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Leonhard Euler 1707-1783
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Elephants are always drawn
smaller than live . . .
Johathan Swift

Prolog

Er entgeht auf natiirliche Weise dem gewohnlichen Schicksal der meisten
“Gefeierten”, nur gerade in einem kalendarisch markanten Jahr literarisch be-
dacht zu werden: als Folge des rithmlichen Beschlusses der Schweizerischen
Naturforschenden Gesellschaft ') vom 6. September 1909 erschien seit 1911 bis
heute (im Durchschnitt) jahrlich ein Band von Eulers Opera omnia 2), und noch
immer ist das Gesamtwerk dieses Geistesgiganten im Druck nicht vollstindig
zuganglich. Das Burckhardt- Verzeichnis >) listet mehr als 700 Abhandlungen und
Biicher iiber Leonhard Euler auf, die zeitlich im allgemeinen regellos verteilt seit
Eulers Tod ihre —meist bewundernden — Verfasser gefunden haben, und als
ausseres Zeichen der Anerkennung schliesslich widmete 1979 die Schweizerische
Nationalbank dem grossten Basler aus dem kleinsten Kanton die kleinste Bank-
note mit der grossten Auflage. *) Muss es da nicht als selbstverstandlich
erscheinen, dass Volk und Regierung des Stadtstaates Basel Leonhard Euler
anlasslich der 200. Wiederkehr seines Todestages einen stattlichen Gedenk-
band °) gestiftet haben?

Die sogenannten exakten Wissenschaften sind in den letzten Jahrzehnten
infolge ihres Missbrauchs hinsichtlich technologischer und oekologischer Anwen-
dungen stark in Misskredit geraten—und leider nicht nur zu unrecht. Dennoch
soll und darf uns dieser Umstand nicht daran hindern, im Rahmen des ge-
schichtlichen Kulturganzen und in der Ziellinie eines (immer noch nicht veralteten)
“wissenschaftlichen Humanismus” die Leistungen der wahrhaft bedeutendsten
Vertreter des Menschengeschlechts gebuhrend zu wiirdigen; Euler war namlich
nicht nur der weitaus produktivste Mathematiker der Menschheitsgeschichte,
sondern auch einer der grossten Gelehrten aller Zeiten. Kosmopolit im wahrsten
Sinne des Wortes — er verlebte die ersten zwanzig Jahre in Basel, wirkte insge-
samt iiber dreissig Jahre in St. Petersburg (heute Leningrad UdSSR) und ein
Vierteljahrhundert in Berlin (damals Preussen)—gelangte er wie nur wenige

5 Cf. J. J. Burckhardt, Die Euler-Kommission der Schweizerischen Naturforschenden Gesellschaft —
ein Beitrag zur Editionsgeschichte, in: Leonhard Euler 1707-1783, Gedenkband des Kantons
Basel-Stadt, Birkhauser Basel 1983, p. 501ff. (Dieser Gedenkband wird hier kiinftig als “EGB
83 zitiert und das darin enthaltene “Burckhardt-Verzeichnis” kurz mit “BV?”’).

2 Cf. EGB 83 p.508 f.; Leonhard Euler, Opera omnia, Verlagsprospekt Birkhiuser, Basel,
Boston, Stuttgart 1982,

%)  Cf. EGB 83 p. 511-552.

%) Angesichts der ehrenvollen Beriicksichtigung Eulers durch die Schweizerische Nationalbank ist
man gerne geneigt, die zwei etwas peinlichen astronomisch-physikalischen Fehler zu verzeihen,
die sich in die so sinnreich und prichtig gestaltete Zehnfranken-Banknote eingeschlichen haben:
die falsche Richtung des Kometenschweifs und die Darstellung von finf (statt der zu Eulers Zeit
bekannten vier) Jupitermonden (von welchen erst noch zwei in derselben Bahn laufen!). -
Denjenigen, die sich mit dem noch dickeren Fehler auf der englischen ‘‘Newton-Einpfund-
Jubildumsbanknote” (1977) trdsten wollen, auf welcher die Sonne im geometrischen Zentrum
statt in einem Brennpunkt der Ellipse steht, sei auf Euripides verwiesen, wo es etwa heisst:

“Ein Tor, der nach des Nachbars Kinderstreichen
sich Trost schafft fir das eig’'ne schwache Tun;
der immer um sich spiht und schaut und nun
sich seinen Wert bestimmt nach falschen Zielen™.

%y  Cf. Anm. 1.



Vol. 56, 1983 Leonhard Euler 1707-1783 — Schlaglichter auf sein Leben und Werk 1101

Gelehrte zu einer Popularitit und Berithmtheit, wie sie etwa mit derjenigen von
Galilei, Newton oder Albert Einstein verglichen werden kann.

Der Rahmen des hier vorliegenden Versuchs einer Wiirdigung ist folgender-
massen abgesteckt:

Zur Entlastung der Darstellung von biographischen Daten wie auch zur
allgemeinen Uebersicht wird zunéchst eine tabellierte Kurzvita gegeben. Ihr
folgen zwei kurze Abschnitte iiber Eulers Charakter und sein (dusseres) Werk, ©)
begleitet von einer chronologisch aufgebauten Liste der Hauptwerke Eulers, 7
deren dort angegebene ‘“Kurztitel” im vorliegenden Text als Kennzeichnung
verwendet werden. Das eigentliche Kernstiick bilden die sieben “wissen-
schaftlichen Kapitel” in Uebersichten.

1. Zu Leben und Werk

1.1. Kurzvita Leonhard Eulers

1707 am 15. April in Basel (Schweiz) als Sohn des reformierten Pfarrers Paul
Euler und Margaretha Brucker geboren.

1720 Leonhard bezieht die Basler Universitit, welche schon im Jahre 1460
gegriindet wurde. Anféanglich studiert er Theologie, orientalische Sprachen
und Geschichte, bald jedoch Mathematik bei Johann Bernoulli (1667-
1748), der nach dem Tod von Isaac Newton (1643-1727) zum weltgrossten
Mathematiker avancierte. Bernoulli erkannte im jungen Euler schon frith
den zukiinftigen ‘Mathematikerfursten” und forderte ihn entscheidend
durch Hinweise auf die Werke der Meister, vor allem jedoch durch seine
personliche Unterweisung in den damaligen Frontgebieten mathematischer
Forschung.

1727 Euler bewirbt sich mit einer Dissertation Ueber den Schall um die vakante
Physikprofessur in Basel, kam jedoch als erst Zwanzigjahriger nicht in die
Riange. So folgt er einem durch die Bernoullis vermittelten Ruf an die 1725
von Peter dem Grossen gegriindete Akademie der Wissenschaften in St.
Petersburg. Hier wirkt er zunachst als Adjunkt, dann ab 1731 als Professor
und Akademiemitglied (ohne Lehrverpflichtung, wenn man von der Au-
torschaft elementarmathematischer Unterrichtmittel absieht). Die Haupt-
werke dieser “ersten Petersburger Periode” sind die zweibédndige
“Mechanik”, die “Musiktheorie” und die doppelbandige ‘‘Schiffstheorie™,
die allerdings erst spater im Druck erschien.

1734 Anfang Januar Heirat mit Katharina Gsell, einer Tochter des in St. Peters-
burg wirkenden Schweizer Kunstmalers Georg Gsell. Ende November
Geburt des Sohnes Johann Albrecht, der als einziger Sprossling Leonhards
Mathematiker und in der Akademie sein Nachfolger werden sollte. Von

%) Umfassendere Information findet der interessierte Leser in EGB 83. Einen Gesamtiiberlick iiber
Eulers Werke bieten die in Anm. 1 und 2 genannten Schriften.

7y Zuweilen werden die Beziige auf dic Werke Eulers hier abgekiirzt zitiert, und zwar in der
Reihenfolge: Nummer des Enestrom-Verzeichnisses (cf. EGB 83, p. 521), Serie der Opera
omnia, Band, ev. Seitenangabe. Ein Beispiel moge diese Praxis verdeutlichen: E.65/0.1,24,
p. 231 f. verweist auf Eulers Methodus inveniendi lineas curvas. . . im Band 24 der Serie I, Seiten
231 f. Eine Tabelle zur Auffindung der Abhandlungungen und Biicher Eulers in den Opera
omnia bei bekannter Enestrom-Nummer ist in den beiden bis heute erschienenen Binden O.IV
AL, p.529 f. und O.IV A5, p. 525 {. leicht zugénglich.
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den insgesamt 13 Kindern Leonhard Eulers uberlebten ihn bloss drei, die
ihm jedoch 21 Enkel hinterliessen.

1738 Verlust des rechten Auges durch einen gefahrlichen Abszess.

1741 Im Hinblick auf die politischen Wirren im Russischen Reich akzeptiert
Euler einen Ruf Friedrichs des Zweiten an die neu zu griindende Preus-
sische Akademie (“Berliner Akademie’) und siedelt mit seiner Familie
nach Berlin iiber. Dort amtiert er als Prasident der Mathematischen Klasse.
Maupertuis, der sich mit der spektakuliaren Lapplandexpedition von 1736
(Gradmessung zwecks Nachweis der Abplattung der Erde) einen Namen
gemacht hatte, wurde Prisident der Akademie — als Wissenschafter jedoch
weit unter Euler stehend.

In der Berliner Periode entstanden neben hunderten von Abhandlungen
Eulers Hauptwerke zur Variationsrechnung, zur Funktionentheorie, zur
Differentialrechnung, sowie die sogenannte ‘“‘zweite Mechanik” und die
“Philosophischen Briefe”. Auch das Konzept der so beriihmt gewordenen
“Algebra” datiert noch aus der Berliner Zeit. Wahrend dieser Periode
unterhielt Euler ohne Unterbruch aktive Beziehungen zur Petersburger
Akademie und wirkte als “‘goldene Briicke” zweier Akademien mit
Weltgeltung.

1766 Das Unverstindnis und Fehlverhalten Friedrichs des Zweiten erleichtert
Euler die Annahme eines Rufes der russischen Kaiserin Katharina II nach
Petersburg, wo er bis zu seinem Tod verblieb.

1771 Als Folge einer missgliickten Staroperation verliert der Mathematiker auch
sein linkes Auge und erblindet fast vollig. Wahrend der grossen Feuersbrunst
in Petersburg wird er mit knapper Not vom Basler Handwerker Peter Grimm
aus dem brennenden Haus gerettet. Nun steigert Euler seine Produktion ins
Unvorstellbare: rund die Hilfte seines gewaltigen Opus entstand in der
“zweiten Petersburger Periode”, darunter die dreibandige ‘‘Intergralrech-
nung’’, die ebenfalls dreibdndige ‘‘Dioptrik’” sowie die endgiiltige Fassung
der ““Algebra”.

1773 Nach dem Tod der Gattin Katharina heiratet Euler 1776 deren Halb-
schwester Abigail Gsell.

1783 am 18. September erleidet Euler einen Schlaganfall und stirbt rasch und
schmerzlos.

1.2. Eulers Charakter

Ueber den Charakter Eulers dussern sich alle Zeitgenossen und Biographen
einhellig: er war ein Sonnenkind, wie die Astrologen sagen wiirden, von offenem
und heiterem Gemiit, unkompliziert, humorvoll und gesellig. Obwohl in seiner
zweiten Lebenshilfte recht wohlhabend, war er in materieller Hinsicht be-
scheiden, stets frei von jeglichem Diinkel, niemals nachtragend, dabei selbst-
bewusst, kritisch und draufgangerisch. Zuweilen konnte er leicht aufbrausen, um
sich jedoch sogleich wieder zu beruhigen, ja iiber seinen eigenen Ausbruch zu
lachen. In einem Punkt aber verstand er keinen Spass: in der Frage der Religion
und des christlichen Glaubens. Eulers Strengglaubigkeit ist der Schliissel zum
Verstandnis vieler wichtiger Fakten in seinem Leben, so zum Beispiel fiir seine
unerbittliche Verfolgung der Leibniz’schen Monadenlehre Wolff’scher Pragung
wie auch fiir seine heftigen Attacken gegen gewisse Enzyklopadisten und andere
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“Freygeister”, die er 1747 in seiner theologischen Schrift ‘“‘Rettung der gottlichen
Offenbahrung. . . ritt. Trotzdem war Eulers (gelebte!) Toleranz bei weitem
ehrlicher und ausgeprégter als diejenige seines koniglichen Herrn, der sich ihrer
nur als Schlagwort bediente und sie stracks vergessen konnte, wenn ihm ihre
Anwendung auch nur im geringsten hinderlich war.

