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Diagonal QCD, with massless quarks:
gauge transformations and
mass perturbation')

By G. Wanders, Institut de Physique Théorique, Université de
Lausanne, CH-1015 Lausanne, Switzerland?)

(27. V. 1983)

Abstract. The gauge transformations and the mass perturbation of massless DQCD,, a gauge
theory in two-dimensional space time with diagonal SU(N) symmetry and massless quarks are
discussed in detail. The implementable symmetry transformations are identified and the corresponding
unitary operators are constructed. They determine the vacuum structure of strictly massless DQCD,
with unbroken U(1) chiral symmetry. The particle spectrum contains (N —1) massive bosons and a
massless quark. The addition of the mass term to the field algebra requires the inclusion of states with
U(1) charges localized at infinity into the vacuum space. The physical sectors become 8-sectors and
chiral symmetry is broken. The energy associated to the mass perturbation is finite only on a subspace
of a 6-sector. The physical quarks become unstable in most sectors.

1. Introduction

Diagonal quantum chromodynamics (DOQCD) is a simplified abelian version
of quantum chromodynamics (QCD) where the non-abelian gauge group is
replaced by its maximal abelian subgroup. In two dimensional space-time,
DQCD, is similar to the Schwinger model (QED,) and in the case of massless
quarks one has an explicit exact operator solution. This solution and approximate
operator solutions of massive DQCD, have been discussed by Belvedere et al. [1]
and by P. Mitra and P. Roy [2] (DQCD, is interpreted by the latter authors as a
solution of QCD, with broken symmetry). The light spectrum of massive DQCD,
in the strong coupling limit has been investigated by Steinhardt [3]. Gamboa
Savari et al. [4] obtained some properties of massless DQCD, using path integral
methods.

The purpose of the present work is two-fold. Motivated by our previous
study of massless QED;, [5, 6] we want first to elucidate the role of implementable
symmetry transformations on the structure of massless DQCD,. Our second goal
1s to get insight into the transition from massless to massive DQCD, from a
detailed study of its response to a mass perturbation.

We have shown in [5] that there is an intimate relation between singular
implementable local gauge transformations of massless QED, and its vacuum
structure. The vacuum degeneracy is a consequence of the fact that the unitary
operators implementing the singular gauge transformations act non trivially on the
physical Hilbert space %
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It is natural to ask if similar circumstances prevail in DQCD,. If DSU(N),
the maximal abelian subgroup (torus) of SU(N) is used as the gauge group of
DQCD,, there is an obvious difference with QED,. The number N of fermion
fields is no longer equal to the number (N — 1) of independent functions specifying
a c-number local gauge transformation. Consequently, there is still a vacuum
degeneracy but the fermionic degrees of freedom do not disappear completely
from the physical spectrum. There is a massless colorless free quark.

This is related to a difference in the symmetries of massless QED, and
DQCD.. In addition to a global DSU(N)®DSU, (N) symmetry associated to
the local DSU(N) symmetry, there is a global Uy, (1)® U, (1) symmetry which has
no counterpart in QED,. The U(1) symmetry is unbroken and the colorless
physical quark is the carrier of the corresponding charges. We may notice that the
existence of this quark clearly indicates that the mechanism prohibiting physical
states with non vanishing color is ‘charge shielding’ due to vacuum polarization
rather than ‘confinement’ as an effect of long range forces.

As already mentioned, the first goal of the present work is the precise
identification of the subgroup of implementable local and global gauge transfor-
mations of massless DQCD, and the explicit construction of the corresponding
unitary operators (Section 4). Once this is done, we proceed to the decomposition
of # ., into its physically distinct sectors, each of them containing a unique
vacuum. This is not as simple as in QED,. A physical sector has to define an
irreducible representation of some algebra %. Due to the physical colorless quark
each sector is a sum of U(1) charge sectors and % has to contain charge creating
operators interpolating them. The algebra % cannot coincide with the algebra &
of gauge invariant observables; it is a field algebra in the sense of [7].

The algebra % is not uniquely defined and we discuss the implications of two
distinct choices. In the first one (Section 6), «f is the algebra of the observables
which are invariant under the full symmetry group of massless DQCD, (including
the chiral symmetries) and & is the minimal field algebra containing . We find
that 9, gets decomposed into sectors which are all equivalent. There is only
one physically distinct sector; it is isomorphic to the product of the Fock spaces of
(N—1) massive bosons and the massless physical quark. Whereas the global
DSUy(N)®DSU,(N) symmetry is broken, the global Uy (1)®U,(1) is un-
broken.

The purpose of our second choice for % (Section 7) is the announced study of
the way massless DQCD, responds to a mass perturbation. The first choice does
not allow this because the mass term yafs is not in the corresponding %. It provides
an appropriate frame only for strictly massless DQCD,. If & is changed into the
minimal field algebra containing yafs, we have a drastic modification of the physical
sectors. As they have to be invariant under the action of the U, (1) chirality
changing yal, the U, (1) charge is no longer defined on them. The new physical
sectors are 6-sectors, labelled by a set of N chiral angles and all chiral symmetries
are broken.

The mass perturbation is by no means a weak perturbation of massless
DQCD, leading to a small explicit breaking of chiral symmetry. In order to define
the mass perturbation on sectors with unique vacua, we are forced to break the
U(1) chiral symmetry by resorting to §-sectors. Moreover, it turns out that the
resulting interaction hamiltonian is finite only on a subspace of each @-sector. For
non-exceptional values of the chiral angles, this subspace is spanned by eigen-
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states of the U, (1) charge whose charge is an integer multiple of N. In particular,
the colorless physical quark acquires an infinite energy and is totally unstable.
There is no particle in the spectrum of massive DQCD, which turns into the
physical quark of massless DQCD, in the limit of vanishing quark mass. The
analysis of the states exhibiting a finite mass perturbation shows that a well
defined parton picture applies to DQCD,.

Our work is based on the covariant Lowenstein—Swieca type operator solu-
tion of DQCD, [8]. Most treatments of two-dimensional models with fermions
bosonize the fermion fields. Whereas massless QED, can be treated without
bosonization [5], a discussion of DQCD, avoiding this technique would be
extremely intricate. The bosonization we use is not based on formal substitution
rules transforming bilinears in the fermion fields into boson fields [9, 3]. We adopt
the formalism originated by Becher [10] in which the fermion fields are rewritten
in terms of regularized current potentials and operators creating localized charges
with given charge distributions. The control of the various state spaces of the
model is never lost. Limiting procedures which are hidden in more formal
methods cannot be overlooked. In particular, one clearly sees at what point one is
forced to construct states with charges localized at infinity. The 6-vacua are such
states whereas the vacuum of strictly massless DQCD, has no charges at infinity.

