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Commensurate—incommensurate transitions
in 2 dimensions

By M. W. Puga™), E. Simanekt) and H. Beck, Institut de Physi-
que, Université de Neuchatel, Rue A.-L. Breguet 1,
CH-2000 Neuchéitel (Switzerland)

(25. I1. 1983; rev. 1. VI. 1983)

Abstract. We study the commensurate—incommensurate transitions of a two-dimensional system
via a renormalization group method which includes incommensurability as a renormalizable parame-
ter. The phase boundary is found by numerical methods. The correlation length exponent » is
obtained and shown to depend continuously on the parameters of the model. For typical values of
these parameters we find v=0.35, in good agreement with experimental work on adsorbed
monolayers.

1. Introduction

Structural transitions in two-dimensional (2D) systems of various kinds have
been studied extensively in recent years, both experimentally and theoretically.
Prominent examples of 2D lattices which undergo transitions from a state which is
commensurate with respect to some external periodic structure to an incommen-
surate state (ClI-transition) are mono-layers adsorbed on a substrate like graphite,
2D charge density waves and vortex lattices in thin type II superconductors [1].

The mathematical model which we analyse in this paper contains all the
important features of a system undergoing a Cl-transition. Its details, however,
are specifically chosen such as to describe the physics of a vortex lattice in a
superconducting layer. Such a lattice is created by applying a magnetic field
perpendicular to an extremely thin superconductor [2]. The field is able to
penetrate the film forming vortices of normal material in the superconducting
background. They form a triangular lattice with the lattice constant depending on
the magnetic field applied. Since those vortices have a self energy proportional to
their actual length (thickness of the material), a modulation of the thickness has
the effect of making it energetically more favorable for the vortices to sit in region
of minimum thickness of the modulated substrate. Thus, a competition arises
between the vortex—vortex interaction which tries to keep the vortices in their
‘natural’ lattice structure and the substrate which tries to make the lattice
commensurate by forcing the vortices into its wells.

In the continuum approximation, the Hamiltonian of the system can be
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written as [3],

2 2 pa] 2
oy -2 2l (oo
2 Lax oy 2 L\ax dy dy ox
2
+ V, cos (f u+8x)}

where A and w are the elastic constants of the system, u and v the components of
the displacement vector along the x and y direction, respectively, V, the strength
of the modulation that we assume to vary harmonically along the x direction, and
& the mismatch parameter which measures the incommensurability between the
system and the substrate.

For 6 =0, system and substrate are commensurate, such that for T=0 we can
have the vortices sitting in the potential wells and forming a triangular lattice as
well (u =0 everywhere). We have therefore a commensurate phase which can be
unlocked by thermal fluctuations as the temperature rises. However, if the value
of & is strong enough, we might have already an incommensurate situation at zero
temperature. We expect therefore a phase boundary in the 8, T plane with a
locked commensurate phase for small values of & and T, and an unlocked phase
otherwise. In this paper, we present a study of this phase boundary and the
analytical properties of various quantities near the boundary. We base our work
on a renormalization group (RG) calculation which has the new feature of
introducing 8 as a renormalizable parameter, allowing for the study of the critical
boundary.

In Section II, we present in detail the application of the RG techniques to
(1.1). Section III is devoted to an analytical study of the RG equations in the case
6 =0, and to the new phenomena appearing for 6# 0. A survey of the complete
RG solutions based on our nuumerical work is given in Section I'V. We discuss
and summarize the results in the last section of this work.

2. Renormalization group equations

In this section, we present the RG techniques which allow us to obtain a
system of differential equations for the parameters of the Hamiltonian (1.1). We
start by introducing a cut-off A in momentum space essentially related to the
inverse lattice constant a(A = 27/a). We then define a second cut-off A’ (infinitesi-
mally) close to A and eliminate the field fluctuations between A’ and A. Splitting
the field in the following way:

k2R (2.1)

() = () ) e jA' -k

o e ol
ik - X
) (211_)26 u(k)-l-J

A (277)2 ¢

(and the same for v), defining the parameter dt =1— A’/A and the scaled variables
and fields

k'=k/(1-dt) ¥ =%(1-dt)