Auch in wissenschaftlichen Besitzanspriichen war Euler iiberaus bescheiden;
er kannte—im Gegensatz zu den meisten Gelehrten aller Zeiten - nie
Prioritatshandel, ja er verschenkte zuweilen generds neue Entdeckungen und
Erkenntnisse. In seinen Werken versteckt er nichts, sondern legt die Karten stets
offen auf den Tisch und bietet dem Leser die gleichen Voraussetzungen und
Chancen, Neues zu finden, ja er fithrt ihn oft dicht an die Entdeckung hinan und
uberlasst thm die Entdeckerfreuden—die einzig wahre Padagogik: Das macht
Eulers Biicher dem Lernenden zum Erlebnis, unterhaltsam und spannend zu-
gleich. Das Gefiihl des Neides muss diesem erstaunlichen Menschen absolut fremd
gewesen sein; er gonnte jedem alles und freute sich stets auch an den neuen
Entdeckungen anderer. Dies alles war ihm nur moglich, weil er geistig so
unermesslich reich und psychisch in selten anzutreffendem Masse ausgeglichen
war.

Das Phidnomen Euler ist wesentlich an drei Faktoren gebunden: erstens an
dic Gabe eines wohl einmaligen Gedichtnisses. Was Euler je gehort, gesehen
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oder geschrieben hatte, scheint sich ihm fiir immer fest eingepriagt zu haben.
Davon gibt es unzihlige zeitgenossische Zeugnisse. Noch in hohem Alter soll er
beispielsweise seine Familienangehorigen, Freunde und Gesellschaften mit der
wortgetreuen (lateinischen) Rezitation jedes beliebigen Gesanges aus Vergils
Aeneis entziickt haben, und Protokolle der Akademiesitzungen kannte er nach
Jahrzehnten (!) noch auswendig-von seinem Gedichtnis fiir mathematische
Belange ganz zu schweigen. Zweitens war seine gewaltige Gedachtniskraft
gepaart mit einer seltenen Konzentrationsfahigkeit. Larm und Betrieb in seiner
unmittelbaren Umgebung storten ihn kaum in seiner Gedankenarbeit. “Ein Kind
auf den Knien, eine Katze auf dem Riicken, so schrieb er seine unsterblichen
Werke”, berichtet sein Freund und Kollege Thiébault. Der dritte Schliissel zum
“Mysterium Euler” besteht schlicht in steter, ruhiger Arbeit.

1.3. Zum Werk

Allein schon im Hinblick auf seine Produktivitat ist Euler ein einzigartiges
Phanomen. Das 1910-1913 erschienene Verzeichnis (Gustaf Enestréom) von
Eulers damals gedruckt vorliegenden Schriften ®) weist 866 Nummern auf, und
die grosse (schweizerische) Euler-Werkausgabe, an welcher seit der letzten Jahr-
hundertwende viele Fachleute verschiedener Nationen gearbeitet haben und noch
immer arbeiten, umfasst bis heute rund 70 Quartbande, denen noch 14 Biande
“Briefe und Manuskripte” folgen sollen. (Die Ausgabe erfolgt stets in Eulers
Originalsprachen, °) also mehrheitlich in Latein und Franzosisch, selten deutsch).

Rein vom Umfang seiner Arbeitsleistung her gesehen bleibt Euler nicht
hinter den produktivsten Vertretern des Menschengeschlechts wie etwa Voltaire,
Goethe, Leibniz oder Telemann zuriuck. Hier sei eine nach Dekaden geordnete
tabellarische Uebersicht iiber die Quantitat der von Euler druckfertig gemachten
Schriften wiedergegeben '°) (allerdings ohne Berticksichtigung einiger Dutzend
Arbeiten, die noch nicht datiert werden konnten):

Jahre Arbeiten % Jahre Arbeiten %
1725-1734 35 4 1755-1764 110 14
1735-1744 50 10 1765-1774 145 18
1745-1754 150 19 1775-1783 270 34

Auf die Fachdisziplinen bezogen ergibt sich der jeweilige prozentuale Anteil
etwa folgendermassen:

Algebra, Zahlentheorie, Analysis 40%
Mechanik, iibrige Physik 28%
Geometrie, einschliesslich Trigonometrie 18%
Astronomie 11%
Schiffswesen, Architektur, Artilleristik 2%

Philosophie, Musiktheorie, Theologie und anderes 1%

2 Gustaf Enestrom, Verzeichnis der Schriften Leonhard Eulers, Jahresbericht der Deutschen
Mathematiker-Vereinigung, Erginzungsband 4, 1. Lieferung 1910, 2. Lieferung 1913.

%) Samtliche in der vierten Serie der Opera omnia edierten lateinischen Briefe und Dokumente
erscheinen simultan in moderner Uebersetzung (deutsch oder franzdsisch).

%) Wir folgen hier der Darstellung des wohl besten Eulerkenners unserer Zeit, A. P. JuSkevi¢ (cf.
EGB 83, p. 551).
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(In dieser Aufstellung sind die ca. 3000 bis heute bekannten Briefstiicke sowie die
noch unedierten Manuskripte nicht beruicksichtigt).

Hauptwerke Leonhard Eulers
(in Kurztiteln), chronologisch nach Druckjahren geordnet
1736  Mechanica (2 Binde)

1738
1740

1739  Tentamen novae theoriae musicae («Musiktheorie»)

Rechenkunst (2 Bande)

1744  Methodus inveniendi («Variationsrechnung»)

1744  Theoria motuum plaﬁetarum et cometarum («Himmelsmechanik»)
1745  Neue Grundsdtze der Artillerie

1747  Rettung der gottlichen Offenbarung gegen die Einwiirfe der Freygeister
1748  Introductio in analysin infinitorum («Einfihrung», 2 Binde)

1749  Scientia navalis («Schiflstheorie», 2 Binde)

1753  Theoria motus lunae («Erste Mondtheorie»)

1755  Institutiones calculi differentialis («Differentialrechnung», 2 Bénde)
1762  Constructio lentium objectivarum («Achromatische Linsen»)

1765  Theoria motus corporum («Zweite Mechanik»)

1766  Théorie générale de la dioptrique («Linsentheorie»)

1768  Lettres a une Princesse d’ Allemagne («Philosophische Briefe», 2 Bande)
1768  Institutiones calculi integralis («Integralrechnung», 3 Bénde bis 1770)
1769  Dioptrica («Optik», 3 Bénde bis 1771)

1770 Volistindige Anleitung zur Algebra («Algebra», 2 Bande, 1768 Vorab-
druck einer russischen Ubersetzung)

1772  Theoria motuum lunae («Zweite Mondtheorie»)

1773  Théorie complette de la construction et de la manoeuvre des vaisseaux
(«Zweite Schiffstheorie»)

2. Reine Mathematik

2.1. Zahlentheorie und Algebra

In der Zahlentheorie fiihrt eine direkte Linie von Diophant (um 250) tiber
Fermat (1601-1665) zu Euler. Fermat hinterliess seinen nach ihm benannten
“kleinen Satz”, dass fiir irgendeine Primzahl p und jede dazu teilerfremde
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naturliche Zahl n die Zahl n® —n durch p teilbar sei, ohne Beweis. Eulers
Beschaftigung mit diesem Satz, die mit einem eleganten Beweis gekront wurde,
fiihrte schliesslich zur Theorie der Reste nach einem Modul und gipfelte in Eulers
wohl bedeutsamster Entdeckung auf diesem Gebiet: im Gesetz der quadratischen
Reziprozitiat. Euler selbst vermochte zwar das Gesetz nicht zu beweisen, und auch
A.-M. Legendre (1752-1833) gab 1785 bloss einen unvollstindigen Beweis. Erst
C. F. Gauss (1777-1855) gelang 1801 der vollige Durchbruch, und eine Aus-
dehnung des Gesetzes auf andere Zahlbreiche und hohere Potenzreste bewerk-
stelligten Ernst Kummer (1810-1893), David Hilbert (1862-1943) und Emil
Artin (1898-1962). Von ungewdhnlicher Fruchtbarkeit war eine weitere, noch
beruhmtere von Fermat hinterlassene Behauptung, der sogenannte ‘“‘grosse Fer-
matsche Satz”, der sich-ebenfalls ohne Beweis-als Marginalie in Fermats
Handexemplar der Diophant-Ausgabe von Bachet de Méziriac (1581-1638) vor-
findet. Es ist die Behauptung (oder Vermutung), dass die Gleichung

xn+yH=ZH

fur kein natiirliches n>2 eine Losung in von Null verschiedenen ganzrationalen
Zahlen x, y, z besitzt; (fir n =2 geht die Gleichung in den pythagoreischen
Lehrsatz iiber und lasst unendlich viele Tripel zu). Euler beweist 1753 unter
Verwendung einer ‘“‘descente infinie” die Unmoglichkeit fur den Fall n=4,
spater fiir weitere naturliche Exponenten. Fur den allgemeinen Fall war der
Unmoglichkeitsbeweis trotz bedeutender theoretischer Fortschritte bis in unsere
Tage nicht zu erbringen.

Im Anschluss an die zahlentheoretischen Ueberlegungen von Marin
Mersenne (1588-1648) gelangte Fermat zur weiteren Vermutung, dass alle
Zahlen von der Form

p=2%"+1

prim seien. Dies stimmt zwar fur die Werte von k=0, 1, 2, 3, 4, doch schon fir
k =5 ergibt sich die Zahl p = 4'294'967'297, von welcher Euler nachwies, dass sie
den Teiler 641 besitzt und folglich keine Primzahl ist.

Ebenfalls von Fermat behauptet, aber erst durch Euler bewiesen, ist der
wahrhaft schone Satz, dass alle Primzahlen von der Form p=4n+1 in eine
Summe von zwei Quadratzahlen zerlegt werden konnen, dass also immer gilt

p=4n+1=x>+y> (1)

Der Satz gilt in einer Umkehrung: Jede ganze Zahl von der Form 4n + 1, die auf
eine einzige Weise als Summe zweier teilerfremder Quadrate darstellbar ist, ist
prim. Mit dieser Einsicht gewinnt Euler ein wirksames Hilfsmittel zur Charak-
terisierung grosser Zahlen. Ein Beispiel moge dies verdeutlichen: Die Zahl
2'232'037 ist prim, da nur die Zerlegung 2'232'037 = 1>+ 1'494* nach obiger
Vorschrift moglich ist. Hingegen ist die Zahl 1'000'009 nicht prim, da sie auf zwei
Arten in eine Quadratsumme zerlegbar ist, namlich

1'000°009 = 32+ 17000% = 9722+ 2352,

Von hier aus gelangt Euler iiber die allgemeinere Darstellung von Prim-
zahlen der Struktur

p =mx*+ny* (2)
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zur Entwicklung von wirksamen Methoden zur Entscheidung tiber den allfilligen
Primcharakter grosser Zahlen, was schliesslich die Grundlage fiir die allgemeine
Theorie der bindaren quadratischen Formen abgab, die in der Folge von Lagrange
und Gauss entwickelt und ausgebaut werden sollte. Fur m =1 ergibt sich aus (2)
die Gleichung

p=x>+ny? (3)

und Euler formulierte daraus das Problem, alle natiirlichen Zahlen n anzugeben,
fiir welche gilt: Wenn eine Zahl p auf nur eine einzige Weise in der Form (3) bei
teilerfremden x und y darstellbar ist, dann ist sie prim. Beispielsweise erfiillen die
Zahlen n=1,2,3,5 unter den angegeben Voraussetzungen die Gleichung (3),
nicht aber die Zahl n =11 (Gegenbeispiel: 15=27+11.17 ist nicht prim). Euler
nannte solche Zahlen numeri idonei (“passende” oder “taugliche” Zahlen) und
suchte nach einer Methode, sie zu bestimmen. Um nicht fiir jedes n unendlich
viele Zahlen p auf ihre Darstellbarkeit gemiiss Gleichung (3) priiffen zu mussen,
stiitzte Euler die Untersuchung auf folgendes Resultat seiner Ueberlegungen ab:
Fiir jedes n, das nicht “tauglich” ist, gibt es ein natirliches m <4n, das nur auf
eine einzige Weise durch x*+ ny* darstellbar ist, obwohl m keine Primzahl ist. Mit
diesem Kriterium rechnete Euler sukzessive bis m = 1’000 und mehr durch und
machte dabei die unerwartete Entdeckung, dass nach n=1848 keine numeri
idonei mehr auftauchen: Insgesamt existieren deren nur 65, und Euler gab sie
vollstandig an:

1, 2, 3, 4, 5, 6, g 8, 9, 10,
12, 13, 15, 16, 18, 21, 22, 24, 25, 28,
30, 33, Bids 40, 42, 45, 48, 57, 58, 60,
w0, 72, 78, 85, 88, 93, 102, 105, 112, 120,

130, 133, 165, 168, 177, 190, 210, 232, 240, 253,
273, 280, 312, 330, 345, 357, 385, 408, 462, 520,
760, 840, 1320, 1365, 1848.