Before we outline the plan of this article we specify our notations. The
Lagrangian of massless DQCD, is:

£ = —JFR "o+ 3y* (i3, + gIN A D). (1.1

The N XN matrices A\’ are the generators of the SU(N) Lie algebra. The
index ip goes through the (N —1) values of i labelling the diagonal A’s. If not
otherwise stated, summation over repeated indices will be assumed. The fields F5,
are given by:

Fin,=0,AP—3,AP. (1.2)
We choose:

and use the following notations:
x*=x%+x1, v =y, by = 8 AP, (1.4)
The first and second components of a spinor will be labelled ‘+’ and ‘—’. This

is justified because the first component of a free massless spinor is a left-goer
depending on x™ alone, the second component being a right-goer depending on
X . An arbitrary component of ¢ is noted ¢, ,, a =spinor index (¢ =+ or —),
a =color index (a=1, ..., N). The fact that the current of a massless free spinor
is a massless free field will be used repeatedly; its lightcone components j. = j,*j;
are functions of x™.

This article is organized as follows. In Sections 2 and 3 we describe the
covariant solution of DQCD, defined on an indefinite metric space # and review
the construction of the positive metric space #,,s. The so-called bleached fields
are introduced as useful tools. In Section 4 we determine the implementable
symmetry transformations and construct the corresponding unitary operators. We
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proceed to the bosonization of the bleached fields in Section 5 and obtain a simple
characterization of # .. The decomposition of ¥, into physical sectors in the
case of a minimal field algebra is discussed in Section 6. The implications of the
inclusion of the mass term into the field algebra and the construction of the
appropriate 6-sectors are the subjects of Section 7.

2. The covariant solution

Our model being abelian, it has an operator solution in the covariant Landau
gauge (0, ,A* =0) which is a direct generalization of the Lowenstein-Swieca
solution of massless QED, [8]:

(x) =:exp [iva/2 y Ao (E + 72)(x)]: x(x), (2.1a)
Alp(x)=—(2m/g)e,, 0" (S + 7o) (x). (2.1b)

The Wick ordered exponential :exp C: of a free field C is equal to
exp C* exp C, C*™ being the positive and negative frequency parts of C. The
building blocks of (2.1) are: an N-plet of free massless Dirac fields x,, an
(N—1)-plet of free massive pseudoscalar fields 2'» and (N—1) free massless
pseudoscalar fields 7'v:

(yd)x. =0, ([O+(g¥4m)Sr=0, Oi*=0. (2.2)
The field 7> has a Fock space %™ with indefinite metric defined by:
Q, A (x)n(Y)Q) = (1/47) In [?(— x>+ iex?)], (2.3)

the mass p being arbitrary. The quanta of the y-fields will be referred to as bare
quarks.

The solution (2.1) is defined on the product space:
H=%>R%, (2.4)

where % is the product of the 3-fields Fock spaces %> and % is the product of
the x-fields Fock spaces #%° and the #™s:

=@ #=(®wr)e(@xy). @.5)
The quark fields (2.1a) and the electric fields E'» = Flo = —(gv8m)3' ob-
tained from (2.1b) verify canonical equal time commutation relations.
The solution (2.1) satisfies a regularized form of Dirac’s equation:

(Y)p(x) = i(@N lim [y*Alp(x+£)d(x)+ v*A, ((x —e)]. 2.6)

The gauge invariant color currents ji» appearing in Maxwell’s equations:

9“F'in, = —gjio 2.7)
are defined as point-split forms of ¥y, 3\ [8]; one gets:

i =i~ (UN2m)e,, 0" (& + 7'), 2.8)

where ji = :xy,3A'x: is a bare quark current. The equations (2.7) are fulfilled in
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the mean in a subspace #' of %:
H' =HDRK’, (2.9)
where %' is a subspace of # characterized by a set of subsidiary conditions:
H'={dedk|jn(x)®=0,Vip, u, x}. (2.10)
The massless current jiz, is the longitudinal part of jir (equation (2.8)):
jim =i, — (UN2m)e,, 9" R, (2.11)

The color currents which have been defined are not the only currents of
DQCD,. There is a current j, associated to the global Uy (1) symmetry; it is
defined through point splitting:

()= Z lim [§(0)y, (1 - (@A AP W(x+e) +e > —e)l.  (2.12)

The contributions of the 3- and n-fields cancel and what remains is a sum of
bare quark currents:

Ju =2 Jaws e = XaVuXa:- (2.13)

The U, (1) current fu is related to j, by fM =¢g,,J". The currents ]:f, J. and fu
are conserved. The gauge invariant axial color currents jr=¢g,,j™" have an
anomaly:

3*fio = —(g/27)E™. (2.14)

3. The bleached field and the physical Hilbert space

Equations (2.4), (2.9) and (2.10) show that the 3-space #* is not affected by
the subsidiary condition; it plays the role of an unproblematic spectator. Fortu-
nately it is also easy to characterize the factor #’ of %' in (2.9) because it is
generated from the vacuum state by the action of an N-plet of bleached fields
¢, (x) describing screened bare quarks:

& (x) = :exp [iVT/2(n, + v 1) ()] xa (%), (3.1)
(no summation over a!). The N fields 7, are linear combinations of the (N—1)
independent n'e:

fla = 2 oA, (3.2)

and m, is the scalar associated to the pseudoscalar 7,:9,M, = €,,0" N, the
bleached fields (3.1) satisfy the free massless Dirac equation and, by construction,
commute with the various components of the longitudinal currents (2.11):

[i257(x), @aa(¥)]=0 : (3.3)

According to the Definition (2.10), this implies that the ¢’s map #’ onto
itself. As in massless QED, [5], where one has only one bleached field, #’ is
actually spanned by the vectors obtained by applying monomials in the bleached



Vol. 56, 1983 Diagonal QCD, with massless quarks 1029

fields on the canonical vacuum Q of # ()= product of the Fock vacua of all the
factors in the Definition (2.5) of %).

One observes that the positive and negative frequency parts of jiz, commute
among themselves and with j,. Consequently %' is invariant under the action of
these currents and the preceding statement implies that they are expressible in
terms of the bleached fields. Indeed, one finds:

jie(x) = (g £73)(x)
= lim [Z(eM)$L(x A PP (x*+ &%) +(e* — —&¥)], (3.4)

gx—()

j.(x) having a similar expression with 3A™ replaced by the unit matrix.

Whereas the bleached field ¢, creates one negative unit of bare charge Q,,
whose current is j, , (2.13), it commutes with the full color current j (2.10). This
means that all vectors of %’ have vanishing color charges. Furthermore, the
S-term in jip is a topological current and:

[S(x), jir' (y)]ex. =0. (3.5)

The factor % of %' in (2.9) being generated by the 3-fields, we find that %’
as a whole is a zero color space.

