (13) zu

du dV BW _ A.— + — + — 0, (14)
Bx By Bz

und für diesen Fall determinieren die Gleichungen (12) und (14) den
Strömungszustand.

Mit der Voraussetzung nun, dass auch u, v, und w bekannte Funktionen sind,
gelangt Euler unter Berücksichtigung des Druckes p zur Gleichung

— Pdx + Qdy + Rdz-(Udx + Vdy + Wdz) (15)
q

mit

U U(u, v, w), V V(u, v,w), W= W(u, v, w),

also beispielsweise

du du du du
U =U hv hW 1

dX ôy dz dt

Die Gleichung (15) kann längs Verbindungswegen integriert werden, wenn q
q(p). Wesentlich einfacher wird alles, wenn die Geschwindigkeitskomponenten
von der Art sind, dass

udx + vdy + wdz dd> (16)

ein totales Differential ist, bezw. dass ein Geschwindigkeitspotential cp

4>(x, y,z;t) existiert derart, dass

deh Beb Beb

»=77; v=f^; w=-f, 17)
Bx By dz

was physikalisch bedeutet, dass die Fluidpartikel sich wirbelfrei fortbewegen.
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Aus (15) erhält Euler somit für das Druckintegral den Ausdruck

wo V das zum Kraftfeld P, Q, R gehörige Potential bedeutet mit

„ BV _ BV BV
P —, Q=—, R= —.Bx By Bz

(Dass diese Beziehung auch heute noch eine wichtige Rolle spielt, ersieht man
etwa aus I. Szabó, Höhere Technische Mechanik, 6. Aufl., Berlin et al., Springer
1977, p. 477f.)

Damit ist die sogenannte klassische Hydromechanik durch Euler vollendet.
44) Die Berücksichtigung der Temperatur führt zur allgemeinen Zu-
standsgleichung für die idealen Flüssigkeiten (einschliesslich der Gase), doch
danach konnte auch ein Euler mangels einer Thermodynamik in seiner Zeit nicht
greifen, obwohl er es (in Ansätzen) versucht hat. Die Frage nach dem
(allgemeinen) Strömungszustand führt auf Anfangs- und Randwertprobleme.

Zum Abschluss dieses Kapitels zitieren wir eine treffende Chakterisierung
der Eulerschen Gewaltleistung aus der Feder des wohl ersten Kenners 45) der
Eulerschen medianica:

"Diese Eulersche Theorie der Flüssigkeiten besitzt eine kaum zu
überschätzende Wichtigkeit. Ihre Grundgesetze wurden von Euler in Form
einiger einfacher und schöner Gleichungen formuliert, die mit knapper
Erklärung auf eine Postkarte geschrieben werden könnten. Es ist eine der
tiefsinnigsten Seiten des Buches der Natur. Erstens war es die erste
Formulierung einer Teilerfassung der Erfahrungswelt mit Hilfe des Modells des
kontinuierlichen Feldes. Zweitens hat die ideale Flüssigkeit als Musterbeispiel
oder Ausgangspunkt für viele spätere physikalische Modelle bis in die heutige
Zeit gedient. Drittens ist ein ganz neuer Zweig der reinen Analysis, die Theorie
der partiellen Differentialgleichungen, daraus entstanden. Dies sind alles
verborgene, erst später bewiesene Folgerungen der Eulerschen Theorie. In der
Mechanik erscheint Euler nicht so sehr als Rechner oder Löser besonderer
Probleme, vielmehr als der Schöpfer der Begriffe. Seine Leistungen in der
Mechanik bilden einen Triumph der mathematischen Denkweise."