Es ist heute klar, dass Euler —und auch noch spater Gauss — mit den ihnen
zur Verfiigung stehenden Hilfsmitteln den Beweis fiir die Endlichkeit der numeri
idonei nicht erbringen konnten. Dies wurde erst 1934 durch Heilbronn und
Chowla geleistet.

Bei all diesen Untersuchungen operierte Euler mit elementaren arithmeti-
schen und algebraischen Methoden, doch war er auch der Erste, der analytische
Methoden in die Zahlentheorie eingefithrt hat. So arbeitete er bereits wihrend
der ersten Petersburger Periode mit der Beziehung

1 1 1 1
__|__._+_._+. =

1k k" gk 1 1 1 ’
(1‘?)(1 _¥)(1_?)' a

kiirzer geschrieben

5 L-n-2)

n=1 1 p

wobei die linke Seite die Riemannsche Zetafunktion {(k) darstellt und p die
Reihe der Primzahlen durchliuft. In diesem Zusammenhang stellt und studiert
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Euler bereits Probleme, die sich fur die Theorie der transzendenten Zahlen als
wichtig erweisen sollten. Seine von 1744 datierende Kettenbruchentwicklung der
fundamentalen Transzendenten

e= li_r)noc (1+%) =2,71828 ...,
der Basis der natiirlichen Logarithmen, wurde 1768 von Johann Heinrich Lam-
bert (1728-1777) fur die Irrationalitatsbeweise der Zahlen 7 und e aufgegriffen,
und Lindemann (1852-1939) beniitzte fiir seinen Transzendenzbeweis von 7 die
von Euler 1728 gefundene Gleichung lg (—1) = #i, wobei i die imagindre Einheit
V=1 bedeutet.

Schliesslich verwendete Euler fiir die Losung des 1740 von dem in Berlin
lebenden franzosischen Mathematikers Philippe Naudé (1684-1745) gestellten
Partitionsproblems die Koeffizienten der Potenzreihe

1_xs — e k _k(3k—1)/2
Ma-x)= ¥ :
worin die rechte Seite eine spezielle Thetafunktion darstellt, wie sie spiater C. G.
J. Jacobi in seiner Theorie der elliptischen Funktionen eingefiihrt hat.'') Heute
heisst diese Gleichung Eulersche Identitdt; in ihr begegnen wir erstmals in der
Geschichte der Mathematik einer Thetafunktion.

Als die Mathematiker des frithen 17. Jahrhunderts auf den fundamentalen
Satz stiessen, dass eine algebraische Gleichung n-ten Grades

apX" +a,x" '+ ax" 7+ +a,=0

im allgemeinen n verschiedene Wurzeln bezw. Ldsungen hat (die auch
“imaginar” sein konnen), war es eine noch durchaus offene Frage, ob das Gebiet
der imagindren Wurzeln beschriankt ist auf die Zahlen von der Form a + bi, die
man (nach Gauss) komplexe Zahlen nennt. Viele namhafte Mathematiker schlos-
sen damals die Existenzmoglichkeit andersartiger imaginarer Zahlen nicht aus.
Euler hingegen glaubte seit spatestens 1743, dass alle Wurzeln einer algebrai-
schen Gleichung von dieser Form a + bi sind. D’ Alembert (1748) und Euler (1751)
fihrten je einen luckenhaften Beweis an, doch sollte es noch iiber ein halbes
Jahrhundert dauern, bis dafiir ein vollstandiger Beweis erbracht werden konnte.
In diesem Kontext formulierte Euler erstmals streng den Fundamentalsatz der
Algebra, dass ein Polynom n-ten Grades als Produkt von n Linearfaktoren
darstellbar ist:

X"t ax" T rax" it a, = (x—x)(x—x) - - - (x—x,,),

wo die x, die Nullstellen des Polynoms sind. Einen allgemeinen Beweis dieses fiir
die Algebra sehr wichtigen Satzes gab allerdings erst Gauss in seiner Doktordis-
sertation von 1799,

Mitte der dreissiger Jahre versuchte Euler - wie wir seit N. H. Abel (1802-
1829) und E. Galois (1811-1832) wissen, aus theoretischen Griinden vergeblich —
die allgemeine Losung einer algebraischen Gleichung von hoherem als dem
vierten Grad durch Radikale darzustellen. Denn wie alle seine Zeitgenossen war

'Y Fundamenta nova theoriae functionum ellipticarum, Konigsberg 1829.
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er von der Moglichkeit der Auflosung solcher Gleichungen iiberzeugt, und er
schrieb es nur der vermeintlich mangelhaften Entwicklung der zeitgendssischen
Algebra zu, dass die Auflosung nicht gelingen wollte. Dennoch gelangte er zu
bemerkenswerten Teilresultaten: in einer relativ spiaten Arbeit (1762), in welcher
er versuchte, Gleichungen hoheren Grades mittels der Substitution

n—1
x=Y Yz
k=1’

aufzulGsen, fand er spezielle Formen der Gleichung 5. Grades, deren Wurzeln
durch Radikale darstellbar sind.

Euler arbeitete Naherungsmethoden fiir die Losung numerischer Gleichungen
aus und bearbeitete ferner — wahrscheinlich von Daniel Bernoulli angeregt — das
Eliminationsproblem. So gelang ihm ein Beweis des bereits Newton (1643-1727)
bekannten Satzes, dass zwei algebraische Kurven vom Grad m bezw. n hochstens
m - n Schnittpunkte haben konnen. In diesem Zusammenhang gelangte er zum
wichtigen Begriff der Resultante. In zwei Abhandlungen vom Jahre 1748 gab
Euler eine stichhaltige Erklarung des sogenannten Cramerschen Paradoxons, dass
eine Kurve n-ter Ordnung (C,) nicht immer durch n(n+3)/2 ihrer Punkte
bestimmt zu sein braucht, da diese Zahl fiir n = 3 nicht grosser wird als n?, d.h. als
die Anzahl der Schnittpunkte der C, mit einer anderen Kurve gleicher Ordung.
'?) Die Tiefgriindigkeit dieses Paradoxons wurde allerdings erst viel spiter
erkannt, namlich 1818 von G. Lamé (1794-1870), 1827 von J. D. Gergonne
(1771-1859) und 1828 von J. Pliicker (1801-1868).

Noch in seiner letzten Berliner Zeit — wahrscheinlich '?) 1765 - ging Euler an
dic Abfassung seiner zweibandigen Vollstindigen Anleitung zur Algebra, die er
seinem Gehilfen, einem ehemaligen Schneidergesellen, in die Feder diktiert
haben soll. Dieses Buch - besonders bemerkenswert im Hinblick auf Eulers
meisterhaftes didaktisches Geschick —wurde ein Bestseller. Es erschien 1768/69
zuerst in russischer Uebersetzung, 1770 in der deutschen Originalfassung und
schliesslich in englischer, franzosischer und hollandischer Sprache in vielen Au-
flagen. Die ““Algebra’, wie man das Buch kurz zu nennen pflegt, fithrt den
absoluten Anfianger Schritt um Schritt von den natirlichen Zahlen iiber die
arithmetischen und algebraischen Grundsatze und Praktiken bis in die sublimsten
Details der unbestimmten Analysis ein; sie gilt —nach dem Urteil heutiger erst-
rangiger Mathematiker — noch immer als die beste Einfithrung in die Algebra fur
einen “‘mathematischen Saugling”. Sinnigerweise wurde die grosse Euler- Ausgabe
1911 mit diesem Band er6ffnet. Kein Geringerer als Lagrange, Eulers Nachfolger
als Direktor der Mathematischen Klasse der Berliner Akademie, versah das Buch
mit wertvollen Zusétzen. In dieser Form ist es den romanischen Lesern in den
Ausgaben von Johann III Bernoulli noch immer zuginglich, und fur den

'2)  G. Cramer, Introduction a I’analyse des courbes algébriques, Genéve 1750.-Das Paradoxon
findet sich schon bei Colin Maclaurin, Geometria organica sive descriptio linearum curvarum
universalis, London 1720, p. 135-137. (Cf. P. Speziali in EGB 83).

13)  Es ist ein weitverbreitetes Marchen, Euler habe die *“Algebra” unmittelbar nach seiner Erblin-
dung in St. Petersburg zur Selbstkontrolle verfasst bezw. seinem “Gehilfen” in die Feder
diktiert. Erstens hatte Euler eine solche “Selbstkontrolle” in keiner Weise notig, und zweitens
erblindete er fast vollig erst nach der Staroperation 1771 (cf. R. Bernoulli in EGB 83), als das
Buch schon mehrfach gedruckt war. Drittens finden sich im Text der “Algebra” einige Stellen, die
als Hinweis auf die Abfassungszeit 1765 und 1766 gedeutet werden konnen.
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Abb. 2

deutschen Sprachkreis am ehesten in der verbreiteten Reclam-Ausgabe, wo es als
einziges (!) mathematisches Buch figuriert. '#)

2.2. Reihenlehre, Funktionentheorie und Analysis

Den unendlichen Reihen kam schon in der zweiten Halfte des 17. Jahrhun-
derts eine stets wachsende Bedeutung zu, und im anbrechenden ‘“goldenen
Zeitalter der Analysis” wurde ihre Theorie zum schlechthin unentbehrlichen
Hilfsmittel zur Losung vieler einschligiger Probleme der mathematischen Wis-
senschaften.

Ueber die ersten Reihenstudien FEulers informiert uns glanzend J. E.
Hofman *°) (1900-1973). Eulers Studien iiber die bereits oben erwihnte
Zetafunktion nehmen ihren Anfang beim ‘““Baslerproblem”, die Summe der
nichtabbrechenden Folge der reziproken Quadratzahlen zu bestimmen, also den
Summenwert

COPL I S SHE S IS T T S
212022732 42 4 9 16 e 12

zu berechnen. Dass diese Summe endlich ist, d.h. dass die Reihe konvergiert,

ergibt sich sofort durch Vergleich mit einer bekannten geometrischen Reihe. Das

'Y Ansprechend fiir den modernen Leser ist die sprachlich revidierte Reclam-Ausgabe von J. E.