The commutation properties of the bleached fields (3.1) disclose an impor-
tant difference between massless DQCD, and massless QED,. In QED,, the
values of the bleached field at two points x and y commute or anticommute for all
pairs (x, y). The x-dependence of this field is spurious, it is not related to any
translational degree of freedom and %' is, in fact, a space of vacua. This is no
longer the case here. The fields (3.1) have x-dependent commutation properties
and describe physical massless bleached quarks. This will become clear after our
analysis in Section 5. Here we write down the equations specifying the commuta-
tion properties of ¢, for space-like separations:

d):t,a (x)(qbd:,a(y) =exp [:ti('TT/N)S (xl -y 1)]¢:&:,a (y)¢i,a(x)7 (36)

for (x—vy)><0. We see that the ¢’s are not local fields in the usual sense.
However, there is no conflict with microcausality or Lorentz invariance. The
exterior of the light is not simply connected in two-dimensional space-time and
the phase factor in (3.6) cannot be excluded.

The structure (3.1) of the bleached fields and the selection rule resulting from
the fact that ¢, creates a negative unit of charge Q, imply that the metric of the
space ¥’ is semidefinite positive [11]. Let %/, be the subspace of its zero norm
vectors. The quotient

%phys:%’/%(’) (37)

is a positive metric Hilbert space containing the physical states of our model. The
main result of Section 4 will be the existence of gauge transformations which are
implemented by unitary operators acting non trivially on # .. This means that
# onys contains sets of vectors, in particular vacua, which are gauge equivalent.
Therefore, ¥, 1s not an acceptable state space with unique vacuum. It is a sum
of physical sectors which will be determined in Sections 6 and 7.
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4. The implementable symmetry transformations

In this section we discuss the implementable symmetry transformations of
DQCD,. We start with the local gauge transformations, which require a careful
investigation, and defer the much simpler global transformations to the end of the
Section.

The Lagrangian (1.1) is invariant under an abelian group of local c-number
gauge transformations:

o —> iy = exp (IA*) (4.1a)
Alp— Alo= Alb+(1/g) ). AlpA%, (4.1b)

There is no summation over a in (4.1a). The functions A* are constrained by:

Y Ac=0. (4.2)

In the Landau gauge the A’s are solutions of d’Alembert’s equation; they
have the decomposition A“(x)=A%(x")+A%(x7). We assume Aic 6 (R) and
define A*=—-A%+AZ,

The new fields (¢, A,) have the form (3.1) if the building blocks x and 7 are
replaced by:

Xa = xp [i(A®+ ¥V A%)Ixa (4.3a)
Ao =q'> —(1/v2m7) ), AipA%, (4.3b)

and the 3’s are kept unchanged.
We are looking for those automorphisms (4.3) which are implemented by a
unitary operator U, i.e. for any operator B we must have

B — B=UBU". (4.4)

It is sufficient to consider transformations which affect only two quark fields,
for instance ¢(x,) and ¢,(xa), a# 1. They are defined by a single function A:

A=A, A% =—A, A? =0, b#1,a. (4.5)

A general local transformation is a product of such transformations.

The problem of identifying the implementable transformation (4.3) and
constructing the operators U is the same as in massless QED,. Therefore we state
only the results, outlines of the proofs can be found in [5]. The structure of the
transformation law (4.3) implies that if U(A) exists, it is a product:

U(A) = U™ U, (4.6)

where U™(A) implements (4.3a) and U™(A) implements (4.3b). The necessary
and sufficient conditions for the existence of U™ (A) are that A, (x™*) tend rapidly
enough to finite limits as |[x*| — « and that the total increase of these functions is
an integer multiple of :

A:l:(oo) - Ad:(—oo) =R, n.c”Z. (47)
The existence of U™(A) is secured if A, () =—A_(—).
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Condition (4.7) decomposes the group of implementable transformations
(4.5) into disjoint classes C(n., n_). In the terminology of [5], C(0, 0) is the class
of weak transformations; all other transformation are strong. It is convenient to
choose two representative strong transformations, one in C(1,0), the other in
C(0, 1), as standard strong transformations. Call A® the functions describing
these transformations and U the operators implementing them. An arbitrary
function A belonging to C(n,, n_) has the following decomposition:

A=, A+ n AP+ Agears (4.8)
where A€ C(0,0). U(A) is given by:
UA)=[UPTLUCT U(Aean) (4.9)

it is determined once U™ are constructed and if we know how to implement any
weak transformation. It turns out that the generators of the weak transformations
are the longitudinal currents (2.11):

U = exp | -if dxnpatiig - Ao | (4.10)

if Ae C(0,0).

The bleached fields (3.1) are invariant under the local transformations (4.3).
The space ' is therefore invariant under the action of the U’s and the restriction
of the standard operators U™ to this space is expressible in terms of the bleached
fields. One gets especially simple expressions if:

AP(x) = -2 Arctg [k (x*—c¥)], k. >0. (4.11)

Whereas the operators U™ of massless QED, are linear in the bleached
field, we have now bilinear expressions. They can be written in terms of local
fields p. ,(x) which annihilate a unit of charge Q, and create a unit of charge Q,
and are formally proportional to (¢L,.¢. 1)(x):

pra(x®) = lim Z,(e)b (x5 1 (x*+¢€)

= %n— :exp [iV27 (1 — Ma ) (0] XL xaa(x).  (4.12)

a=2,3,...,N and:

N o (xF) = 3(N, (x) F 7, (x)). (4.13)

The standard operators U™ are obtained from these p. , according to the
following recipe. Choose two test functions h, belonging to ¥(R) and whose
Fourier transforms have prescribed values on R,:

h. (k)= J dxh(x)e"™* = g (k/x.) g ike= (4.14)
R
for k>0. Construct the smeared operators:
pralhl= [ dxh()p..(0). 4.15)
R

The restrictions to %’ of the operators U$® implementing the standard strong
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give gauge transformations defined by (4.5) and (4.11) are given by:
Uff) - eiW(Ot'l_Qt'G)pi,a[h:t]' (4.16)

The index a in US” recalls that the transformations (4.5) are specified by the
value of a; Q. , are the left- and right-going bare charges.
It follows from (4.12) that the fields p,, either commute or anticommute:

[Pea (%), Peo(¥)]=[pLa(x), Psp(y)]=0 if a#B ora=p and a=b, (4.17)

{Paa(X); P (W} = 1Pl a(x), Pup (Y} =0 if a#b.