- - N (2.2)
u'(k')=u(k)/& v'(k")=v(k)/¢&
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we obtain the following relations:
ug(X) =€(1—dt’u'(X’),  vo(X)=&(1—dt)*v'(X").
The calculation of the partition function

= J'H du, dve™
aq,k

where £ = #/T, can be achieved in two steps. We first integrate over the fast
changing Fourier components of the field with A’<gq, k<A and then over the
rest. This intermediate step allows us to define a new quantity &£’ by the following
relation:

Z=j H H du, dve ¥

a<A k<A’ (2.3)
55”=an H H e ¥
a=>A k>A'
We can split £ into two parts:
3 = $0+N
, [a[du au]2
e — _+_
Lol ) J’d x{Z [ax Jy
2. 2
Al e-2)
2 1L\9x dy ay 0x

N(u)= Idzx{y cos (%;—T u+ Bx)}

where we have defined: a =A/T, B=u/T, y=V,/T.
Splitting the fields according to (2.1) we find that the cross terms do not
contribute to the integral in (2.3) and we obtain:

£ = —lnj Gy, Dv e~ LoWo o= Lolupv)~Nluguy)

= Lo(ug, vo) —In {exp (—N(uo+ u,))) {2:3)
where we use the notations:

(F)= j By Duie” Ho M F

YDu, = H du.

k=>A'

(2.6)

Using the expansion

In (e—-yt>: Z (—7) (tn)c
n=1 n‘
we obtain
L' = ZLo(ug, vo)

- i Cyr <I 12[1 d*x; cos (%T u(X)+ Sxi)> (2.7)

n=1 n! i= c



Vol. 56, 1983 Commensurate—incommensurate transitions in 2 dimensions 1073

where (A). denotes the cumulant part of (A). L,(u,, v,) can be expressed in
terms of the primed fields

ou’ v’ P
2= Jax{g T3]
0 2 Lax’ ay’

"2 "2
om-myes.y)
2 L\ox" ay'/ \ay’' ox’
where we have chosen &, by
E1—dt)y’=1

such that the argument of the cosine is left invariant.
We restrict ourselves to the first two terms of the series (2.7),1.e. n =1 and 2.

n=1:
5 27
&£ =v|d*x{ cos - (ug+ uy + 8x) (2.9)
The average (sin (27/a)u,) vanishes by symmetry while
<cos Ly u >— g 22 (2.10)
a

since (2.6) is an average over a Gaussian field distribution. Using the fact that (u?)
is linear in dt and expanding to first order we obtain

; 21 ox’
F = ‘jdz ’ (— "+ )
=¥ X eo8 a “ 1—dt

where

Y= ~y(1+2dt)(1—2a—2(u1)) (2.11)

which introduces a renormalization of v.
For n =2, we have to evaluate

2 2
L= —% J dzxj- dzjc‘<cos (gal" (ug+uy)+ Sx) cos ("C:—T (o +ty) + 332)) .

We use the trigonometric identity

cos (Ag+A,) cos (Ag+ A,)=2{cos (A—Ay) cos (A, —A))
—sin (A —Ay) sin (A, —A))
+c0s (Ag+ Ag) cos (A +A))
—sin (Ay+Ag) sin (A, + A}

with

2 2
A(,:—Wu0+8x; A= Wul.
a

a

Since averages involve only u;, ii;, the averages sin (AliAl) vanish. The
term cos (Ay+ Ag) generates a higher harmonic of the type cos (2u). We can see
from an argument already given by Pokrovsky and Talapov [3] and Wiegmann [4]
that an harmonic of the type cos (nu) contributes via the renormalization group to
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an equation similar to (2.11), but with the factor (1—2#%/a*u?)) replaced by
(1-(2n*/a®)n*(u?)). For temperatures close to the transition temperature these
contributions decrease more rapidly than the one generated by the first harmonic
and can therefore be neglected. We therefore obtain:

2
2 A r
&£, = —114— szrj d’p cos (—ﬂ- p - Vu+ 8p cos d))(cos (A —A)D).
where we have defined p =7 — 7 and we have expanded the (slow) fluctuations of i,
keeping only terms in V.
We now separate the sum inside the argument of the cosine and expand the
terms in Vu, keeping however the full expression for the terms in 8. We obtain:

2
B = —'YI jdzrj d? [—%17— (- Vu)? cos (8p cos @)

27 - Fu)sin (3p cos ) | - (cos (4, A

The function {cos (A, —A,)), is of first order in dt, it drops to zero very slowly
(~1/p) for large p and needs to be approximated to make the previous integral
converge.