Hofmann, Stuttgart 1959 (leider vergriffen).
J. E. Hofmann, Um Eulers erste Reihenstudien, Sammelband der zu Ehren des 250. Geburtstages
Leonhard Eulers. .. vorgelegten Abhandlungen, Berlin 1959, p. 139-208.

15)
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Problem wurde bereits: 1650 von Pietro Mengoli (1625-1686) erwidhnt und war
spatestens 1673 auch in England bekannt, doch trat es erst durch die
nachdriicklich formulierte Stellung '°) in der ersten Reihendissertation (1689) von
Jakob Bernoulli ins Bewusstsein der Mathematiker. Weder Jakob noch Johann
gelang die Losung — trotz grosster Anstrengungen —, und in der Folge bemiihten
sich auch Niklaus T und Daniel Bernoulli mehr oder weniger erfolgreich um das
Problem, doch den Vogel schoss erst Euler, ab, indem er 1735 das iiberraschende
Resultat

durch die Bewaltigung eines viel allgemeineren Problems als Spezialfall erhielt.
Dieses Problem war die Bestimmung der Summe S,,, das heisst der Summe der
reziproken Potenzen der natirlichen Zahlen mit geradzahligen Exponenten.
Euler erhielt

o 1
>, e ¢(2k) = aym?*,
n=1

WO a,;, die Koeffizienten der “Euler- Maclaurinschen Summenformel’ darstellen.
Etwas spater gelang ihm derselbe Nachweis mit Hilfe der mit den a,, eng
verwandten Bernoullischen Zahlen. Die reizvollen Teilresultate

2 4
T

T
Sz=~é- und S4=§(—)

meldete Euler 1736 Daniel Bernoulli nach Basel, dem Eulers Verfahren undurch-
sichtig blieb, doch erriet der alte Fuchs Johann eine Variante der Eulerschen
Methode, meldete seine Nachentdeckung nach St. Petersburg sowie an seine
nachsten Freunde und liess 1742 die ganze Sache seinen Opera einverleiben, ')
ohne seinen Lieblings- und Meisterschiiler auch nur mit einer Silbe zu erwahnen.
— Die Geschichte hat eben nie ihr letztes Wort gesprochen.

Im Zusammenhang mit der Zetafunktion — das Problem der Bestimmung von
{(2k+1) ist bis heute ungelodst—findet Euler die heute nach ihm bennante
Konstante C=0,577'215'644 . . ., die in der asymptotischen Formel

1 1
C=lim {Z-};“lg n}: lim {[—1—+%+§—+- . -+—’;]—lg n}

n—soo n—ce

als ““Schliissellimes” auftritt und fur die Theorie der Gammafunktionen, der
Riemannschen Zetafunktion und fiir den Integrallogarithmus von grosster Be-
deutung ist. Obwohl man die Zahl C auf hunderte, ja tausende von Dezimalen
kennt, ist es bis heute unbekannt, ob sie rational, irrational oder transzendent ist.
(Cf. Abb. 3).

Von grosser Tagweite sind Eulers schon 1734 aufgenommene Studien uber
die harmonischen Reihen, die 35 Jahre spiter mit einer weiteren Abhandlung

') Jakob Bernoulli, Opera, Genf 1744, Bd. 1, p. 398.
17y Johann Bernoulli, Opera, Lausanne und Genf 1742, Bd. 4, p. 20-25.
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Abb. 3

Dritte Seite des Briefes von Euler an Johann Bernoulli vom 20. Juni 1740 (alten Stils). Im
Zusammenhang mit seiner Beschéftigung mit der Zetafunktion fand Euler bereits 1734 oder frither
die heute nach ithm benannte, wichtige Konstante C =0.577 215..., die er hier auf 17 Dezimalen
nach dem Komma angibt, von denen die ersten 15 richtig sind (19. Zeile von oben).

[Das Original gehort zu den Bestinden der Basler Universitatsbibliothek und trigt die Signatur Ms. L
la 657 Nr., 15*. Wir danken der UBB fiir die Publikationsgenehmigung und Herrn Marcel Jenni fiir
die Reproaufnahme].
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gekront wurden. Solche Reihen haben die Form

a _a a a
b’b+c’b+2¢’ " b+kc’

Man nennt sie harmonisch, weil das n-te Glied A, das harmonische Mittel des
(n—1)-ten und (n+ 1)-ten Gliedes ist, weil also gilt

A An 1
A An+1 An+1

Als Spezialfall (a=b=c=1) ergibt sich die bekannte Folge der reziproken
natiirlichen Zahlen

1 1 1 1

_i_’ 5’ 57"‘7;7"‘7
die man schlechthin als “die harmonische Reihe’ bezeichnet. Dass sie divergiert,
hatte schon Nicole D’Oresme (1323?-1382) gezeigt, und Johahn Bernoulli miihte
sich nicht ohne Erfolg damit ab, die Summe ihrer ersten hundert Millionen (!)
Glieder methodisch zu berechnen. '®) Euler allerdings hatte bereits 1734 den
Zusammenhang zwischen der harmonischen Reihe und dem (natiirlichen)
Logarithmus mittels seiner (oben erwihnten) Konstanten C herausgefunden,
niamlich

1 1 1 1 1

s Bt e —= +1)+ + i <—

11513 p lg(k+1)+rk)+C, mit |r(k)| oK
In der angefithrten spiteren Abhandlung gab Euler der harmonischen Relhe die
Gestalt folgender asymptotischer Entwicklung:

11 1 1 B, B, B;

Lo+t H—lgx=Chom— o4 E— =,
373 B T o 2x%  4x* 6x°

wo die B; die vorerwahnten Bernoullischen Zahlen bedeuten, denen Euler in
seiner “Differentialrechnung’ von 1755 im Zusammenhang mit der Potenz-
reihenentwicklung fiir den Cotangens den Namen gab. Im gleichen Werk tauchen
auch erstmals im Druck die Eulerschen Zahlen als Koeffizienten der Secansreihe
auf. Diese Zahlen erwiesen sich als sehr niitzlich zur Summation von Reihen aus
den Potenzen der natiirlichen Zahlen und ihren Reziproken.

Die im 18. Jahrhundert studierten Funktionen waren mit wenigen Au-
snahmen analytisch, weshalb sich Euler vorwiegend der Potenzreihen bediente.
Ein ganz spezielles Verdienst Eulers besteht nun in der Einfilhrung einer beson-
ders wichtigen Klasse von trigonometrischen Progressionen, die man heute
Fourier-Reihen nennt und denen heute grundlegende Bedeutung in der

%) In seinem Brief vom 31. August 1740 an Euler gelangte Bernoulli (mittels eines Theorems, iiber

das er schon Jahrzehnte zuvor mit Leibniz korrespondiert hatte) zu den beachtlichen
Teilresultaten

10° 10’ 10

12
Y —=14392726722865723, ) ~~167 und 3 =B

8



1114 Emil A. Fellmann H. P A.

Mathematik sowie in der gesamten Physik, insbesondere auch in der Elektrotech-
nik, zukommt. In seinem Brief an Goldbach vom 4.7.1744 driickte Euler erstmals
eine algebraische Funktion durch eine solche Reihe aus, namlich

m™ X . +sin 2x+sin 3x+ i sin kx

=gl X =

2 & 2 3 k=1 k
Im Druck erschien dieses historische Beispiel einer Fourier-Reihe erstmals in
Eulers “Differentialrechnung” von 1755. Seiner Umwandlung von Potenzreihen
in unendliche Produkte kam spiter grosse Wichtigkeit fiir die Theorie der
analytischen Funktionen zu, wie aus dem Beispiel der oben erwihnten Eulerschen

Zahlen, also den Koefhizienten der Entwicklung

— 1 _ < n EZ“ 2n
S E = s 2 ,12_:0( 1) (2n)! ¥

ersichtlich ist. (Die ersten vier Eulerschen Zahlen sind: E,=1, E,=—1, E,=5,

E¢=—61. Die Eulerschen Zahlen mit ungeraden Indices sind samtlich Null.)

Die Meinungen der Mathematiker des 18. Jahrhunderts tiber die Zulassigkeit
divergenter Reihen, d.h. von Reihen, die keinen endlichen Summenwert auf-
weisen, gingen stark auseinander. Viele Mathematiker wandten sich grundsitzlich
gegen jede Verwendung divergenter Reihen, doch Euler, der sich auch davon
zuverlasssige Resultate versprach, stellte ihre Anwendung ausser jeden Zweifel.
Wenn er jedoch in einzelnen Fallen divergente Reihen heranzog, pflegte er sich
dariiber deutlich auszusprechen. Die einzige Angriffsfliche fiir seine Kritiker war
seine Meinung, dass jede ‘““verniinftige” Summationsmethode fiir eine divergente
Reihe zum gleichen Resultat fiihren miisse. Natiirlich besass Euler kein Kriterium
fur eine solche “Verniinftigkeit”, was er jedoch mit einer immensen Erfahrung in
derartigen Dingen und einer bewundernswerten Intuition kompensieren konnte.
Das befahigte ihn, uber die damals bekannten Konvergenzkriterien hinaus eine
neue, erweiterte Definition einer Reihensumme vorzuschlagen und zwei Sum-
mationsmethoden zu skizzieren, deren exakte Begriindung und Festigung erst um
die letzte Jahrhundertwende geleistet werden konnte. ') Auch hier hat Euler eine
Pionierleistung ersten Ranges vollbracht.

Die Funktionentheorie beginnt iiberhaupt erst mit FEuler. Seine grosse
Trilogie — Introductio, Differentialrechnung und Integralrechnung 2°)—ist eine
grossartige Synopsis der wichtigsten mathematischen Entdeckungen in der
Analysis bis zur Mitte des 18. Jahrhunderts. Von besonderer Bedeutung ist hier
die Ausarbeitung des analytischen Funktionsbegriffs sowie die klare Feststellung,
dass die mathematische Analysis als eine ‘“Wissenschaft von Funktionen” auf-
zufassen ist, und geradezu eine mathematikhistorische Zasur ist Eulers Konzep-
tion der komplexen Funktionen.

Am Beispiel des damals hochaktuellen Problems der schwingenden Saite
erwies sich die Klasse der analytischen Funktionen fiir die mathematische Be-
handlung vieler Anwendungen als unzureichend. Euler behalf sich sofort mit
sogenannten “‘willkiirlichen”, d.h. nichtanalytischen Funktionen, die sich
stiickweise geometrisch annahern liessen. Ueber die Moglichkeit der analytischen

19y Cf. G. Hardy, Divergent Series, Oxford 1949,
20y Cf. die Werktabelle im Abschnitt 1.3.
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Darstellung solcher nichtanalytischer Funktionen stritten sich damals viele
Mathematiker — nicht zuletzt Euler, d’Alembert und Daniel Bernoulli. Ein Resul-
tat der Kontroverse um die Theorie der schwingenden Saite war Eulers all-
gemeine Definition einer Funktion als Grosse, deren Werte sich irgendwie mit
den Aenderungen der unabhéngigen Variabeln dndern.

Der grosste Teil des ersten Bandes der Introductio ist der Theorie der
elementaren Funktionen gewidmet, ohne dass jedoch von der Infinitesimalrech-
nung Gebrauch gemacht wird. Euler skizziert hier erstmalig die analytische
Theorie der trigonometrischen Funktionen und gibt 1743 eine einfache, wenn
auch nicht ganz strenge Herleitung der Formel '

e™™ =cos x =i sin x,

die sich substantiell 1716 auch schon beim jungen, genialen Roger Cotes ')

findet, jedoch erst von Euler vielseitic verwendet und in der Analysis
eingebiirgert worden ist. (Diese Formel ziert iibrigens die schweizerische
Jubiliums-Briefmarke von 1957). Aus dieser Beziehung liess sich dann als
Spezialfall (x = 7) sehr leicht eine schone Formel finden, ndmlich

e™+1=0,

besonders schon deswegen, weil sie lediglich aus den Hauptsymbolen e, o, i und
den Fundamentalziffern 0 und 1 besteht und sich zudem durch grosstmogliche
Einfachheit auszeichnet.