The fact that these relations hold for all values of x and y announces that the
x-dependence of the p-fields is a spurious artifact of the semidefinite metric of J¢’.
We shall see in Section 5 that the p-fields become indeed x-independent at the
level of ¥ ..

Definition (4.12) and equation (4.16) show that two bleached fields, ¢, and
¢, are related by operators implementing gauge transformations. This means that
the objects described by the different bleached fields are not physically indepen-
dent. As we shall see in the next section, there is only one physically distinct
bleached quark.

As announced, we close this section with the global symmetries of DQCD.,.
We have a group (U, (1))N@ (U (1)N of global transformations:

Yo () = €y (x),  Ya(x) = € gy (x), (4.18)

the angles a, and @, being independent. If we write these transformation laws in
terms of the building blocks of the solution (3.1) we find that they affect only the
bare quark fields. We just have to replace ¢, by x, in (4.18). The generators of
the global transformations are therefore the bare charges. The transformations
(4.18) are implemented by:

U(a) =exp [—i ; aaQa], U(&) = exp [—i}a; &a(ja], (4.19)

with Q,=Q ,+Q, ., Q,=Q_,—Q.,, a stands for the set (ay, ..., ay).

In order to have a correspondence between the local transformations (4.1)
and the global symmetries, we split the latter into global DSU(N) and global U(1)
symmetries. Global DSUy,(N) and DSU, (N) transformations are defined by sets
a and @& constrained by Y, o, =Y, &, =0, whereas Uy, (1) and U, (1) transforma-
tions are specified by single angles « and &, a, = a, @, =& in (4.19).

Comparing (4.16) and (4.19) we see that p. ,[h.] implements the product of
a strong local gauge transformation with a special DSU(N) global transformation.
Thus, we may eliminate U{” and generate the group of unitary operators
implementing local and global transformations by the set U(Ayca), pralhol],
U(e) and U(&). We notice that the P+ do not all commute with each other (e.g.
(4.17)), they neither commute with U(ea) and U(&). We have a multiplier

representation of the abelian group of implementable symmetry transformations
of DQCD,.

S. Bosonization and the structure of the physical Hilbert space

We investigate now the structure of the quotient space % ,,, defined in (3.7).
As it is the factor %’ of ¥’ in (2.9) whose metric is semidefinite, (3.7) can be
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rewritten as follows:
Hongs =H D @K ohyss  Hoonys =1%o, (5.1)

where ¥} is the norm zero subspace of J’. It is the content of %, we have to
find out.

We are interested in the operators which are defined on % ;,,,. Each operator
which maps #" onto itself and has an adjoint is defined on #,,,y.. To see why this is
so, we remember that a zero norm vector ¥ of a space H with semidefinite metric
is orthogonal to each vector of H. Therefore (®, A¥)=(A'®, ¥)=0VdecH if
|¥||=0. This implies |A¥||=0; A leaves the zero norm subspace H, invariant.
Consequently A is defined on the quotient H/H,,. There are, of course, equival-
ence classes of operators which reduce to the same operator on H/H,: A and B
are equivalent if (A — B)¥W||=0V¥ecH.

In massless QED,, the identification of the classes of equivalent operators is
easy. All smeared bleached fields ¢,[g] with fixed & and conveniently normalized
test functions g reduce to the same operator on ¥, [5].

In massless DQCD, the situation is more complicated and the expression
(3.1) of the bleached fields does not allow an easy recognition of equivalent
operators. As we shall see, this changes if we bosonize the bleached fields [9, 10].
Bosonization is therefore an extremely helpful tool of our discussion and greatly
clarifies the physical content of our model.

The left- and right-goers being decoupled, we restrict ourselves to the
right-going components ¢_ 4, p_ 4 M—_.a» - - - - We drop momentarily the index ‘—’,.
x stands for x~ and a current j is the light-cone component j_ = j,— J;.

We use the bosonization technique described by Becher [10] and perform the
following substitution for the bare quark fields:

Xa (x) = Jz-lq;éexp (_2i7r-51+)[0x - J])Ua [J] exp (_Ziﬂ-jfl_)[ex - J])a (52)

where j,=:xIx.:, J is a standard €”(R) kink function such that J(—=)=1,
J(+) = 0. The function 6,(y) is a €~ approximation of the step function 8(x —y).
The unitary operator o,[J] creates a negative unit of charge Q, whose current
density is J'(x) = (d/dx)J(x):

Lia (), 0p[T1] = 84" (x) 0[], (5:3)

The exponentials in (5.2) shift this charge to the neighbourhood of the point
x. the ¢’s anticommute:

{ou.lT]), oo [T T} ={0.[J], 0 [JT} =0 (5.4)
The value of the constant Z in (5.2) is:
Z =exp [jdxjdyl’(x) In (x-—y—is)J'(y)]. (5.5

To bosonize the bleached fields we have also to transform the exponentials in
(3.1). We write:

Na(X) = —M [0 ] =00, — T]—m.[J']. (5.6)
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A partial integration has been performed: it is licit because (6, —J)(y) — 0
for |y| — . Collecting (5.2) and (5.6) we obtain, after some manipulations, the
bosonized form of the bleached fields:

1 1
by (x) = = w(uZ) N exp {—2i77(fff) g n:1(+))[6x —J]}
v ) w

V. [J]exp {—2:‘77(1'5:) ——\é: n :f“))[ex —J]}. (5.7)

o

where V,[J] are anticommuting unitary operators creating a negative unit of bare
charge Q,:

Va[J1=exp (—iv2p na[T Do, [J]. (5.8)

If the function 6, tends to a sharp step function, the right-hand side of (5.7)
converges to a limit which is equivalent to the field defined in (3.1).

In the more usual versions of bosonization the charge distribution described
here by J'(x) is localized at infinity. There is no J(x) appearing explicitly and one
needs the pseudopotentials of the currents [1, 3]. In Becher’s formalism, the
operators j,[6, —J] are regularized pseudo-potentials. It is instructive to start with
standard charges localized at finite distance. This will lead to a clear understand-
ing of why and when a shift to infinity becomes unavoidable.