We neglect its angular dependence and, following Wiegmann [4] approximate
the p integrals by a constant of order unity. Introducmg the primed variables and
performing the angular integral, to first order in dt, we obtain,

2 "2 "2
YA 227 ((au) (au ) ) 2w ou ]
o= 4 Id [az I ox) T ay’ a ox' dt (2.12)

with
2 o
=51 (A)

2T o
T= A3 i (A)

J, being the first order Bessel function. Moreover, we have approximated the
coefficient of (du/dy)? by the one of (du/dx)?, ignoring thus the small anisotropic
effect created by the presence of a non-zero 8. (These terms are equal if § = 0).

The essential features of formula (2.12) are the renormalization of the
parameters associated with deformations perpendicular to the potential wells
((0u/ax)?, (du/ay)?), and the appearance of a term linear in du/dx which was not
present in the original Hamiltonian. This new term is due to a non-zero & and can
be eliminated by a simple translation of the fields.

For the sake of full generality we should, however, start from a more general
&, singling out the coefficients of (du/dx)? and (du/dy)* which are the ones subject
to renormalization according to (2.12). We write (introducing a new parameter H)

o= j azzx{1 [(H +a)(§—:)2+H(§§)2] = (2_5)2
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In order to compare the ‘new Hamiltonian’, i.e. £y+£i+ %5, with (2.13) we
introduce the shifted fields (u, ©) by

u'=ua+x'Adt

v'=90+y'A dt , (2.14)

and determine A and A’ by requiring that the linear term in (2.12) be eliminated.
This yields

ool )

__—B
A= a+BA. (2.15)

The cosine term in L, gets now changed into
cos (23 u'+ 22 ) = (gir i+ [—-8—+A dt]x’)
a 1-dt)” “\a 1—dt '

The quantity in the square bracket gives the renormalized value of 8. To first
order in dt we obtain:

§=86+(8+A)dt (2.16)
and comparing (2.12) and (2.13)

_ ,y2ﬂ_2

H=H+"—-Idt. (2.17)

Formulae (2.11, 2.16 and 2.17) give now the renormalized parameters as a
function of the old ones. From them, differential equations for &, 83, 8, ¥, H are
readily obtained. We relate to Appendix A the calculation of (u%), and introduce
the variables

H y= ay , = 5
xX=— = =—
B 4~/ 73 A
and dimensionless constants
V A
p=Yo LTl 4 A
0 na 0
to obtain
x=2y%J1(2) x(0)=1
A
io|2-Tew]|,  cm=2[1- |
2 X x+A+vVx(x+A)(1+A) (2.18)
7]
y(0)=—=
47
J 5] 8
_ 2 1 o
Z z 2y 1. AA Z(O) A >
1+A
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where we choose the initial value H = 8 such that (2.13) agrees with (2.4) and find
that the right hand side of the equations depend on the initial values A and 7 due
to the fact that the coefficients @ and 8 do not renormalize. The dot means
differentiation with respect to ¢t which we will interpret as ‘time’ for the purpose of
illustration. In the next section, we study in detail these equations.

3. Analytical solutions of the RG equations

The set of equations (2.18) can now be analyzed to study the critical
properties of our system. We start by studying in detail the case § = 0. If the initial
value of z is zero, z remains zero, and the effective RG equations reduce to the
more simple ones:

%=y
. T
y= y[2——2- G (x)].

Eliminating t between the two equations, one gets an analytic solution for the
RG-trajectory in the x, y plane given by

yi=vyi+4(x+1)—vG(x),

xX+A
x Vxk VN1i+A (32

G(x)= I G'(x)dx=41n
" )
where y, is given in (2.18).