Schliesslich gelangte Euler im Kontext mit seinen Studien iiber Funktionen
einer komplexen Variabeln, die teilweise von d’Alembert antizipiert wurden,
mittels der schon von Johann Bernoulli verwendeten Substitution z = x +iy zum
imponierenden Resultat

J‘“sinx T

dx =—.
b X x2

In diesem Zusammenhang sei erwihnt, dass Euler mittels mehrfacher Anwen-
dung der elementaren Formel

) . X %
sin x =2 sin — cos —
2 2

auf die Funktionen

y =sin 2.
2k
zu der sehr eleganten und fruchtbaren Darstellung
§-ll;—x=c:os—;c-cosﬁcosg RRES lj cosi-;;
gelangte.

21)  Roger Cotes (1682-1716), Physiker und Mathematiker, seit 1706 Professor fiir Astronomie in
Cambridge und seit 1711 Mitglied der Royal Society, i1si hauptsichlich bekannt als der
Herausgeber der zweiten Auflage von Newtons Principia mathematica (1713).
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*

Beide Gebiete der Analysis, die Differential- wie die Integralrechnung,
wurden von Euler enorm bereichert. Seine ‘Differentialrechnung’ enthilt, neben
zahlreichen neuen Satzen und Details eine Grundlegung der Differenzenrechnung.
In der ‘Integralrechnung’ finden sich die Methoden der unbestimmten Integra-
tion in moderner Form erschopfend dargestellt fur die Fille, in denen die
Integration auf elementare Funktionen fiihrt. Viele Methoden sind erst von Euler
entwickelt worden, und noch heute kennt jeder Mathematiker die ‘‘Eulersche
Substitution,” mit deren Hilfe gewisse irrationale Differentiale rationalisiert wer-
den konnen. Bereits als Zweiundzwanzigjahriger fihrt er die —wie sie heute
gennant werden — “Eulerschen Integrale erster und zweiter Art” (Beta- und
Gammafunktion) im Kontext mit seinen Studien tuber die Interpolation der
Fakultiten ein. Diese Funktionstypen bildeten zusammen mit den Zeta- und den
Bessel-Funktionen die wichtigsten transzendenten Funktionen im Eulerschen
Zeitalter.

Ein neues und weites Feld tat sich auf, als Daniel Bernoulli behauptete, dass
die Losung irgendeiner beliebigen Wellengleichung durch trigonometrische Funk-
tionen ausdrickbar sei. Zu Unrecht bestritten Euler und d’Alembert diese
bedeutungsvolle Einsicht, und die spiter von Lagrange, Laplace und anderen
weitergefiithrte Diskussion wurde erst durch die epochemachenden Arbeiten von

Fourier (1768-1830) im ersten Jahrzehnt des 19. Jahrhunderts zungunsten Ber-
noullis entschieden. Mathematisch definitiv fundiert wurde dieser Problemkom-

plex allerdings erst gegen die Jahrhundertmitte von G. P. L. Dirichlet (1805-1859)

und B. Riemann. (1826-1866).

(Zum Additionstheorem der elliptischen Integrale, einer mathematischen
Hauptleistung Eulers, sowie zur Variationsrechnung sei auf EGB 83, p. 47-52.
verwiesen.)

2.3. Geometrie

Die Mehrzahl seiner Entdeckungen in der Geometrie machte Euler durch die
Anwendung algebraischer und analytischer Methoden. Das Lehrgebaude sowohl
der ebenen wie auch der sphirischen Trigonometrie verdankt seine heutige
Form — einschliesslich der Notationsweise — Leonhard Euler. Seine —von Johann
Bernoulli angeregten — Studien iiber geoditische Linien auf einer Fliche waren
richtungweisend fiir die spater einsetzende Entwicklung der Differentialgeome-
trie, und von noch grosserer Bedeutung waren seine Entdeckungen in der
Flachentheorie, von welcher Gaspard Monge (1746-1818) und andere Forscher
in der Folge ausgehen sollten. In seinen spaten Jahren schliesslich nahm Euler
seine Arbeiten uiber die allgemeine Theorie der Raumkurven exakt dort wieder
auf, wo Clairaut 1731 aufgehort hatte — allerdings wurden sie erst posthum
gedruckt.

Im zweiten Band der Introductio gab Euler eine methodisch geschlossene
Darstellung der analytischen Geometrie der Ebene wie auch des Raumes sowie
die vollstindige Durcharbeitung und Ausdehnung der Descartesschen Koor-
dinatenmethode auf den dreidimensionalen Raum. Im Anhang findet sich erst-
malig die Einteilung der Flichen zweiten Grades in fiinf Geschlechter sowie die
Eulerschen Formeln zur Koordinatentransformation, und durch die Einteilung der
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Kurven dritten Grades wie auch durch seine Lehre von den Asymptoten alge-
braischer Kurven wurde Euler zum Vorldufer Julius Pliickers (1801-1868).

Aus der Fille der Eulerschen Entdeckungen in der elementaren Geometrie
sollen hier nur funf genannt werden:

1) Es ist bekannt, dass Euler rein mathematisch die zuerst von Jakob
Bernoulli und Christiaan Huygens (1629-1695) studierte %) Kreisevolvente

x=al(cos ¢+ ¢ sin ¢P); y = a(sin ¢ — ¢ cos @)

als giinstigste Profilform der Flanken bei Zahnriadern eruiert hat. °) Diese Kurve
liefert —sinnvoll verwendet —optimale mechanische Eigenschaften bezuglich
Reibungsverlust, Gerduscharmut und Kraftiibertragung. (Technisch realisiert
wurde diese Entdeckung bezw. Erfindung Eulers erst im letzten Jahrhundert mit
der Evolventenverzahnung). Weniger bekannt ist aber, dass Euler in dieser bereits
1762 entstandenen Arbeit (E.330/0.11,17) die heute nach Felix Savary (1797-
1841) benannte Gleichung antizipiert hat. Sie dient zur Bestimmung des
Kriimmungsradius einer Rollkurve und ermoglicht eine elegante Konstruktion
deren Kriimmungszentren.

2) In einer Arbeit von 1763 (E.325/0.1,26) begegnen wir dem aus der
Schulmathematik wohlbekannten und beriihmten Satz, dass in einem beliebigen
ebenen Dreieck der H8henschnittpukt (H), der Umkreismittelpunkt (U) und der
Schwerpunkt (S) auf einer Geraden liegen (Eulersche Gerade). Un zwar sind die

Punkte, wie Euler nachweist, auf der Geraden so verteilt, dass immer gilt
SH =2SU.

3) Die sicher populidrste Entdeckung Eulers im Gebiet der Elemen-
targeometrie ist der nach ihm benannte Polyedersatz. Sei bei einem beliebigen,
durch lauter ebene Vielecke begrenzten, konvexen raumlichen Korper die
Fliachenanzahl f, die Eckenzahl e und die Kantenzahl k, so gilt stets

et+f—k=2,

Dieser verbliiffende Satz war zwar schon Descartes (1596—1650) in etwa bekannt,
doch hatte Euler davon keine Kenntnis, und ein Beweis wurde von Descartes
auch nicht gegeben. Euler teilte zundchst das wunderhiibsche Resultat seinem
Freund Goldbach am 14.11.1750 brieflich mit samt einer (induktiven) Herleitung,
hingegen fiigte er hinzu, dass er dafiir noch keinen strengen Beweis erbringen
konne: ““. .. Dieses ist klar, weil keine hedra aus weniger als 3 Seiten und kein
angulus solidus aus weniger als 3 angulus planis bestehen kann. Folgende
Proposition aber kann ich noch nicht recht rigorose demonstrieren: 6. In omni
solido hedris planis incluso aggregatum ex numero hedrarum et numero angulorum
solidorum binario superat numerum acierum, seu est H+S=A+2,...”.

Eine in diesem Sinne abgefasste Abhandlung pridsentierte Euler bereits am
26.11.1750 (E.230/0.1,26), der er-nachdem er den Beweis fiur die Formel

22y Cf. etwa E. A. Fellmann, Christiaan Huygens, Humanismus und Technik 22,3, Berlin 1979.
23 Cf. O.IL17.
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gefunden hatte —im September 1751 eine zweite, entscheidende folgen liess *%)
(E.231/0.1,26).

Tatsachlich gehort der Eulersche Polyedersatz aus heutiger Sicht in einen viel
allgemeineren Zusammenhang. Ist ndmlich «" die Anzahl der r-dimensionalen
Zellen eines endlichen Komplexes K, so heisst die Zahl y(K)=} (—1)'a" die
“Eulersche Charakteristik von K. Die “Formel von Euler-Poincaré”

X(K)=Y (=1)p"(K)

vermittelt die Beziehung zwischen x(K) und den sogenannten ‘“Bettischen
Zahlen” p"(K). Der Eulersche Polyedersatz kann somit folgendermassen for-
muliert werden: Ein konvexes Polyeder im dreidimensionalen euklidischen Raum
hat stets die Charakteristik 2.

4) In seinem Brief vom 8.9.1679 an Huygens hatte Leibniz die Idee zu einer
neuen geometrischen Analysis angeregt, die ‘““‘uns unmittelbar den situs ausdriickt,
wie die Algebra die Magnitudo”. *°) Huygens scheint sich nichts von dieser neuen
characteristica geometrica versprochen zu haben, und Leibniz liess dann diesen
Gedanken wieder fallen. Euler griff—nach seinen eigenen Worten — unter
Beibehaltung des Namens auf diese analysis situs zuriick. *°) In seiner Studie

2%)  In seiner Einleitung zum Band O.1,26, p. XVI, stellte Andreas Speiser die Schliissigkeit des
Eulerschen Beweises in Frage. Seitdem (1953) sind viele Kommentatoren und Geschichts-
schreiber der Mathematik dieser Meinung gefolgt. Allem Anschein nach wurde Speiser durch ein
Urteil von Lebesgue (1924) beeinflusst, das jedoch von letzterem selbst wieder relativiert
worden ist. Der erste, der Speiser offentlich widersprochen hat, war Delone in seiner Arbeit BV
Delone (Delaunay) 1958. Cf. auch I. Lakatos, Proofs and Refutations, Cambridge University
Press, London 1976, (Deutsche Uebersetzung: Beweise und Widerlegungen, Vieweg,
Braunschweig und Wiesbaden 1979, Kapitel 1).

25)  Cf. Oeuvres de Chr. Huygens, Bd. VIII, p. 219-224.

26)  Der Mathematiker und Mathematikhistoriker Hans Freudenthal (Utrecht) vertritt recht
iberzeugend die Ansicht, dass Fulers topologische Ansitze nichts mit dem zu tun haben, was
Leibniz unter seiner Analysis situs verstanden hat. Cf. Hans Freudenthal, Leibniz und die
Analysis situs, Studia Leibnitiana, Bd. IV, Heft 1, 1972, p. 61-69.
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(E.53/0.1,7) der als “Konigsberger Briickenproblem” iiberlieferten Aufgabe
liegen die ersten systematischen Ansatze zur Topologie vor, einer Disziplin, die
heute eine Hauptrolle in der mathematischen Forschung spielt und der F. B.
Listing 1847 den Namen gegeben hat. Es handelte sich bei Euler um die Frage,
ob die Stadt Konigsberg durchwandert werden konne, wenn jede der sieben
Briicken iiber den Pregel (Fig. 1) genau einmal uiberschritten werden soll. Euler
fand 1735, dass diese Forderung unerfiillbar ist, unabhingig davon, ob an den
Ausgangs-punkt zuriickgekehrt werden soll oder nicht. Die Beschaftigung mit
diesem Problem und dessen Verallgemeinerung fithrte Euler zu wichtigen Satzen
der Graphentheorie. *7)

5) In einer 1763 verfassten Studie (E.324/0.1,26) fand Euler die Beziehung
zwischen den Seiten eines Dreiecks, von welchem zwei Winkel ein vorge-
schriebenes Verhaltnis haben. Diese Relationen, fur welche Euler uiber

cos na £ i sin ha = (cos a +i sin a)"”
eine rekurrente Reihe fand, sollten spiter auf die Kreisteilungsgleichung (Gauss)
fithren.

