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Relativistic kinematics and dynamics: a new
group theoretical approach

By N. Giovannini,1) Department de Physique Théorique
Université de Genève, 1211 Genève 4, Switzerland

(26. X. 1982; rev. 10. I. 1983)

Abstract. We reanalyze the relationships between physical states and space-time symmetries with
a view to describing relativistic extended and interacting systems. We first propose for this description
to introduce, in space-time, an additional observable, related to a natural notion of simultaneity. We
justify the introduction of this new observable on the basis of the operational meaning of the relations
between state descriptions and symmetries in this case. The Poincaré transformations are correspondingly

split into two parts: the first one, kinematical, related to the symmetries of the description of the
states, the other one, dynamical, related to the possible forms for the evolution. We show that the
kinematical symmetries lead in a straightforward way to the expected classical and quantal state spaces
for single particles of arbitrary spin and we show how the remaining symmetries can be related to the
derivation of the possible forms for the dynamics. We find as a particular case the usual dynamics of
single particles in external fields (with some satisfactory improvements due to the corresponding new
interpretation) and we extend the method to the dynamics of N interacting particles. We also exhibit
why this new approach and interpretation of relativistic states is necessary and how it allows a
covariant description in the problems raised by the (recently measured) quantum correlations
at-a-distance concerning the Einstein-Podolsky-Rosen paradox, something which seems quite impossible

in the usual frameworks.

1. Introduction

The interpretation of the relativistic space-time symmetries and their
relations to the description of physical systems is well known to be much less obvious
than what might be thought at first sight. In fact, the construction of a relativistic
framework for N interacting particles, or for a single extended object, is for
example still the subject of an abundant literature, in classical as well as is

quantum physics. In particular, the so-called no-interaction theorem [1] has
shown, by the simplicity of its content, how fundamental the difficulties are:
roughly speaking the theorem indeed just says that if we want to describe classical
point particles by a set of Poincaré invariant world lines (this means more
precisely with a time evolution generator along the world lines compatible with a
Poincaré representation), then we are necessarily left with only free particles
(straight trajectories).

The difficulties are also illustrated in quantum relativistic physics where the
well known and successful description of elementary particles in terms of
representations of the Poincaré group [2] is bound to contain its own dynamics and in
such a way that these dynamics correspond necessarily to only free particles.

') Partially supported by the Swiss National Science Foundation.
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Neither on this basis it has been possible to describe N interacting particle
systems and even the single free particle theory is not free of difficulties and
ambiguities. These latter facts are in our opinion not independent of the difficulties

we then face in the corresponding field theories.
Abandoning either the worldline description or the Poincaré invariance in the

above classical description is of course not an easy way to take, and most attempts
for avoiding the conclusion of the no-interaction theorem use therefore quite
roundabout ways. For example many authors [3] tried to use redundant kinematical

variables which are then reduced by Dirac constraints (introducing indirectly
and only implicitly the interactions) as well as, from another side, an eleventh
generator beside the Poincaré algebra for the evolution, this generator being
determined, at least partially, dynamically [4]. Another group of approaches [5] is
based on the generalization of the notion of free center of mass (or center of
energy) coupled with internal interacting variables, but these attempts also face
fundamental difficulties as soon as JV>2 [6].

In our opinion however, the simplicity of the hypotheses and of the conclusion

of the no-go theorem is a good indication that the difficulty does not lay in
some additional sophisticated mathematical consideration. We shall on the
contrary argue at the level of the simplest, but fundamental, relationship between the
notion of the state of a physical system, the symmetry principles in its description,
and its dynamics, pursuing thereby another line of approach which is based on the
following main considerations [7-9].

We adopt the quite usual and realistic point of view that the state of a
physical system is completely characterized at each stage of its evolution by the
set of all its properties which are then actual, i.e., by the set of all the possible test
measurements for which we can predict a positive result with certainty. This is

equivalent to what Einstein calls the "elements of reality" of the system [10]. The
evolution is then characterized by the fact that certain actual properties become
potential whereas other ones, potential, become actual. In other words the state
represents the "shape", the form, of the system and its evolution the motion of
this shape [11]. Our purpose is just to analyze the relationships between motion,
form and symmetry, and in particular to give a relativistic meaning to this notion
of "actuality".

It follows by definition that the state is the collection of all actual properties and
the state space contains the collection of all potential properties. A kinematical
symmetry is then a relation between equivalent descriptions of these properties.

In terms of a single classical point particle for example, a property can be a

space-time (or momentum) subset in which the particle is localized. Then the state
corresponds to a point in phase space. The principle of Poincaré symmetries lies
of course in the Poincaré equivalent ways of locating this point. By definition, a

Poincaré transformation, like any such kinematical symmetry acts thus passively.
The dynamics (the motion) enters in the play only in a second step, as the
generator of the trajectories in the state space. By definition, this generator acts
thus, like any dynamical symmetry, actively. This means that the role of the time
as an observable (the date) is now necessarily clearly distinguished from its role of
an evolution parameter (the label of the changes) and the kinematics (the
description of the form, hence of the state and the state spaces) is clearly
distinguished from the dynamics (the motion) hence from the introduction of the
evolution and of the interactions. This is important because it implies that the
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latter cannot change the representation nor the interpretation of the observables
and their relation to the properties, hence to the state.