We present these trajectories in Fig. 1. Keeping all initial parameters fixed
and varying the temperature, we obtain different values of y, as the initial
condition for renormalization. For temperatures close to the transition tempera-
ture we observe two distinct behaviours:

(3.1)

(a) In some temperature domain, the value of y initially decreases and then
increases, renormalizing the potential to a huge effective value. This
shows the dominance of the potential part over the thermal fluctuations
and signals a situation where the lattice is looked to the substrate [5]: we
are in the commensurate phase.

(b) For higher temperatures, a different behavior sets in and the curves flow
into the x-axis, effectively reducing the potential to zero and indicating
the existence of an unlocked or incommensurate phase which has been
described in previous papers [3, 6]. The variable x (renormalization of w)
reaches a finite value which is higher than the initial value.

There is a separatrix which has its minimum on the x axis and separates both
behaviours. This curve is calculated by setting y =0 at the minimum:
4(x,—1) 6°?
(=1,

T, 1672

= G(x,) (3.3)
and

4
—=G'(x,),

Te
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0.10 l
Y
0.05r _
0 ' E
1.00 1.05 1.0
¥ e
Figure 1

Renormalization group trajectories (solutions of (3.1) subject to the initial conditions given in (2.18))
in the (x, y)-plane for § =0, A =1000, 8§ =0.5. The various curves correspond to different initial
values of y, i.e. to different (reduced) temperature values 1, close to the critical value (3.4).

where we have defined 7. = 7T./na?, and x, = H(»)/B is the final renormalized
value of H at the critical temperature T.. To calculate T, one should eliminate x,
between both equations and solve for 7. as a function of 8 and A.

Solving (3.3) for small values of 8 we find:

_1+A 5
’Tc~4“——2+A[1+R3]+0(9) (3.4)
with
B 8(1+A)+3A2]1’2
R_[ 2°(1+ A)? 33)

Neglecting V,, we find precisely the value given by Pokrovskii and Talapov [3]; to
first order in V,,, some corrections appear in agreement with other previous work
[5, 7] ,

In the high temperature phase, there is a sequence of stable fixed points (x.)
on the x axis which give the renormalized values of the coupling constant H in
(2.13) as a function of temperature. By putting y =0 in (3.2) and expanding near
X., I, we obtain the typical square root behaviour for u near T,:

H(T)=H(T.)-D[T-T,]'? (3.6)
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with D being a positive constant which depends on the initial parameters. We can
also calculate the form of the correlation length below T,. Following the method
developed by Kosterlitz for a simpler problem [8], we first eliminate y between
(3.1) and (3.2) to solve for x as a function of t:

f= J: dx’[4(x' - 1)+—196%— ’TG(X')]_l. (3.7)

For high values of x and y, the renormalization group equations become meaning-
less since they were based on a small y expansion. We therefore stop at a
particular value of x (say xz of order unity), and use (3.7) to solve for t as a
function of temperature; clearly as T approaches T, from below the integrand has
a pole at x = x.(T.) and t diverges; expanding the denominator for x' close to
x.(T,) and 7 close to . we obtain:

= j dx'la(x' = xAT))*+b(r —7 )] > < [7. — 7]
1

Since by definition t =In A, the divergence of ¢ is associated with the divergence
of the inverse correlation length, and we obtain:

Exe txexp[—a/vVT.—T], (3.8)

which is a typical ‘Kosterlitz-Thouless behaviour’ for T close to T, and 6 =0.
This completes our study of the 8 =0 case. All these conclusions have already
been found in our previous analysis [4] of the more simple 2D Sine-Gordon
- Hamiltonian. The introduction of two field components (u, v) has changed the
. equations of the renormalization group. They keep, however, the same essential
form close to the fixed point, which determines the critical behaviour of the
system. For the case 8 # 0, the full equations given in (2.18) must be used. We first
point out that besides the 8 =0 fixed points discussed above (i.e. the points
(x., 0, 0)), there is a new fixed point P*=(x*, y*, z*) with a non-zero value of z*.
It is given by the conditions:

4 i
=Bt ) (3.9)

. [z*(x* —1+4A/(A + 1))]“2
Yo 211(2*)

Due to the small y expansion on which our theory is based, we must use small
values of y, as initial conditions. As we will see later, for such input values, only
the smallest value of z* satisfying (3.9) will be important to determine the
transition. We therefore restrict ourselves to this first root. We should also notice
that this is a plane of fixed points since P* depends on the two initial parameters
A and 7 due to the fact that @ and 8 do not renormalize in (2.13).