3. Mechanik
3.1. Allgemeine Mechanik

Der Beginn der Hauptstudien Eulers zur Mechanik lasst sich bereits in der
ersten Petersburger Periode ansetzen. In der Einleitung zum ersten Band seiner
Mechanica (1736) entwirft Euler ein umfassendes Programm dieser Wissenschaft,
das als Hauptmerkmal die systematische und fruchtbare Anwendung der Analysis
auf die damals aktuellen sowie auf neue Probleme der Mechanik tragt. Die
Vorginger Eulers verfuhren — summarisch gesprochen — synthetisch-geometrisch,
wozu die unsterblichen Principia mathematica Newtons als pragnantes Beispiel
dienen konnen, und auch der Basler Jakob Hermann, Eulers Kollege in Peters-
burg, vermochte sich trotz seiner angestrebten Modernitit in der Phoronomia von
1716 vom barocken Stil a la Jakob Bernoulli, seinem einstigen Lehrer, nicht zu
16sen. Euler verfahrt auch hier — wie spiter in der Optik — analytisch und fordert
fur die Mechanik einheitliche, analytische Methoden, die zu klaren und direkten
Darstellungen und Losungen der einschlagigen Probleme fithren sollen. Aehnlich
wie spiter in der Methodus, *®) der “Variationsrechnung”, enthélt der Buchtitel
schon das ganze Programm: Mechanik oder die Wissenschaft von der Bewegung,
analytisch dargestellt.

Euler beginnt mit der Kinematik und der Dynamik *°) eines Massenpunktes

27y Cf. D. Konig, Theorie der endlichen und unendlichen Graphen, Leipzig 1936.
28)  Cf. die Werktabelle im Abschnitt 1.3.
29y Zur Prizisierung der Einteilung der Mechanik verweise ich auf G. Hamel, Elementare Mechanik,
Leipzig 1912, p. 9f., Sowic auf das moderne Werk von 1. Szabé, Einfiihrung in die Technische
Mechanik, Berlin, Heidelberg, Wien 1975, 8. Aufl., p. 3. Demgemiss ist die Mechanik folgen-
dermassen einzuteilen:
Mechanik
I
! |

Kinematik Dynamik

I
I |

Statik Kinetik
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| PETROPOLI
EX TYPOGRAPHIA ACADEMIAE SCIENTIARVM.
A. 1736. Abb. 4

und behandelt im ersten Band die freie Bewegung eines Massenpunktes im
Vacuum und im widerstehenden Mittel. Der Abschnitt iiber die Bewegung eines
Massenpunktes unter der Einwirkung einer nach einem festen Punkt gerichteten
Kraft ist eine brillante analytische Um- und Neuformulierung der entsprechenden
Kapitel in Newtons Principia und war urspriinglich als Einleitung zu Eulers
bereits frither erschienenen Himmelsmechanik gedacht. *°) Im zweiten Band
studiert er die erzwungene Bewegung eines Massenpunktes und 16st im Kontext
mit den Gleichungen fiir die Bewegung eines Punktes auf einer vorgegebenen
Flache eine Reihe von differentialgeometrischen Problemen der Flachentheorie
und der Theorie der geodatischen Linien. Fast dreissig Jahre spater gab Euler in
der Theoria motus von 1765, der sogenannten “zweiten Mechanik”, eine neue
Darstellung der Punktmechanik, *') indem er nach dem Vorbild von Maclaurin

%) In diesem Zusammenhang sei darauf hingewiesen, dass von Eulers Mechanik eine deutsche

Uebersetzung von J. Ph. Wolfers, Greifswald 1848/1850, vorliegt.

31)  Istvan Szabd (1906-1980), der ein vorziiglicher Kenner von Eulers Schriften mechanischen
Inhalts war, wies mich seinerzeit darauf hin, dass Euler die vektorische Darstellung der Kinetik
bereits in seiner Arbeit E. 177 (cf. hier Anm. 38) gegeben hat.
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(1742) die Kraftvektoren auf ein festes, rechtwinkliges Koordinatensystem in drei
Dimensionen projizierte, und stellte im Zusammenhang mit den Untersuchungen
der Rotationsbewegung die auf die Haupttrigheitsachse bezogenen Differential-
gleichungen der Dynamik auf, die diese Bewegung charakterisieren. Er for-
mulierte ferner das durch elliptische Integrale ausdriickbare Gesetz der Bewegung
eines starren KoOrpers um einen festen Punkt (‘“‘Eulersche Winkel”), auf das er
anlasslich des Studiums der Prizession der Aequinoktien und der Nutation der
Erdachse gefithrt wurde. Andere Fille der Kreiseltheorie, in denen die
Differentialgleichungen integrierbar sind, wurden spéter von Lagrange (1788)
und von der Weierstrass-Schiilerin S. V. Kovalevskaja (1888) entdeckt und behan-
delt. 3?)

In einem der beiden Anhinge der bereits oben im Zusammenhang mit der
Variationsrechnung erwidhnten Methodus regte Euler eine Formulierung des
beruhmt-beruichtigten Prinzips der kleinsten Aktion an fiir den Fall der Bewegung
eines Massenpunktes unter der Einwirkung einer Zentralkraft: die entsprechende
Bahnkurve minimalisiert das Integral § mvds, wiahrend Maupertuis das erwahnte
Prinzip fast zur gleichen Zeit in einer viel spezielleren, also weniger allgemeinen
Weise aufstellte. Im zweiten Anhang der Methodus wandte Euler — auf Anregung
Daniel Bernoullis — die Variationsrechnung auf die Theorie der Balkenbiegung
an, die er bereits seit 1727 studierte, und gelangte iiber die Beziehung

dS "2 d

J —= J - (R ist Krimmungsradius)
R? J J(1+y?)

zur wahrhaft spektakuldren, aus den Ingenieurwissenschaften bis zum heutigen

Tag nicht wegzudenkenden ‘‘Eulerschen Knickungsformel” fur die Kraft P

ZE 2
p== 2"
4f

worin Ek? die ‘““absolute Elastizitat” (Steifigkeit) und 2f die Lange eines beidseitig
gelenkig gelagerten Stabes ist. Neben dieser ersten Berechnung eines elasto-
statischen Eigenwertes war Euler auch der Erste, der in den Eigenfrequenzen des
transversal schwingenden Balkens elastokinetische Eigenwerte berechnet hat.

*

In der Doméne der Hydromechanik war Eulers erste grossere Arbeit sein
umfassendes Opus iliber das ‘“‘Schiffswesen”, die Scientia navalis. Im ersten Band
behandelt er die allgemeine Gleichgewichstheorie schwimmender Korper und
studiert — damals ein novum — Stabilitatsprobleme sowie kleine Schwingungen
(Schwankungen) in der Nachbarschaft des Gleichgewichtszustandes. In diesem
Zusammenhang  definiert Euler iiber den  (richtungsunabhangigen)
Fliissigkeitsdruck die ‘“‘ideale Flussigkeit”, was zweifellos spater Cauchy fur die
Definition des Spannungstensors als Vorlage diente.

Der zweite Band bringt Anwendungen der allgemeinen Theorie auf den
Spezialfall des Schiffes. **) Mit der Scientia navalis hat Euler eine neue Wis-

32)

J. L. Lagrange, Mécanique analytique, in: Oeuvres, t. 12, Paris 1889; S. V. Kovalevskaja, in:
Acta mathematica 12, 1889, p. 177-232.

33 E. 110,111/0.11, 18, 19, ed. C. A. Truesdell. Cf. ferner die 200-seitige Einleitung von W.
Habicht zu diesen zwei Banden in O.I1,21, ed. W Habicht.
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senschaft begriindet und auf die Entwicklung der Seefahrt sowie des Schiffsin-
genieurwesens nachhaltig eingewirkt, und nur wenigen Spezialisten ist die Tat-
sache bewusst, dass wir das technisch realisierbare Prinzip des Fliigelradantriebs
und der Schiffsschraube keinem andern zu verdanken haben als Leonhard Euler.
Naturlich waren diese kithnen Projekte zu Eulers Zeit dazu verurteilt, im Theoreti-
schen stecken zu bleiben, da die zur Realisierung nétigen Antriebsenergien noch
nicht zur Verfugung standen. **) In der Technikgeschichte wohlbekannt sind
hingegen Eulers Versuche iiber die Segnersche Wasserkraftmaschine und seine
daran ankniipfende Theorie der Wasserturbine. Jakob Ackeret (11981) hat eine
solche Turbine nach Eulers Vorschriften anfertigen lassen und festgestellt, dass der
Wirkungsgrad der Eulerschen Maschine iiber 71% betrigt *>°) — ein sensationelles
Resultat, wenn man bedenkt, dass man heute mit den modernsten Mitteln und
vergleichbaren Dimensionen den Wirkungsgrad einer solchen Turbine mit wenig
iiber 80% ansetzen muss.

In die frithen Finfzigerjahre fallt die Abfassung einiger wahrhaft klassischer
Abhandlungen iiber eine analytische Theorie der Fluidmechanik, in welchen
Euler ein System von grundlegenden Formeln zur Hydrostatik wie auch der
-dynamik entwickelt (cf. infra). Darunter finden sich die Kontinuitatsgleichung fiir
Fliussigkeiten konstanter Dichte, die - gewohnlich nach Laplace benannte —
Gleichung fir das Geschwindigkeitspotential sowie die allgemeinen ‘‘Eulerschen
Gleichungen” fiir die Bewegung idealer (also reibungsfrei stromender) kompressi-
bler oder inkompressibler Flissigkeiten. Kennzeichnend auch fiir diese Gruppe
von Arbeiten ist die Anwendung gewisser partieller Differentialgleichungen auf
die anfallenden Probleme. Auf diese Dinge war Euler, wie wir aus Selbstzeugnis-
sen wissen, besonders stolz —und das mit Recht.

3.2. Hydromechanik

3.2.1. Bemerkungen zur sogenannten ‘Bernoullischen Gleichung”

Bevor wir einige von Eulers Hauptleistungen auf dem Gebiet der Hy-
dromechanik resiimieren, seien einige Bemerkungen vorausgeschickt. Die kom-
petentesten Darstellungen des Gegenstandes finden sich bei C. A. Truesdell *¢)
und 1. Szabd *°) (¥1980). Dieser hat auch mit der mehr als fragwiirdigen,
weitverbreiteten Behauptung griindlich aufgeriumt, Johann Bernoulli (1667-1748)
habe sich gegeniiber seinem Sohn Daniel *7) (1700-1782) des Plagiats schuldig
gemacht (cf. Szabo, Prinzipien, Kap. 111, B).

Auch hinsichtlich eines andern Punktes soll hier differenziert werden: es
betrifft die sogennante “Bernoullische Gleichung”. Thr werden in der Lehrbuch-
literatur nach Lust und Laune (bezw. nach Wissen und/oder Nichtwissen) drei
verschiedene Gleichungen zugeordnet:

34y Cf. W. Habicht, Einleitung zu O.I1,20, p. 50.

3%)  Cf. J. Ackeret, Untersuchung einer nach den Eulerschen Vorschligen (1754) gebauten Wassertur-
bine, Schweizerische Bauzeitung 123, 1944, p. 9-15.

Eulers Leistungen auf dem Gebiet der Hydromechanik sind treffend gewiirdigt worden von C.
A. Truesdell in den Binden der Eulerausgabe O.II, 11,, 12 und 13, in seinen hervorragenden
Essays in the History of Mechanics, Springer Berlin 1968, sowie von 1. Szabd, Geschichte der
mechanischen Prinzipien und ihrer wichtigsten Anwendungen, Birkhduser, Basel 1979,, p. 225-
257. Dieses vorziigliche Buch wird im folgenden kurz zitiert als “Szabd, Prinzipien™.