Epilog

Eulers Ansehen und Einfluss waren schon zu seinen Lebzeiten beeindruk-
kend. Während etwa zwei Dezennien war er der geistige Führer der gebildeten

Zu Eulers Rolle in der Frühperiode der theoretischen Hydraulik greife man zu G. K. Mikhailov,
Leonhard Euler und die Entwicklung der theoretischen Hydraulik im zweiten Viertel des 18.
Jahrhunderts, EGB 83, wo auch die Verdienste von Johann und Daniel Bernoulli gewürdigt und
sorgfältig gegen diejenigen Eulers abgegrenzt werden, soweit dies heute überhaupt möglich ist.
Ferner sei nachdrücklich auf die Studie von W. Habicht, Einige grundlegende Themen in
Leonhard Eulers Schiffstheorie, EGB 83, hingewiesen.
C. A. Truesdell, Eulers Leistungen in der Mechanik, Extrait de l'Enseignement Mathématique
III, fase. 4 (1957).
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Kreise im protestantischen Teil Deutschlands. Unschätzbare Dienste leistete er
als "goldene Brücke zwischen zwei Akademien", wovon seine Korrespondenzen
ein ebenso eindrückliches Zeugnis ablegen wie die Tatsache, dass während seiner
Berliner Zeit 1741-1766 in den Petersburger Akten (den Zeitschriftenbänden der
Akademie) 109 Publikationen aus seiner Feder stammten, gegenüber 119 in den
Memoiren der Preussischen Akademie. Insgesamt hat Euler zwölf internationale
Akademiepreise gewonnen, die acht Preise seiner Söhne Johann Albrecht (7) und
Karl (1), die man substantialiter ruhig auch auf sein Konto buchen kann, nicht
mitgerechnet. Louis XVI schenkte ihm für seine "zweite Schiffstheorie" 1000
Rubel, und Katharina IL, die sich nicht lumpen lassen wollte, bescherte ihn mit
dem doppelten Betrag.

Einhellig ist das Urteil der bedeutendsten Mathematiker nach Euler. Laplace
pflegte seinen Studenten zu sagen: "Lisez Euler, c'est notre maître à tous", und
Gauss erklärte klar und deutlich: "Das Studium der Werke Eulers bleibt die beste
Schule in den verschiedenen Gebieten der Mathematik und kann durch nichts
anderes ersetzt werden". In der Tat wurde Euler durch seine Bücher, die sich
durchweg durch höchstes Streben nach Klarheit und Einfachheit auszeichnen und
die ersten eigentlichen Lehrbücher im modernen Sinn darstellen, nicht nur zum
Lehrer Europas seiner Zeit, sondern er blieb dies bis tief ins neunzehnte Jahrhundert

hinein: die Werke Bernhard Riemanns, eines der bedeutendsten Vertreter
der ars inveniendi grössten Stils, tragen unverkennbare Eulersche Züge. Gotthelf
Abraham Kästner, dem wir die erste deutsche Mathematikgeschichte verdanken,
prägte den treffenden Vergleich, dass im mathematischen Stil d'Alembert der
Deutsche sei und Euler der Franzose, und Carl Gustav Jacob Jacobi schloss sich
diesem Urteil an. Henri Poincaré berichtet, dass nach Theodore Strong "Euler
der Gott der Mathematik sei, dessen Tod den Niedergang der mathematischen
Wissenschaften markiere". Und wirklich waren Euler, d'Alembert und Lagrange,
die im letzten Drittel ihres Jahrhunderts gewissermassen ein mathematisches
Triumvirat bildeten, unleugbar von dem Gefühl einer hereinbrechenden
décadence touchiert, wie man aus ihren Korrespondenzen ersehen kann. Wenn
sie glaubten, keine geistigen Erben zu haben, so hängt dies wohl damit zusammen,

dass man "auf den Gipfeln alleine ist".
Doch auch prominente Zeitgenossen scheinen ähnlich empfunden zu haben.