To study the nature of such a new fixed point we linearize the equations near
it; we easily obtain:

x=—a(z—2z%
v =b(x—x*) (3.10)
z=z—cly—y®+d(x—x%),
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where we have defined the positive quantities:
a=2y**|J{(z"|>0, b=—1y*G"(x*)/2>0
c=2z%y*>0, d=z*/2y*J,(z%)>0.

Obviously (3.10), is solved by the usual exponential form A —A*=AA =AA e*"
for A=x,y or z, where w is a root of the eigenvalue equation

®’—w*+adw —abc =0. ‘ (3.11)

In Appendix A, we prove that for the usual range of experimental values of the
parameters (i.e. {=8) one finds a positive real root and two complex conjugate
with a negative real part. In a neighbourhood of the new fixed point there is
therefore a plane spanned by the two eigenvectors with complex eigenvalues. In
this plane the trajectory will tend towards the fixed point in an oscillatory fashion.
Slightly below (above) that plane the curve will move down (up) away from this
point. Two limiting behaviours are then expected, which we first discuss qualita-
tively:

(a) If the initial temperature is such that we already were in the incommen-
surate phase for 8 =0, a finite § will only decrease the ‘speed’ at which x
is growing (J'(z)<1) and these smaller values of x will in turn reduce the
rate of growth for y; we will therefore reach a point on the x axis
(x =x., y=0) which signals the incommensurate phase. This is as ex-
pected physically: a finite value of 8 helps incommensurability. Notice
that since y—0 and J,(z) is bounded we will approach a limiting
behaviour for z of the exponential type:

zZ=2z,

This indicates that in the incommensurate phase the value of z (renor-
malization of §) moves to higher and higher values physically suggesting a
dominance of the 8 terms (which favours incommensurability) over the
V, terms (which favours commensurability).

(b) Suppose now that we start with a low value of temperature such that for
6 =0 we would be in the commensurate phase. This means that the § =0
curve moves towards a region of increasing x and decreasing y, until a
value of x=~x.(T,) is reached. At this value y will change a sign and y
will start increasing forcing x to keep increasing at a higher rate until very
high values of x and y are reached signaling an effectively stong potential
and the existence of the commensurate phase. If we now start with a
non-zero 8, the term J'(z)<1 will slow down the rate at which x is
growing; but if 8 is not very big the point x.(T.) might be, nevertheless,
approached and the previous analysis applies, indicating that the com-
mensurate phase is still the most favorable. Such a value of 8, though
non-zero, is not big enough to change the nature of the 6 =0 phase.

Notice that in this case, in the z equation, the large values of y and small
values of z cause the negative term to dominate over the positive one and we
have z decreasing exponentially to zero. & is being effectively renormalized to
zero, a characteristic of the commensurate phase. If we now feed a bigger initial
value of & into our equations, x might be slowed down enough to prevent that
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x.(T,.) is reached. This will cause y to decrease to zero, z to increase to infinity
and the incommensurate phase will set in.

There are therefore two distinct behaviours. For small values of T and 8 the
system is renormalized to the asymptotic limit (oo, o, Q) which signals the commen-
surate phase. For large values of T or §, the system tends towards (x., 0, )
indicating the incommensurate phase. There is thus a curve in the T, 8 plane
which separates the two behaviours and that could in principle be calculated by
choosing the initial conditions such that the renormalization curves will tend
towards the new fixed point. We study this phase boundary by numerical methods
in the next section.

4. Numerical studies

We numerically integrated the system of equation (2.18) for given values of
the initial parameters V,,, w, A, T and 8. In Fig. 2, we present the results.