The following transformation of (5.7) clarifies the physics of the bleached
fields in a decisive way. Remembering the Definition (2.11) of the longitudinal
currents we find that:

Jo = (UN2mmG = (1N)j + i, (5.9)

Where j is the light-cone component of the U(1) current, j =), j., and, in analogy
with (3.2):

jra = 2 JieA. (5.10)
Inserting (5.9) into (5.7) we get:

ba(x) = exp (= 2im i [0 — TD P (x) exp (—2imji [0 — T)), (5.11)
with:

= 12 it

&= (L) w2y exp {27 jeore, -1},

-V, [JT]exp {—2%’ ire, —J]]. (5.12)

The importance of the form (5.11) comes from the fact that the positive and
negative frequence components of the longitudinal currents are equivalent to
zero. This results from the Definition (2.10) of %': j{) annihilates every vector
of %’ and j{}) transforms each vector into a zero norm vector. The expression
(5.11) tells therefore that ¢,(x) is equivalent to ¢,(x). The striking feature of
these last fields is that they all have the same x-dependence determined by the
U(1) current j.
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It is not obvious that the field ¢, defined in (5.12) is really independent of J.
One finds in fact that two choices, J; and J,, for J lead to ¢,’s which are
not strictly equal but equivalent: ¢,[J,]~ ¢,[J>]. This is due to the transformation
law of V,[J]; (5.8) implies the equivalence:

2T s
V1~ (212 exp {28 1,111}

[Jl]exp{—%'\—fl‘ I,— Jl]} (5.13)

Our results lead to a very simple characterization of #,y,.; in the same way
as ' is generated from its vacuum ) by the bleached fields ¢,(x) defined in (3.1),
H oy 1S generated from its vacuum Qphys (equivalence class of ) by the reduced
bleached fields ¢,(x) defined in (5.12). Equivalently, we may characterize %’phys as
a space carrying an irreducible representation of the algebra generated by the
current j(x), the unitary operators V,[J] and the bare charges Q,. Notice that,
contrary to the charges Q,, the individual bare currents j, do not map ' onto
itself and are not defined on ¥ According to (2.8), the color currents j»

phys*
reduce to their 2-term on ¥ ,,, and are equivalent to zero on %phys
The space %, is a direct sum of charge sectors. If n=(n,, ..., ny), n,€Z
we may write:
H oys = @ ., (5.14)
Q,%,=n,%#,. (5.15)

The operators V,[J] interpolate the charge sectors n:

VI =% .. (5.16)

1,...,"N)'

The sector ¥, is the canonical Fock space of the current j(x). The other sectors
are copies of this space on which j(x) acts in the displaced from j..(x)+
(T 1) (). i

The exponentials in the Definition (5.12) of ¢, shift the charge created by
V.[J] to the vicinity of x. The factor 1/N in the exponent is related to a factor N
in the Schwinger term giving the value of the current commutator:

[i(x), [(¥)]=i(N2m)&'(x —y). (5.17)

This factor N in turn comes from the fact that j is a sum of N free bare currents,
j=Yaja- A U(1) charge can be obtained in N ways. The factor 1/N in the
exponents of (5.12) and the factor N in (5.17) are both responsible for the
unconventional commutation properties of the bleached fields, for instance (3.6).

In the last part of this Section we discuss the fate of the symmetry transfor-
mations on ¥ ,y. According to (4.16) we have to know how the operators p, act
on # . After bosonization one finds the equivalence:

pa(X)~ p. = VIV, J]. (5.18)

The remarkable fact is that there is no x-dependence in p,; its J-dependence
is spurious because, as in the case of ¢,, (5.13) implies p,[J.]1~ p.[J>]. Equation
(5.18) tells us that the operators g, which implement strong local gauge transfor-
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mations act non trivially on %phys. This is in contrast with the operators imple-
menting the weak local transformations. The expression (4.10) and the fact that
the j;’s are equivalent to zero imply that U(A,,..) reduces to the identity on # ..
All charges Q, being defined on ¥, the operators implementing the global
transformations, equation (4.19), are defined without modifications on this space.
As already mentioned in Section 4, the fact that p, describes a gauge

transformation reduces the number of physically distinct bleached quarks. Equa-
tions (5.18) and (5.12) imply

B (x) = pLpaths (), | (5.19)

with the convention p, =1. The component ¢, is not a gauge transformed ¢ : this
cannot be because each component is invariant under all local gauge transforma-
tions. Equation (5.19) tells us that ¢, and ¢, acting on the same vector of .
produce two vectors which are related by a gauge transformation. All components
of ¢, are physically equivalent; we may use (5.19) and eliminate all ¢,’s
(a=2,...,N) in favour of ¢,. There is only on independent physical screened
quark. _

The equivalence of the ¢,’s is related to an equivalence of the charge sectors
¥, carrying the same total charge Y, n, They are interpolated by unitary
operators implementing strong local gauge transformations. In particular, each
sector with zero total charge contains a state which is gauge equivalent to the
vacuum {2,,,... Consequently, . is not an admissible physical state space; it has
to be decomposed in physical sectors. This is accomplished in the next Sections.

In this Section we considered only right-goers; all we have done has to be
duplicated in order to include the left-goers as well.

6. The physical sectors of massless DQCD,

We have to decompose ¥, defined in (3.7) into a direct sum of physical
sectors #.,, y standing for a set of yet unknown labels:

H ohys = EB %, (6.1)

First we have to make clear what conditions an acceptable physical sector has to
fulfil. We shall adopt the following requirements:

(i) two distinct vectors of 9., represent distinct physical states,
(ii) ¥, contains a unique vacuum

(iii) #, defines an irreducible representation of an algebra &%, the so-called
field algebra [7].

The following comments clarify and specify these requirements.

1. Condition (i) implies that %, contains no pairs of gauge equivalent
vectors.

2. As pointed out at the end of Section 4, there are pairs of U’s implement-
ing symmetry transformations and acting non trivally on 3., which do not
commute. Consequently a sector ., cannot be a simultaneous eigenspace of all
U’s. What (i) really implies is the existence of equivalent sectors which are
interpolated by the U’s.
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3. There is some freedom in the choice of the field algebra %. In this Section,
we shall require that it has to contain the algebra & of the observables which are
invariant under the full group of symmetry transformations of massless DQCD.
This algebra is generated by the 3-fields, the U(1) current j,(x*) = (jo*j,)(x) and
the left- and right-going U(1) charges Q.. Each sector ¥, being a sum of U(1)
charge sectors, & has to contain operators which interpolate these charge sectors.
Our & will be a minimal algebra fulfilling these conditions.

4. Such a minimal algebra is entirely appropriate to massless QED,. How-
ever, it does not contain the mass term yaf and we cannot define a mass
perturbation. As it will be shown in the next section, the inclusion of the mass
term has dramatic effects on the physical sectors; it forces the breaking of chiral
symmetry and the physical sectors become 6-sectors.

We start now the explicit construction of the physical sectors. The first step is
the identification of the possible vacua, i.e. the charge zero Poincaré invariant
vectors of ;.. The effect of a Poincaré transformation on an operator like
V. .[J] is to change its standard kink J. As the combinations p., defined in
(5.18) are J-independent, they are Poincaré invariant and transform a Poincaré
invariant vector into another one. Their action on (), produces a vacuum
subspace ¥ of ¥ .. The vacuum of a physical sector #, will have the form:

Q,=0%x0, (6.2)

where QO is the vacuum of #™ and ), € #,. Using (5.18) we see that the
vectors:

Im 7y = (V)™ (V)™ (Vo)™ - (Vo ) s (6.3)
are in ¥, if the sets m* and n~ are such that:
Y n==0. (6.4)

The vectors (6.3) fulfilling this constraint form an orthonormal basis of #,.