Daniel Bernoulli, Hydrodynamica, Strassburg 1738.

36)

37)
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Abb. 5

1) Unter dem Namen “Bernoullische Stromfadengleichung” zirkuliert der

Energieerhaltungssatz idealer (reibungsfreier) inkompressibler Fliissigkeiten
2 =2 — .

E—+p+z=£—+p+z—H konst., (1)

2g v 2g v
wo v (Fig.2) die Stromungsgeschwindigkeit, g die Erdbeschleunigung, p der
Druck, y das spezifische Gewicht und z eine systembezogene NiveauhOhe be-
deuten. Die Gleichung (1} stammt von Daniel Bernoulli und beherrscht in
Verbindung mit der Kontinuitatsgleichung vQ = Q (Erhaltung der Masse) die
stationaren Stromungsvorgiange, soweit ¥ L Q iiber dem Querschnitt Q als kon-
stant betrachtet werden kann.

2) Von Vater Johann Bernoulli stammt die Erweiterung der Gleichung (1)
fur beziiglich der Zeit 7 instationdre Stromungen mit der Geschwindigkeit u =
u(s, )

2 ~2 = 1 5
3—+£+z:0—+£+2+—J‘ 59—L—‘ds, (2)
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N SO

Fig. 2

und das ist Johanns ureigenste Leistung, mit welcher er —in dieser Beziehung —
zweifelsfrei iiber Daniels Hydrodynamica von 1738 hinausging.

3) Aus den Eulerschen Bewegungsgleichungen (cf. infra) folgt als erstes
Integral die fiir reibungsfrei und stationar stromende inkompressible und kom-
pressible (gasformige) Fluide giiltige Energieaussage

§+ U + P =konst., 3)

worin U das Potential der Massenkraft und P = [ dp/f(p) das sog. Druckintegral
bedeuten. Auch diese—von Euler stammende — Beziehung trigt den Namen
“Bernoullische Gleichung”.

3.2.2. Das “Nouveau principe”’

Von Johann Bernoullis 1742 gedruckter Hydraulica, die er allerdings schon
zwei Jahre zuvor als Manuskript einsehen konnte, wesentlich angeregt, verfasste
Leonhard Euler eine kurze Arbeit, **) welche “die ganze Mechanik quasi re-
volutionieren sollte”. Dieses ‘“‘nouveau principe’ lautet schlicht

d*x d?y d*z

dX =dm dY=dm—s, dZ=dm 5, 4)
wo die Variablen x, y, z die Koordinaten des Massenelementes dm und dX, dY,
dZ die an diese angreifenden Krifte bedeuten. Zwar tragt die Formelgruppe (4)
heute fialschlicherweise den Namen ‘“Newtonsches Grundgesetz’, doch ist selten
jemandem bewusst, dass dieses Prinzip in Verbindung mit dem Momentensatz
ausreicht, die Bewegung eines ‘“‘wirklichen Korpers” zu berechnen, was weder
Newton noch irgendeinem seiner unmittelbaren Nachfolger moglich war. Zudem
benotigt man zu seiner Formulierung das Eulersche Schnittprinzip, d.h. das

3%)  Découverte d’un nouveau principe de mécanique, Mém. Ac. Sc. Berlin 6, (1750) 1752,

(E.177/0.11,5).
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(gedankliche) Herausschneiden eines Korperelementes aus dem Gesamtverband
mit den am Element angreifenden Kriften. I. Szabd:

“Mit der Phantasie des grossen Kiinstlers lehrte [Euler] uns, in Gedanken in die
Materie hineinzuschauen, wohin weder Auge noch Experiment eindringen
konnen, und hatte damit den Grundstein zur einzig wahren, namlich der
Kontinuumsmechanik gelegt.”

Greift die aus Oberflichen- und Massenkriften resultierende Kraft dK an ein
solchermassen “‘herausgeschnittenes” Massenelement dm an, so postuliert Euler
via Beschleunigung a das “neue Prinzip”

d’x d?y dzz]
de®’ dr*’ di* I
Erst 25 Jahre spiter drang Euler zur definitiven Erkenntnis durch, dass es zur

vollstindigen Bewiltigung der Kontinuumsmechanik noch eines weiteren, von (5)
unabhingigen Prinzips bedarf, nimlich des Drehmomenten- oder Drallsatzes. *°)

dszm-a:dm[ (5)

3.2.3. Hydrostatik

Euler erofinet seine Scientia navalis *°) mit einem wahrhaft fundamentalen
Lemma als erster Siule mit dem (modernen!) Begriff des hydrostatischen
Druckes:

“Der Druck, den das Wasser auf einen eingetauchten Korper ausiibt, ist an den
einzelnen Stellen senkrecht zur Oberflaiche, und die Kraft, die ein beliebiges
Element des eingetauchten Korpers erfiahrt, ist gleich dem Gewicht eines
geraden Wasserzylinders, dessen Grundfliche gleich dem Flement der
Korperoberflaiche und dessen Hohe gleich der Tiefe des Elementes unter dem
hochsten Wasserspiegel ist.”

Einen weiteren Grundstein legt er bald mit seiner Definition der Stabilitdt einer
Gleichgewichtslage: eine solche ist stabil, wenn bei einer kleinen Auslenkung «
(sin @ ~«a) aus den zur Ruhelage zuriicktreibenden Kriften eine harmonische
Schwingung resultiert — und das versteht Euler unter seiner “Methode der kleinen
Schwingungen™.

Die zweite Saule errichtet er mit der Darstellung der Gleich-
gewichtsbedingungen inkompressibler und kompressibler Fluide. Kurz und
modern notiert lassen sich Eulers Ideen etwa so wiedergeben:

P=P(x,y,z), Q=0Q(x,y,z), R=R(xY,2)

seien die Orthogonalkomponenten der auf das Fluid pro Masseneinheit einwir-
kenden Krifte. Die Gleichgewichtsbedingung am Element in der x-Richtung
fordert

| ?
Pqdxdydz ~£ dxdydz=0 (g Dichte, p Druck),

3% Cf. B. L. van der Waerden, Eulers Herleitung des Drehimpulssatzes, EGB 83, p. 271-281.
40)  Cf. die Werktabelle Abschnitt 1.3, (E.110, 111/0.11, 18, 19).



1126 Emil A. Fellmann H.P. A.

somit

ap
=t P’
Jx q

und entsprechend fur die y- und z-Richtung

d d
- qQ und . qR.
ay 0z

Also gilt fur das totale Differential
op ap ap
dp=—dx+—dy+—dz= + * :
p = X pe y = z=q(Pdx+Qdy+Rdz) (6)

Euler zieht die Schlussfolgerung, dass mogliches Gleichgewicht an die
Integrabilitdit von (6) gebunden ist, und das wiederum hingt von gewissen
Relationsbedingungen der Funktionen P, Q und R ab. Im positiven Fall etwa ist

de+Qdy+Rdz=dV=?l/dx+ﬂ/dy+ﬂ/dz
0x ay 9z

ein totales Differential und integrierbar, wenn die Beziehungen

P_9Q  sP_oR QiR -
ay ox’ 9z ox’ dz  dy

| statthaben. Jedoch muss in (6) dp = qdV die Dichte q noch immer derart sein,
dass rechts ein totales Differential auftritt; dies trifft z.B. zu unter den Bedin-
gungen
dgP) 3(qQ)  a(gP)_o(gR)  d(qQ) _d(gR)
dy ox 0z ax 8z ay

Ist q beispielsweise konstant, so liegt Inkompressibilitit vor. Im Schwerefeld ist
P=0Q =0, R=—g, sodass (6) dp =—gdz liefert, und fir den Fall q (=p) = konst.
ergibt sich mit der Intergrationskonstanten h die wohlbekannte Formel

p=pgh—2z)=vy(h—2),
d.h. der Druck nimmt mit der Tiefe linear zu.

3.2.4. Hydrodynamik *')

Die fundamentalen Bewegungsgleichungen der Fluide hat Euler in einer
Arbeit *?) von 1755 niedergelegt. Mittels seines oben dargelegten Schnittprinzips
und der Anwendung des ‘“neuen Prinzips” (4) ermittelte Euler —wenn wir es
stilisiert betrachten — den Geschwindigkeits-, Druck- und Dichtezustand in jedem
Punkt des Fluides, der durch die Koordinaten x, y, z zum Zeitpunkt ¢ unter der
Einwirkung der gegebenen spezifischen Orthogonalkraftkomponenten P, Q, R
charakterisiert ist. Die Geschwindigkeitskomponenten seien u, v, w, p der Druck

*1)  Cf. die ausfihrlichere Darstellung in Szabd, Prinzipen, ITI, E 3.
42y Principes généraux du mouvement des fluides, Mém. Ac. Sc. Berlin 11, (1755) 1757,
(E.226/0.11,12).
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und q die Dichte. Alle diese Grossen einschliesslich P, Q und R sind als
Funktionen von x, y, z, t zu betrachten. Nun fiihrt Euler (sehr modern gedacht!)
fir irgendeine dieser Funktionen f= f(x, y, z; t) das totale Differential

df == dt +— dx +3’fd +9f-dz (8)
9 X ay a0z

ein und erlautert daran sehr ausfithrlich die Anteile der lokalen (mit of/at
verbundenen) und der konvektiven Aenderung, die zusammen die — wie man es
heute nennt — substantielle Aenderung

df of ofdx ofdy ofdz
— ==t = — 4= —
dt at oxdt oydt 9z dt

ausmachen. **) Befindet sich nun ein Fluidelement mit den Geschwindigkeitskom-
ponenten u, v, w zur Zeit t am Ort x, y, z und zur Zeit t+dt am ‘“Nachbarort”
x+dx, y+dy, z+dz, dann gilt fiir ein und dasselbe Fluidteilchen

dx =udt, dy =vdit, dz =wdit,
also

dx dy dz

a a4
und es folgt in Verbindung mit (9) die ‘““Eulersche Differentiationsregel”

ijl—f:i}fntﬁr,¢+—é-)£u+a—f i (10)
dt Jt ox oy az

9)

:W’

woraus sich sofort die Beschleunigungskomponenten ergeben:

du au au ou ou
Ut —vt—w
dt at ax ay 9z

dv v v v ov
—t—ut+t—ovt+t—w an
dt ot ax y oz

dw ow dw  Iw  Iw
Uu+t—uv+_—w
dt ot ax oy 9z
Betrachten wir nun gemass Eulers ‘“‘neuem Prinzip” (6) ein quaderformiges
Fluidelement mit den Kantenldngen dx, dy, dz, so haben wir beispielsweise in der

x-Richtung

du ad

qdxdydz === qdxdy dz P—L dx dy dz
' dt ox

und erhalten daraus, unter Verwendung der entsprechenden y-, z-Analogien, die

Eulerschen Bewegungsgleichungen

@:P_lél_) @__.leig dw R_lig (12)

dt qox’ dt q oy dt qaz’

43)  Das Symbol 3 fiir die partielle Differentiation benutzte Euler noch nicht.
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hier sind die substantiellen Ableitungen nach (11) zu bilden. Allerdings reichen
diese drei Gleichungen zur Bestimmung der fiinf Variablen u, v, w, p und q nicht
aus, und Euler wusste das natiirlich sehr wohl. Er behalf sich wie folgt: Das
Volumenelement dV = dx dy dz zur Zeit t ergibt sich nach Ablauf der Zeit t +dt
mittels einer linearen Transformation als

dv' = [1+ (95+§9+al’) dt] dxdyd,
ox dy oz

und die Dichte q wird dann zu

oq 0 o ad
q+—qu+—qv+—ﬂw

— dt.
at  9dx ady 0z

q=q+

Nach dem Massenerhaltungssatz ist aber qdV =q' dV’, und die Kombination
dieser drei Gleichungen liefert direkt die Kontinuitatsgleichung
d
dq  o(uq)  d(vq) alwq)
ot ox oy 0z

0. (13)

Handelt es sich um inkompressible Fluide (q konst.), so vereinfacht sich (13) zu
0 0
ou dv ow_ 0, (14)
ax dy o0z

und fiir diesen Fall determinieren die Gleichungen (12) und (14) den
Stromungszustand.