The plane x, y is a reproduction of Fig. 1, where we see the main behaviour
of the solutions in the two phases. Starting now from the points B,, B,, B3, where
the system would be in the commensurate phase for 6 =0, we observe the
transition as it was pointed out before. For each value of temperature (below the
critical point at 8 =0) there is a critical value 8.(T) of 8 for which the system
changes drastically its asymptotic behaviour. Close to the critical curve starting at
B, and running into P* we observe the solutions to oscillate near P* in
accordance with the complex character of the eigenvalues mentioned in the
previous section.

To study the shape of the phase boundary one has to integrate equations
(2.18) keeping A, n and V,, fixed, and varying & for fixed T to search for the value

Figure 2
RG-trajectories (solutions of (2.18)) in (x, y, z)-space for various initial values of y and z, i.e. of
temperature and & (see text).
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0 | |
0 0.01 0.02

@l =

Figure 3
Phase boundary 1. = 7.(8) between commensurate (v <<7.) and incommensurate (r<7,) domains for
A =0 (incompressible lattice), 8 =0.1.

of & (corresponding to B, in Fig. 2) at which the asymptotic behaviour changes.
Repeating the procedure for different values of T, the shape of the phase
boundary can be constructed numerically. This form will be more accurate for
small values of & since the renormalization equations are better for values of
temperature close to the critical one for zero 8, i.e. for small y. The result of such
a numerical search for the phase boundary is plotted in Fig. 3. We observe a
linear relation in most of the range; for very small values of & there is a cusp.

Information about the correlation length near T, can be obtained from the
system (2.18). As pointed out for the case 8 =0, we integrate the equations below
T, up to the point where z=z is on the order of z* and calculate the
characteristic ‘time’ ¢ for such value to be reached. The correlation length is then
given by:

§Ocef.

This ¢ can be estimated from the fact that for z-values close to z* we have an
exponential growth:
. TR oot

A
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where w is simply the real eigenvalue calculated in the linearization technique.
Stopping at z = z; we have

(zr—z%)e ™ «8—8, DE=k(5-8.)"1 (4.1)

where k is an uninteresting constant, and the critical exponent v is simply given
by the inverse of the real root of equation (3.11). We notice that the coefficient ad
in (3.11) is a numerical factor =2.386. However, the product (abc) depends on
the parameters of the problem through 7., x* y*, yielding the remarkable fact
that the exponent is parameter dependent [9]. This is a direct consequence of the
existing plane of fixed points generated as the values of A and 7 change. In
Appendix B we study in detail this exponent and find that the dependence on € is
small for the range of validity of our theory (0=6=1, since we have truncated a
series in V,, after the second order). The dependence on w/A is plotted in Fig. 4,
for 8 =0. We obtain a smooth curve between the limits 0.32 for A — o, and 0.44
for A = . The lowest value (0.32) is the one applicable for the vortex lattice,
which is virtually incompressible. For an elastic lattice in general we would expect
A > . Therefore v should be around 0.35, which is in good agreement with
experimental data for adsorbed monolayers [10, 11, 12]. There the misfit m,
behaving like [9]

m o (8§—8,)° &t

is measured.

V i T T T 1 I T T
0.40
0.35F
030 ] 1 | 1 I 1 1 ! I
0 0.5 1
A —=
Figure 4.

Values of the critical exponent v as a function of A~'=u/A and small 8 = V/p and §,.
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When & becomes non-zero, the 7.-dependence of w, through the coefficient
abc in (3.11), becomes also apparent. In Appendix B we present some values of v
(for A =), following the phase boundary 7.(8). The general tendency is that v
decreases with decreasing T,. It is interesting to note that this is precisely what
Stephens et al. [10] found for Kr-monolayers on graphite: B=v=0.32 at
T,=89K and v=0.26 for T. =80 K. Although our theory is only reliable for
small 8, it predicts an exponent v =0 in the limit T, — 0 (at the critical -value
for the zero temperature CI transition, discussed by many authors [3, 6]). This is
compatible with the logarithmic law (£ «xIn|8—8,|) put forward by Talapov [3].
As previously discussed in a recent publication [5], these numerical values of the
critical exponents should not be regarded as exact due to the different approxima-
tions made. Discrepancies can appear due to the truncation after second order of
our expansion on powers of y and the approximations made on the function
(cos (A;— A))).. Moreover, another approximation is related to the fact that the
renormalization group transformation (2.2) is a linear transformation correspond-
ing to a value of the usual critical exponent n describing the decay of the
correlation at T,, n =0.