Our second step is the complete specification of the field algebra & through
the choice of its U(1) charge creating elements. Each V, , is such an operator.
Whereas & has to contain at least one pair V. , and its adjoint, the fact that the
P+ . are Poincaré invariant implies that it cannot contain more than one of them.
For suppose that V, ; and V, , (a# 1) and their adjoints belong to %. Then the
product p, , = VI .V, belongs to ¥ too and ¥=p, (), is a vector of ¥.,. On
the other hand, ¥ belongs to the vacuum space Q®®H,. Now (1, is or is not an
eigenvector of p, ,. In the first case, V, ; and V., , have the same effect on the
vectors of #.,, up to phase factors, and one of them is redundant. In the second
case, ¥, contains more than one vacuum, in contradiction with condition (ii).
Consequently, the determination of & involves the choice of one pair of operators
W, creating units of Q. charges. For later convenience our choice is:

W.[J]= V. ,[J]e -/, (6.5)
We have now a precise definition of the field algebra %; it is generated by:

(a) the (N —1) massive boson fields 3»(x), '

(b) the components j.(x*) of the massless U(1) current

(c) the total charges Q..
(d) the charge creating operators W, and their adjoints.
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The requirements (i)-(iii) don’t restrict the choice of the admissible vacua in
the space Q®®%,. Any vector in # is acceptable and we may define a set of
orthogonal sectors #(n*;n") obtained by acting on the vacuum Q®®|n";n")
with the elements (a), (b) and (d) of %. As long as we maintain our minimal
algebra &, the introduction of 6-sectors is unnecessary. A similar situation
prevails in massless QED,, as emphasized by Capri and Ferrari [12].

The representation of % on #(n*;n") is irreducible by construction. It is
immediately seen that the representations defined by the different sectors are all
equivalent. The unitary operators p. , interpolate pairs of sectors; for instance:

a—1
Pra(m ;n")=exp [iw(1+ Z nj)]%(n{— 1,...,n +1,...;m"). (6.6)

b=1

On the other hand, we know that p., implements a gauge transformation. The
equivalence of the sectors is just a gauge equivalence. The existence of distinct
sectors carrying equivalent representations is a necessary consequence of the
existence of gauge transformations implemented by operators acting non trivially
on %ph 5

The sectors #(n';n") being all gauge equivalent, they can be identified to a
single physical sector #. It is clear that any other way of defining the initial
physical sectors or any other choice for W, in (6.5) would lead to the same final
#. The particle spectrum of # contains:

(A) (N—1) free massive bosons described by the 3-fields. These particles
carry the toplogical color current jp = —(1/«/_27r)e 9”3's; their total color charge
and their U(1) charges are zero.

(B) One free massless bleached (colorless) quark described by the set
{i(x®), W_[J]}. Tt carries a negative unit of U(1) charge and its space-time
behaviour is described by the fields:

Fu(x)=v w27 (nZ)~ 2N exp {"%EI 00— ]}

W_[J]exp {—*2*1;;11’[0 *—J]} (6.7)

The existence of this quark, which distinguishes massless DQCD, from massless
QED,, is related to the fact that DQCD, has an additional unbroken Uy (1) X
U, (1) symmetry. The U(1) charges need a carrier which the bleached quark turns
out to be. This quark being massless, it generates a plethora of free massless
multiparticle bound states which are a pecularity of two-dimensional space-time
[13]. For example, the light-cone components j, describe left- and right-going
quark-antiquark bound states. More will have to be said on these massless bound
states in the next Section.

A final comment on the global DSU(N) symmetries. The individual charges
Q... are defined on the sectors #(n™, n”) and label their vacua. This leads to an
apparent paradox. On the one hand, the generators of the global DSU(N)
symmetries map #(n*,n”) onto itself and this is a feature of an unbroken
symmetry. On the other hand these generators don’t annihilate the vacuum of
#(n*,n"). There is in fact no paradox because of the equivalence of the different
sectors #(n",n"). The DSU(N) symmetries are broken because the individual
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Q... are not defined on $. Only the total charges Q. are defined on this sector,
leading to unbroken U(1) symmetries.

7. Mass perturbation and 6-sectors

In this last section we examine how the construction of the physical sectors
has to be modified if we want to describe the response of massless DQCD, to a
mass perturbation. To this end we have to include a regularized version M(x) of
the mass term (Yay)(x) into the field algebra. This extension changes drastically the
admissible physical sectors if one maintains the general requirements (i)—(iii) of
Section 6.

To start, we need an explicit expression of M(x). This operator is defined
with the help of the limit of a bilocal string operator S(x, y). Formally:

S(x, y) = ¢l (x) exp [ig%)\ib j dzMA;o(z)]m(y). (7.1)
y
Using equations (2.1), (3.1), (5.11) and (5.12) this formal definition is

naturally transformed into an expression valid on #,,s. The result is similar to
the one obtained in massless QED, (equation (5.12) in [5]); it leads to:

S(x)=lim S(x, y) = Y :exp [iv2m ApSR(x)]: K, (x), (7.2)

where
1 2i
Ka() =5 (e 120 exp {227 (1000, — 11410~ 1D |
T N

. T exp {273—’ 0£->[ex-—J]*f&“)[ef—n)}e—“"'m (7.3)

and T,[J] is the following chirality changing operator:
T.[T]= VL [IIV, [J]e’ ™9, (7.4)

The factors exp [Fi(wr/N)Q] have been introduced into (7.3) and (7.4) for later
convenience. The mass term M(x) is given by

M(x) = mo(S(x) + S™(x)), (7.5)

where m, is an unrenormalized mass. As M(x) belongs now to the field algebra, a
physical sector has to be invariant under its action. This excludes our previous
sectors #(n",n”). To see this, we observe that the relation (5.18) allows the
elimination of V. ,, a# 1, in favour of p, , and V., ,. This leads to an expression
of T,[J] containing the product p_p! ,. According to (6.6), this product maps
#(n™,n") onto another sector and M(x) does not map #(n", n”) onto itself.
Another problem arises from the fact that we want to define a perturbation
hamiltonian which is equal to the space integral of M(x). This integral has to
converge. Now, consider the matrix element (¥, M(x)Q2) where Q=Q®®|n*, n")
and ¥=W'W_ Q. A calculation sketched in the Appendix shows that this matrix
element behaves as |x'|™*N for large x', its integral diverges if N=2. This
divergence is due to the chirality changing term T, in (7.3) and the value of its
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commutator with the U(1) current obtained from:
[e(x™), Vo [TN=T(x*) VL [J]. (7.6)

As it is the integral of nondiagonal matrix elements which diverges, it is of no help
to redefine M(x) by subtracting a constant multiple of the identity.