Mit der Voraussetzung nun, dass auch u, v, und w bekannte Funktionen sind,
gelangt Euler unter Beriicksichtigung des Druckes p zur Gleichung

d
f:de+Qdy+Rdz—(de+de+Wdz) (15)

mit
U=U(u v, w), V=V(u, v, w), W= W(u, v, w),

also beispielsweise

w ;
0x ay 0z ot

Die Gleichung (15) kann lings Verbindungswegen integriert werden, wenn q =
q(p). Wesentlich einfacher wird alles, wenn die Geschwindigkeitskomponenten
von der Art sind, dass

udx+vdy+wdz=do (16)

ein totales Differential ist, bezw. dass ein Geschwindigkeitspotential ¢ =
¢(x,y, z; t) existiert derart, dass

_d¢ P _d¢

u : v="—y w=—,
ax ay 0z

(17)

was physikalisch bedeutet, dass die Fluidpartikel sich wirbelfrei fortbewegen.
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Aus (15) erhilt Euler somit fiir das Druckintegral den Ausdruck
j ﬂz‘If—l(uz—}-u2+w2)~—g(~~f-), (18)
a(p) 2 at
wo V¥ das zum Kraftfeld P, Q, R gehorige Potential bedeutet mit
S S
9x ay 0z
(Dass diese Beziehung auch heute noch eine wichtige Rolle spielt, ersicht man
etwa aus 1. Szabd, Hohere Technische Mechanik, 6. Aufl., Berlin et al., Springer
1977, p. 4771.)
Damit ist die sogenannte klassische Hydromechanik durch Euler vollendet.
*%) Die Beriicksichtigung der Temperatur fithrt zur allgemeinen Zu-
standsgleichung fiir die idealen Fliissigkeiten (einschliesslich der Gase), doch
danach konnte auch ein Euler mangels einer Thermodynamik in seiner Zeit nicht
greifen, obwohl er es (in Ansitzen) versucht hat. Die Frage nach dem (all-
gemeinen) Stromungszustand fuhrt auf Anfangs- und Randwertprobleme.
Zum Abschluss dieses Kapitels zitieren wir eine treffende Chakterisierung
der Eulerschen Gewaltleistung aus der Feder des wohl ersten Kenners *°) der
Eulerschen mechanica:

“Diese Eulersche Theorie der Flissigkeiten besitzt eine kaum zu
iberschiatzende Wichtigkeit. Thre Grundgesetze wurden von Euler in Form
einiger einfacher und schoner Gleichungen formuliert, die mit knapper
Erkliarung auf eine Postkarte geschrieben werden konnten. Es ist eine der
tiefsinnigsten Seiten des Buches der Natur. Erstens war es die erste For-
mulierung einer Teilerfassung der Erfahrungswelt mit Hilfe des Modells des
kontinuierlichen Feldes. Zweitens hat die ideale Fliissigkeit als Musterbeispiel
oder Ausgangspunkt fiir viele spatere physikalische Modelle bis in die heutige
Zeit gedient. Drittens ist ein ganz neuer Zweig der reinen Analysis, die Theorie
der partiellen Differentialgleichungen, daraus entstanden. Dies sind alles ver-
borgene, erst spiater bewiesene Folgerungen der Eulerschen Theorie. In der
Mechanik erscheint Euler nicht so sehr als Rechner oder Loser besonderer
Probleme, vielmehr als der Schopfer der Begriffe. Seine Leistungen in der
Mechanik bilden einen Triumph der mathematischen Denkweise.”

Epilog

Eulers Ansehen und Einfluss waren schon zu seinen Lebzeiten beeindruk-
kend. Wihrend etwa zwei Dezennien war er der geistige Fiihrer der gebildeten

44} Zu Eulers Rolle in der Friihperiode der theoretischen Hydraulik greife man zu G. K. Mikhailov,
Leonhard Euler und die Entwicklung der theoretischen Hydraulik im zweiten Viertel des 18.
Jahrhunderts, EGB 83, wo auch die Verdienste von Johann und Daniel Bernoulli gewiirdigt und
sorgfaltig gegen diejenigen Eulers abgegrenzt werden, soweit dies heute iiberhaupt moglich ist.
Ferner sei nachdriicklich auf die Studie von W. Habicht, Einige grundlegende Themen in
Leonhard Eulers Schiffstheorie, EGB 83, hingewiesen.

C. A. Truesdell, Eulers Leistungen in der Mechanik, Extrait de I’Enseignement Mathématique
M, fasc. 4 (1957).

45)
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Kreise im protestantischen Teil Deutschlands. Unschitzbare Dienste leistete er
als “goldene Briicke zwischen zwei Akademien’, wovon seine Korrespondenzen
ein ebenso eindriickliches Zeugnis ablegen wie die Tatsache, dass wahrend seiner
Berliner Zeit 1741-1766 in den Petersburger Akten (den Zeitschriftenbanden der
Akademie) 109 Publikationen aus seiner Feder stammten, gegeniiber 119 in den
Mémoiren der Preussischen Akademie. Insgesamt hat Euler zwolf internationale
Akademiepreise gewonnen, die acht Preise seiner Sohne Johann Albrecht (7) und
Karl (1), die man substantialiter ruhig auch auf sein Konto buchen kann, nicht
mitgerechnet. Louis XVI schenkte ihm fiir seine “‘zweite Schiffstheorie” 1000
Rubel, und Katharina II., die sich nicht lumpen lassen wollte, bescherte ihn mit
dem doppelten Betrag.

Einhellig ist das Urteil der bedeutendsten Mathematiker nach Euler. Laplace
pflegte seinen Studenten zu sagen: “Lisez Euler, c’est notre maitre a tous”, und
Gauss erklarte klar und deutlich: “Das Studium der Werke Eulers bleibt die beste
Schule in den verschiedenen Gebieten der Mathematik und kann durch nichts
anderes ersetzt werden”. In der Tat wurde Euler durch seine Biicher, die sich
durchweg durch hochstes Streben nach Klarheit und Einfachheit auszeichnen und
die ersten eigentlichen Lehrbiicher im modernen Sinn darstellen, nicht nur zum
Lehrer Europas seiner Zeit, sondern er blieb dies bis tief ins neunzehnte Jahrhun-
dert hinein: die Werke Bernhard Riemanns, eines der bedeutendsten Vertreter
der ars inveniendi grossten Stils, tragen unverkennbare Eulersche Zuge. Gotthelf
Abraham Kistner, dem wir die erste deutsche Mathematikgeschichte verdanken,
pragte den treffenden Vergleich, dass im mathematischen Stil d’Alembert der
Deutsche sei und Euler der Franzose, und Carl Gustav Jacob Jacobi schloss sich
diesem Urteil an. Henri Poincaré berichtet, dass nach Theodore Strong “‘Euler
der Gott der Mathematik sei, dessen Tod den Niedergang der mathematischen
Wissenschaften markiere”. Und wirklich waren Euler, d’ Alembert und Lagrange,
die im letzten Drittel ihres Jahrhunderts gewissermassen ein mathematisches
Triumvirat bildeten, unleugbar von dem Gefithl einer hereinbrechenden
décadence touchiert, wie man aus ihren Korrespondenzen ersehen kann. Wenn
sie glaubten, keine geistigen Erben zu haben, so hangt dies wohl damit zusam-
men, dass man “auf den Gipfeln alleine ist”.

Doch auch prominente Zeitgenossen scheinen dhnlich empfunden zu haben.
So schrieb Denis Diderot, das Haupt der Encyclopédie, in seinen ‘“Gedanken zur
Interpretation der Natur” (1754): “Wir stehen vor einer grossen Umwilzung in
den Wissenschaften. Bei der Neigung, die die Geister jetzt, wie mir scheint, zur
Moral, zur schonen Literatur, zur Naturgeschichte und zur experimentellen
Physik haben, mochte ich fast versichern, dass man in Europa vor Ablauf eines
Jahrhunderts nicht drei grosse Mathematiker zahlen wird. Diese Wissenschaft
wird plotzlich dort stehenbleiben, wo die Bernoulli, Euler, Maupertuis, Clairaut,
Fontaine, d’Alembert und Lagrange sie verlassen haben. Sie werden die Saulen
des Herkules errichtet haben. Man wird nicht dariiber hinausgehen. Ihre Werke
werden in den kommenden Jahrhunderten fortbestehen wie jene adgyptischen
Pyramiden, deren hieroglyphenbedeckte Steinmassen bei uns eine erschreckende
Idee von der Macht und den Hilfsmitteln der Menschen hervorrufen, die sie
erbaut haben.” Nun —die Geschichte hat derlei Ressentiments schlagend wider-
legt, denn nirgends treffender als im Reich des Mathematischen gilt das Wort
Johannis: Der Geist weht, wo er will.

Gewiss hat man oftmals — fast immer zu unrecht — auf vermeintlich eindeutige
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Schwichen im Werk FEulers hingewiesen, hauptsichlich auf das angeblich
unzuldssige Umspringen mit dem Begriff des Unendlichen, sei es im Grossen
(Reihentheorie) wie auch im Kleinen. Um Konvergenz- und Stetigkeitskriterien
im modernen Sinne wie auch um die logisch exakte und geschlossene Fundierung
der Analysis im Sinne der ars demonstrandi eines Cauchy, Bolzano oder Weier-
strass konnte er sich gar nicht kiimmern, da ein (im heutigen Sinne) strenger
Beweis etwa fiir das Cauchysche Konvergenzkriterium erst nach einer Definition
der reelen Zahlen — also frithestens 1870 — ermoglicht wurde. Euler verliess sich —
nur vereinzelt erfolglos —auf seine erstaunliche Instinktsicherheit und al-
gorithmische Kraft. Und hat nicht gerade Euler, der mehr als jeder andere
Sterbliche geforscht und gesucht hat, einen unbedingten Anspruch auf die Worte
von Karl Weierstrass, des Meisters der Strenge: “Dass dem Forscher, solange er
sucht, jeder Weg gestattet ist, versteht sich von selbst”, umso mehr als Georg
Cantor, der Schopfer der (nmicht ‘‘naiven”!) Mengenlehre, das Wesen der
Mathematik gerade in der Freiheit erblickt? Gewiss ist Eulers analytisch-
algorithmischer Funktionsbegriff — ein Bernoullisches Erbstiick —zu eng und zu
speziell und erfordert geradezu naheliegende, aber aus heutiger Sicht “verbotene”
Verallgemeinerungen, deren gefidhrliche Klippen Euler nur zu umschiffen
vermochte mit seiner grenzenlosen Phantasie — conditio sine qua non fir einen
schopferischen Mathematiker —und einer kaum fassbaren algorithmischen
Virtuositat, die es ihm erlaubte, die gestellten Probleme von den verschiedensten
Seiten anzugreifen, die gewonnenen Resultate zu kontrollieren und notigenfalls
zu berichtigen.

Andreas Speiser (1885-1970), der einen grossen Teil seines Lebens Eulers
Werk gewidmet hat, betonte wieder und wieder: “Noch viele Schitze sind in
Eulers Werk zu heben, und wer Prioritaten jagen will, findet kein dankbareres
Gefilde”. — Tatsachlich wird noch einige Zeit verstreichen, bis das gewaltige Werk
vollstandig im Druck zuginglich sein wird, und eine Werkbiographie des pro-
minentesten Auslandschweizers steht noch aus. Freilich — ein solches Unterfangen
wire gleichbedeutend mit der Abfassung einer Geschlchte der mathematischen
Wissenschaften des achtzehnten Jahrhunderts.
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