5. Discussion of results

The Hamiltonian of a two dimensional elastic system under the action of a
sinusoidal potential has been studied using the renormalization group techniques.
Care has been taken to introduce a term which favours incommensurability
between the substrate potential and the natural lattice of the 2D system and this
term has been properly included in the renormalization procedure. Thus a
renormalization of the elastic constants, potential and misfit parameter & has been
achieved. For the case of 6 =0, an extension of previous work [5] has been done
which allows for the determination of the critical temperature (as a function of
V,) namely:

_4a’u(p+A)

C a(A+2ur)
Due to the substrate and the thermal fluctuations, the elastic behaviour of the
system is anisotropic. The temperature dependence of those elastic constants

which are associated with a deformation u, near T, in the incommensurate phase
is calculated to be:

p=p.—DVIT—-T, T=T,; D>0.

+AVy+o(VE); A>0.

Below T, the form of the correlation length presents the following behaviour
£ e*(BIJ(TC—T))’ B>0.

These results are very similar to the ones we found in the Sine-Gordon Hamilto-
nian:

s [ () v B

which has been analysed in a previous publication [5].
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In the case 8 # 0 a new fixed point appears, describing a Cl-transition. There
are two types of asymptotic behaviour of the RG trajectories, depending on the
initial value of &: there is a phase boundary in the (T, 8)-plane which separates
the low T (commensurate) and high T (incommensurate) phases. This phase
boundary, evaluated numerically, is shown in Fig. 3. The most surprising result,
however, is the fact that the correlation length exponent v along the CI phase
boundary depends on the parameters of the system in a continuous way. More
precisely it depends explicitely on the ratio A =M/w and on T, which is itself a
function of A, u, V,, and 8. Thus our calculation predicts a temperature variation
of v, when one follow the CI phase boundary of a system with given A, u, V. For
small 8-values and highly incompressible lattices (such as the vortex lattice) v lies
in the vicinity of 1/3. A temperature variation of v has also been reported for
Kr-layers on graphite [10] with numerical values close to our theoretical predic-
tions. Our results, however, should not be directly compared with experiments on
monolayers, because there the substrate modulation is two-dimensional, whereas
our Hamiltonian describes a 1D modulation. We hope that our results can be
checked by future experimental work on the vortex lattice in a superconducting
film whose modulation is of this type. Finally, we remark that in the limit T, — 0
we find v =0, which is compatible with the logarithmic divergence of the
correlation length predicted by variational ground state calculations [3].

We thank Prof. P. Martinoli for interesting discussions about the vortex
lattice.

This work was supported by the Swiss National Science foundation.

Appendix A

The calculation of {u?7) according to the definition given in (2.6) requires the
Fourier transformation of the anisotropic Hamiltonian given in (2.13). To this
effect we introduce:

®i

ug = J d?xu(X)e®

o

v = J d?xv(%)e*®
i 2.13 to obtain
%o=1 L (Glt Kkufug
+(Bk3+ (o + BYkvEor + ak.k, (ufve + vEug)}.
In momentum space, the quantity (u?) becomes:

o [N kdk
<u1>— ‘[\' (217)2

29T
j do{(ufug)

I I1 du, dvutuze %
q

(ufug)=
j I1 du, dve
q
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The evaluation of the Gaussian integrals is straightforward and yields:

ak%-ﬁ- Bk?
(aki+ Bk (ak2+ Hk?) — a’k2k2

(ufug)=

where we have written G =« + H following (2.17). Performing the integrals in
momentum space easily obtain:

wy=emn 1 [1 _ oB ]
A H aB+HB+VB(a+H)H(a+8)

Appendix B

In this appendix, we study the nature of the roots of equation (3.11)
w*—-w>tad - w—abc=0 ' (B.1)

and calculate the real root whose inverse gives the critical exponent of the
correlation length as shown in (4.1). The constants a, b, ¢ and d are given after
(3.10) in terms of the fixed point coordinates x*, y*, z™ given in (3.9).