On the other hand, it is clear that the only way of making M(x) integrable
without altering its significance of a mass perturbation goes through the subtrac-
tion of a constant. What we have to admit is that this constant may not be the
same in all physical sectors. In other words, the new physical sectors have to be
such that in each of them an appropriate subtraction renders M(x) integrable. A
similar but simpler situation is encountered in massless QED,. There we have
only one K, which happens to be an x- and J-independent unitary operator. The
appropriate physical sectors are eigenspaces of K (6-sectors with eigenvalue e')
and M(x) becomes integrable after the subtraction of a constant proportional to
cos 0. This procedure works because the J-independence of K guarantees the
Poincaré invariance of the #-vacua.

The example of QED, suggests that in the case of DQCD, we may have to
diagonalize a set of chirality changing Poincaré invariant unitary operators T,
a=1,...,N:

[T., Q,]=-26,,T, (7.7)

We cannot identify T, with T,[J]; this operator being J-dependent, it is not
Poincaré invariant. In fact, this choice wouldn’t work at all. As T,[J] does not
commute with the exponentials in (7.3), its diagonalization does not produce an
M(x) becoming integrable through subtraction.

The only operators defined on 9, which are explicitly J-independent are
combinations of the operators p. , (equation (5.18)). It is impossible to construct
chirality changing operators verifying (7.7) out of them. This does not mean that
the T,’s we are looking for do not exist. It is known that J-dependent operators
may have Poincaré invariant limits if their kink is shifted to infinity. Consider for
instance the operators V. ,[R] where R(x) is a kink function introduced by
Becher [10]:

R(z)=3(0%(2)+ 62 (2)). (7.8)

It describes two charge clouds of charge —3 localized around +L and —L in
intervals of width 28. Using Becher’s techniques, one may show that the limit of
V.a.[R] as L — is a Poincaré invariant operator creating charges localized at
infinity. This leads us to try the identification:

T,= Ilim T.[R] (7.9

If we want to express M(x) in terms of T, we have to perform the substitution
J— R in (7.3) and take the limit L — o, We see that this requires not only the
limit of T,[R] but also the limit of j.[0,-—R]. As L — «, j,[6,-— R] becomes the
difference v,(x") of the left-going component of the current potential at x™ and
its average value at =+oo,

As already mentioned, we intend to define the new physical sectors as
eigenspaces of T,. Then, it should be possible to replace T, by its eigenvalue in
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the restriction of M(x) to such a sector. This cannot be done directly in the
expression we have derived and a further transformation is needed. The operator
T, enters into M(x) through K,(x) and after the substitution J— R has been
performed in (7.3), T,[ R] is sandwiched between two exponentials. Before we are
allowed to replace T,[R], or its limit (7.9), by its eigenvalue we have to shift this
operator to the right of the exponentials. It follows from (7.6) that T,[R] does not
commute with j$’[6,. — R], even in the L — o limit. Consequently, shifting T,[R]
to the right introduces a multiplicative factor which, fortunately, turns out to
become x-independent for finite x and L — oo:

Ko =3 Zu sexp {2 16, R] [0 RJ)}:

Ta[R](l + 0(’%)+ 0(’%)) (7.10)

3Z, differs from the constant factor in (7.3). If (d/dz)0%(z) has a rectangular
profile, one finds:

Z,=const. (&§/w>L3)"?N, (7.11)

Whereas T,[R] does not commute with the negative frequency part j$’[6,- — R],
it is easily established that it commutes with the full current j,[6,. — R] for large
L. Therefore, one could also write (7.10) with T,[R] at the left of the Wick
ordered exponential. With (7.10) we have now an expression for K, (x) in which T,
can be replaced by its eigenvalue if we are dealing with the restriction to one of its
eigenspaces.

In what follows we do not attempt a technically precise definition of the limit
L —x at the level of the operators of massless DQCD,. We shall use L as a
cutoff and perform our construction with a large but finite L. Our results will show
how the hamiltonian of massive DQCD, has to be defined.

To get our new physical sectors we have to modify the field algebra & of
Section 6. The chirality changing operators T,[R] have to be included into the
new algebra %. As we want to diagonalize these operators, the chiral charge
Q = Q_—Q; has to be excluded. The operators T,[R] providing a link between
left- and right-goers we need only one independent charge creating operator, for
instance W[J]= W_[J] defined in (6.5). The right-going charges are then gener-
ated by:

WD) = e N e {2 [ RI- - RD |- WINTIR] (712

As we work with a finite L, consistency requires that the local fields of % are
localized in a finite region. The double cone G ={x||x*| <l I <L -8} is conve-
nient if (d/dz)83(z) has a compact support [L — 8, L +8]. We conclude that % is
generated by:

(a) the (N—1) boson fields 3o (x),

(b) the current j.(x*) for xeC and the ordered exponentials
:exp{in/N)j.[F— R]}:, the derivative F’ of the kink function F having a
compact support contained in [—L+8, L — 8],

(¢) the charge Q
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(d) the charge creating operator W and its adjoint,
(&) the chirality changing operators T,[R] and their adjoints.

We observe that T,[R] commutes with all elements of %; the sectors of this
algebra are simultaneous eigenspaces of all T,’s. Their vacua have components in
# ;nys Which belong to an extended vacuum space #, obtained by acting on #q
(defined in (6.3)) with the operators T,[R]. Using (6.3) and the definition of
T,[R] it is readily seen that % has the following basis:

]mé n)=(T,[R)™ - - - ('1—'1\1[12])]'"“'(V+,1[R])"1 T (V+,N[R])nNﬂphys' (7.13)
The set n is constrained by Y, n, =0 and the set m is unconstrained. The chiral
charge of |m;n) is —2 Y, m,. There is an arbitrariness in the definition of the basis
(7.14). For example one would obtain an equivalent basis by replacing (V, ,)" by
(V_)". The states (7.13) become Poincaré invariant in the limit L — o,

The admissible vacua are simultaneous eigenvectors of the T,’s. The eigen-
vectors with prescribed eigenvalues e*® form a space of improper vectors spanned
by the basis:

|0; n) =% Y exp (zz maea) \m; n). (7.14)

We obtain orthogonal #-sectors #(0; ») by applying the elements (&), (b) and (d)
of # on O®®|0;n). Two sectors with the same chiral angles @ and different n
define equivalent representatlons of %. As in Section 6, this is related to the fact
that every element of & is invariant under gauge transformations described by
unitary operators interpolating sectors with different n. In the present case these
are the strong local gauge transformations implemented by U$"” (equation (4.16)):

[US, A]1=0, VAc%
UP%#0;n)=%0;n,+1,...,n,—1,...,14). (7.15)

The operators U, (&,) 1mplement1ng the chiral transformations (4.18) and defined
in (4.19) interpolate sectors carrying inequivalent representations of %:

U@)%#(0;n) =%(0,+2a,, . .., 0y +26xn; n). (7.16)

This is a manifestation of chiral symmetry breaking.