So schrieb Denis Diderot, das Haupt der Encyclopédie, in seinen "Gedanken zur
Interpretation der Natur" (1754): "Wir stehen vor einer grossen Umwälzung in
den Wissenschaften. Bei der Neigung, die die Geister jetzt, wie mir scheint, zur
Moral, zur schönen Literatur, zur Naturgeschichte und zur experimentellen
Physik haben, möchte ich fast versichern, dass man in Europa vor Ablauf eines
Jahrhunderts nicht drei grosse Mathematiker zählen wird. Diese Wissenschaft
wird plötzlich dort stehenbleiben, wo die Bernoulli, Euler, Maupertuis, Clairaut,
Fontaine, d'Alembert und Lagrange sie verlassen haben. Sie werden die Säulen
des Herkules errichtet haben. Man wird nicht darüber hinausgehen. Ihre Werke
werden in den kommenden Jahrhunderten fortbestehen wie jene ägyptischen
Pyramiden, deren hieroglyphenbedeckte Steinmassen bei uns eine erschreckende
Idee von der Macht und den Hilfsmitteln der Menschen hervorrufen, die sie
erbaut haben." Nun-die Geschichte hat derlei Ressentiments schlagend widerlegt,

denn nirgends treffender als im Reich des Mathematischen gilt das Wort
Johannis: Der Geist weht, wo er will.

Gewiss hat man oftmals - fast immer zu unrecht - auf vermeintlich eindeutige
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Schwächen im Werk Eulers hingewiesen, hauptsächlich auf das angeblich
unzulässige Umspringen mit dem Begriff des Unendlichen, sei es im Grossen
(Reihentheorie) wie auch im Kleinen. Um Konvergenz- und Stetigkeitskriterien
im modernen Sinne wie auch um die logisch exakte und geschlossene Fundierung
der Analysis im Sinne der ars demonstrandi eines Cauchy, Bolzano oder Weier-
strass konnte er sich gar nicht kümmern, da ein (im heutigen Sinne) strenger
Beweis etwa für das Cauchysche Konvergenzkriterium erst nach einer Definition
der reelen Zahlen - also frühestens 1870 - ermöglicht wurde. Euler verliess sich -
nur vereinzelt erfolglos - auf seine erstaunliche Instinktsicherheit und
algorithmische Kraft. Und hat nicht gerade Euler, der mehr als jeder andere
Sterbliche geforscht und gesucht hat, einen unbedingten Anspruch auf die Worte
von Karl Weierstrass, des Meisters der Strenge: "Dass dem Forscher, solange er
sucht, jeder Weg gestattet ist, versteht sich von selbst", umso mehr als Georg
Cantor, der Schöpfer der (nicht "naiven"!) Mengenlehre, das Wesen der
Mathematik gerade in der Freiheit erblickt? Gewiss ist Eulers analytisch-
algorithmischer Funktionsbegriff - ein Bernoullisches Erbstück-zu eng und zu
speziell und erfordert geradezu naheliegende, aber aus heutiger Sicht "verbotene"
Verallgemeinerungen, deren gefährliche Klippen Euler nur zu umschiffen
vermochte mit seiner grenzenlosen Phantasie - conditio sine qua non für einen
schöpferischen Mathematiker - und einer kaum fassbaren algorithmischen
Virtuosität, die es ihm erlaubte, die gestellten Probleme von den verschiedensten
Seiten anzugreifen, die gewonnenen Resultate zu kontrollieren und nötigenfalls
zu berichtigen.

Andreas Speiser (1885-1970), der einen grossen Teil seines Lebens Eulers
Werk gewidmet hat, betonte wieder und wieder: "Noch viele Schätze sind in
Eulers Werk zu heben, und wer Prioritäten jagen will, findet kein dankbareres
Gefilde". -Tatsächlich wird noch einige Zeit verstreichen, bis das gewaltige Werk
vollständig im Druck zugänglich sein wird, und eine Werkbiographie des
prominentesten Auslandschweizers steht noch aus. Freilich - ein solches Unterfangen
wäre gleichbedeutend mit der Abfassung einer Geschichte der mathematischen
Wissenschaften des achtzehnten Jahrhunderts.
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