We first notice that the product ad depends only on z* which is a numerical
constant : ad =2.386. The product abc however depends on the parameters of
the problem. Using (3.9) we find

4A
1+A

abc = —ad[x* -1+ ]'TG"(X*). (B.2)

The discriminant of equation (B.1) is given by:

_(ad)? abc (abc 2 a
A=Tog ad D=5+ 5773
abc (abc )
~(0.4504+—|———0.7213).
> > 0 3

A as a function of (abc) is then a parabola, with a minimum at about 0.32. We
therefore conclude that A>0 for any value of the constant abc and we will have
one real root and two complex conjugate. Denoting @ the real root and R +Ii the
complex ones we obtain from (B.1) the relations:

wxR=1
2Row+ R?*+I?=qad (B.3)
w(R?*+I?) = abc. ]

As noted after (3.10) the four constants a, b, c, d are positive, we therefore obtain
from the last equation in (B.3)
w=0.

The real root is always positive. We now proceed to find a lower bound for abc.
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Using (8.2) together with (3.9) we obtain

ane_ 2x*[1+ k¥ ]
ad x*+Vx*(x*+ A)1+A) (B.4)
X (x*— 1+%) |G"(x™)|.

Experimentally we always expect A = (for the vortex lattice A — =), we there-
fore can safely assume that A =1. The right hand of (B.4) is a decreasing function
of x* with a limiting value of 4 at x* — o, therefore

abc =4ad > ad, (B.5)
and using(B.3)
adw >2Rw?*+ ad = R <. (B.6)

We thus have one positive real root and two complex conjugate with a negative
real part.

The value of the real root, as explained in the main text, is the inverse of the
correlation length exponent. It can be easily obtained to be

w=3+g.+g
with
g, =[g—0.3606++0.4504+ g(g—0.7213)]"> (B.7)
where
abc T 4A
=—=2_3 _C( *_ +_____) 1 ES
§=" 862x 1 o |G”(x*)|

and x™ and 7. are related by the equation

2 G'(x%). (B.8)

C

We obtain a critical exponent v =v(6, A, 8) which depends on the parameters of
the system (0 = Vy/u, A = A/ and 8). We now proceed to a systematic study of
this function.

Consider first the case & =0. In this case, the second relation between 7, and
x* has been calculated analytically in (3.3) to be:

4(x*-1) 6*
+ 2
T, 167

= G(x*). (B.9)

Using (B.8) and (B.9) we can solve for 7. and x* as a function of § and A. For
0 =0, we obtain

1+A
2+ A

which, substituted in (B.7), yields the limiting values:
v(0, 1, 0)=0.402, v(0, 0, 0)=0.318.

=], T,
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Our theory is based in an expansion on power of V,/u and will not be reliable for
large values of 6. Taking 6 =1 as the highest admissible value and calculating 7,
and x* numerically for A =1, o« we obtain

v(1,1,0)=0.408, v(1, %, 0)=0.325.

This shows that the change of v with 0 is negligible. Taking 8 = 0 corresponds to a
picture in which the critical temperature is replaced by the value given by the
self-consistent harmonic approximation [5, 7]. In this case, x* =1 independent of
the value of A and we obtain the following simplifications:

A [3A2+8A+8]
A+2 (1+A)

From (B.7) we can now obtain the dependence of » on A. In Fig. 4, we plot v as a
function of A™"; it varies smoothly between the two limits of 0.32 at A = and
0.40 at A = 1. Further remarks are given in the main text.

For 8 # 0, the critical temperature (and therefore 7.) is reduced. The value of
v decreases, the effect being more drastic for small values of 6, as we can see from
the following data:

g =477

A oo (6=0 T, =4.158 v=0.322
0=05 16=0.01 1, = 3.1347 v=0.293
T 1L8=0.02 1. = 2.9536 v =0.287
(6=0 7. =4.033 v=0.319

A =x
0=0.1 16=0.01 1. =2.4219 v=0.268
T 18=0.02 7. =2.1727 v=0.257

For A =, the value of g is given by

2.386
g=—5[272+137.+ 6+ (6— 7. )V1+27.].

C
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