In order to keep only physically distinct sectors we identify all sectors #(0; n)
with the same @ to a single sector #(@). Clearly, all these sectors have the same
particle spectrum as that found in Section 6. What distinguishes them is the value
of the mass term. Collecting (7.5), (7.2), (7.3) and (7.10), we see that on #(0),
M(x) reduces to:

M(x)=mouZ, Y. Ji:cos [Ba +V2m ApSio(x)

21
+W (ju[Gqu]uj+[9x+—R])—% Q]:—cos Ba} (7.17)

We have dropped the 0(x™/L) terms appearing in (7.10); they have a vanishing
limit if x* are kept finite and L — «. Furthermore M(x) has been normalized to a

vanishing vacuum expectation value by subtraction of a constant proportional to
Y. cos @,
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The value (7.11) of Z, shows that M(x) has a finite limit for L. — o only if m,
is made cut-off dependent. We define a renormalized mass parameter through:

m2: glm mouzl ' (7.18)

The mass term (7.17) coincides with the form obtained through the formal
bosonization techniques [3]; the quantity (j_[0,-— R]—j.[6,- — R]—3Q) has to be
identified with the pseudopotential of the U(1) current. In order to understand
the content of (7.17) in our context, we evaluate the mean value of M(x) in the
state:

w=[1 wiEATT w.ie:1 TT wira [T wIGi1e) (7.19)
fes =1 k=1 1=1

The F;" and Gy form a collection of kink functions whose derivatives have a
compact support contained in the interval [—[, +1]. Notice that W, [F;], for
instance, belongs to the algebra % because W.[F; ]=exp{—Qin/N)j.[F;"—J[}W.
Using the commutation relations (7.6), one finds for |x™|<:

(¥, M(x)P)g =m? Z {cos [ea +-2£ (; (FH(x")—1)

- Y (Gf(x"H-1)— Z Fr(x")+ Z Gr(x‘))]~cos ea} (7.20)
i=1 k=1 =1

The @-sector matrix elements ( ) are obtained from (®(9), AV(0')=5(0—0")
(®, A¥)e. The right-hand side of (7.20) is a rigorous consequence of (7.17) and
(7.18); it yields the exact L — o limit of (¥, M(x)¥). This means that we may
define the matrix element of the interaction hamiltonian H;,, through:

+1

(¥, H, V) = m?> lim J‘ dx'(¥, M(x)¥)e (7.21)
e d

The argument of the first cosine in the curly bracket of (7.20) tends to 6, for
x'——o and to (6,+Q2#/N)m,+m_—n,—n_)) for x*— +o. For arbitrary
values of the angles 6,, this implies that the integral in (7.21) converges only if
(m,+m_—n,—n_) is an integer multiple of N. In the case of a generic 8, we
reach the important conclusion that the mass term produces an interaction
hamiltonian which is finite only on the U(1) charge sectors with charge Q = pN,
peZ. In particular the Q =—1 massless bleached quark gets an infinite energy
and is totally unstable under the mass perturbation. This explains why the light
particle spectrum of massive DQCD, contains no particle corresponding to the
bleached quark in the limit of small m [3]. This spectrum contains mesons
(Q =0), baryons and antibaryons (Q = FN) and their bound states. A similar light
spectrum has been found in the small quark mass limit of QCD, [14].

Among the states of massless DQCD, which have a finite mass perturbation
we find some of the massless bound states of the bleached quark mentioned at the
end of Section 6. These bound states exhibit a very peculiar property if they are
described by means of the bleached fields in their original form (3.1). The right
moving baryon, for instance, is created in the vacuum by a regularized version of

B.(x)=11 ¢.(x) (7.22)
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The matrices A being traceless, Y, A»=0 and (3.1) and (3.2) imply that the
n-fields disappear from this product. One is left with:

B_(x7) =[] x-alx?) (7.23)

The x-fields being independent, no further regularization is required. Similarly,
there are meson states created by the U(1) current, which is also a function of the
bare quark fields alone. We conclude that the zero mass bound states which
survive the mass perturbation are those physical states which can be generated by
color singlet combinations of the bare quark fields, without any admixture of
n-fields [15]. These states correspond to the light particle spectrum of massive
DQCD, [14]. Light particles having the same structure as the states generated by
B.(x™) and j.(x™) have been found in the chiral limit of QCD, [16]. We see that
the bare quarks are in fact the partons of DQCD, in a mathematically precise
sense. Due to the peculiarities of two dimensional space-time, we have an
idealized parton picture [17] in the massless case. The physical particles are
colorless bound states of free massless partons; these bound states are of purely
kinematical origin, no confining force is needed to keep the partons together.
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Appendix

According to (7.5), the matrix element (¥, M(x){2) is obtained from s(x)=
(¥, S(x)Q2) and its complex conjugate. Using (7.2), (7.3) and (7.4) one finds:
2
s(x) = const. (Q, Vi.V_ exp {%T Gre, —J1
-~ I} VEAVia0) (A

The fact that the 3-fields and the current j, have negative frequency parts which
annihilate ) has been taken into account. The commutation relations (7.6) imply:

s(x) = const. e9™, (A.2)
where
2im (7,
q(x)= N T (y)(0.++ 6,-—2J)(y). (A.3)

To estimate this integral, we insert the following expression for the positive
frequency part of J':

1 ket 1
oL j dr— . Fild (A.4)
2im J_o y—z+ie
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Integrating by parts over y we get:

q(x)= *% J. i dydz(0..+0.-—2J'(y) In(y—z +ie)J'(2). (A.5)

If J' has a compact support the limit to sharp step functions can be performed in
the integrand provided x* are outside this support. At fixed x° this happens if x'
is large enough:

e 2
q(x) :_I%TJ' dz(n (x°+x'—z+ie)+In (x°—x'—z+ ie))J’(z)+ﬁZ (A.6)

the constant Z is defined in (5.5). As J(4+o)—J(—x<)=—1, we see that Re q(x)
behaves as —(2/N) log |x*| for large x' and this implies |s(x)| = 0(x'|">™).
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