In the last few years this approach has been successfully developed for the
description of classical and quantal, relativistic and non-relativistic elementary
particles [8, 9,12] and the resulting models have been successfully applied in
concrete physical problems, like specific external field problems, or the 2-body
problem, with an excellent agreement with the experimental data, for example in
the 2-body corrections to the H-atom spectrum or in the positronium resonances
[13].

In the present paper we make one more step along this line, step which is
also at the core of the hypotheses of the above mentioned no-go theorem and
which is based on an elementary analysis of the description of, for example, an
extended object in the light of the just mentioned approach.

This step can in fact be seen as based on an analysis of the following
question: the wave function of a quantal system can be considered as representing
either the system, or the description we have of the system. The distinction is not
purely academical, both may be physically inequivalent for relativistic systems, as
we shall be led to see. In the first case, for example, a spatial extension is a

property of a coordinate system; in the second case, it is a property of the physical
system as perceived by a well defined class of observers. In the first case, to each
point of space-time belongs one single intrinsic value for the wave function; in the
second case, this value might depend on (and make sense only for) such a class,
too, only the measured observables having an objective status. We shall in fact be
led to justify the conclusion that the second point of view is the adequate one.

In the first part of this paper we will discuss the relativistic space-time
kinematical symmetries in the description of the state of an arbitrary extended
object. This description is based on the operational space-time, in which it shown
to be necessary to consider an additional variable related to the notion of
simultaneity. This is of course not in contradiction with the final relativistic
invariance of the physical predictions. The need for such a notion is now also
quite clear in the light of the recent experimental confirmation that quantum
correlations are non-local [14], i.e., that they occur in some way "instantaneously".

Our main intention is precisely to give a relativistic description of this
experimental fact which has in fact motivated and made necessary the whole
present reanalysis.

We then apply a recently developed method [9] for the derivation of the
corresponding classical and quantal state spaces for single particles of arbitrary
spin. Finally we demonstrate a very simple way for deriving explicitly a possible
form for the dynamics in this framework for some simple models by generalizing
an idea due to Jauch [15] in the non-relativistic case. The resulting state spaces
are the expected ones with, in the usual particular cases, some improvements due
to the new interpretation, and with the possibility of interacting particles. The
framework is also shown to give a meaning to the description of the above
mentioned instantaneous wave packet reductions.

2. The operational space and time

If we assume as explained in the introduction that the state of a physical
system is given at any stage of its evolution by the properties which are actual,
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and if actual means that the experimental test would confirm the prediction with
certainty, we have to consider first more closely what characterizes space-time
measurements. For a given observer, they consist of separate measuring of mass
or charge densities or volumes in the three-dimensional geometrical space which
is located in terms of the rods of this observer, and by a time coordinate,
one-dimensional valued measure located with devices of an obviously different
nature: the clocks. From this operational point of view we should already note
that there is an essential difference between, say, the rotations which relate
measurements made by devices of the same nature, and the Lorentz boosts which
do not. The Poincaré transformations are thus, operationally speaking, not all of
the same kind, and are thus not necessarily bound to play all the same role in the
theory.

The question is then whereas it is possible to reconciliate this notion of state
of an extended object, its status of objectivity (i.e., the fact that a property is
actual whether one does test it or not) together with the usual space-time
Poincaré symmetries.

The usual point of view, as there exists no absolute three-dimensional space,
is to consider the set of successive spaces in time and to characterize together the
state and its evolution and thus describe a point system in terms of trajectories,
mixing in this way the kinematics with the dynamics, with the above mentioned
consequences (no-go theorem). In fact, on a trajectory, nothing moves and it is no
longer possible to talk of the evolution, neither to distinguish it from the state.
Moreover, it is of course difficult to think of giving a meaning to quantum
probabilities in such a scheme.

From our point of view, and coming back to the space-time properties, we
have, in view of the above definition of a state, to consider first an operational
space-time, i.e., an image space containing all possible results of space-time
measurements, and then define, on this description, the action of the usual
equivalence postulates related to the Poincaré transformations.

Let us therefore, apologizing for that, start from the following most elementary

discussion. Consider a measured event P in space and time. In order to
describe it, a corresponding observer will give four numbers x", which are the
results of the measures on his clock and his rulers. For fixing this relation, this
observer has first chosen an arbitrary origin of space-time (reflecting the passive
symmetry under 4-translations) and an arbitrary set of space axis (reflecting the
symmetry under rotations). This given observer is however not free to choose an
arbitrary Lorentz frame, the latter being given by the fact that his clock is a "pure
clock" in this reference frame. As a consequence, in order to give a complete
operational meaning to the 4 numbers x"', we should say in addition with which
clocks and which rods the point has been measured, i.e. give a characterization of
the observer to which they refer. Our proposal here is just to explicit this
generally tacit part of the information about the measure of P, i.e. to characterize
the operational space and time by pairs

P (x,n) (2.1)

where x (x°, x) refer as usual to the time and space coordinates whereas n
characterizes the corresponding observer and can be chosen as follows. As for the
translations and the rotations the Lorentz boosts act passively and the Lorentz
invariance is reflected by the fact that we may characterize n with respect to an
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arbitrarily chosen reference observer n0. An observer at n will therefore be
characterized by its relative speed v with respect to n0, parametrized for convenience

by the usual \ e ^3. in the direction of v and of length

|x| Arc Th^ (2.2)
c

Each space-time measure (and correspondingly each space-time property) will
thus be represented in a seven-dimensional space of coordinates (y, £)e[R7 with
the following convention that (y°, y) are the coordinates of the operational space
and time for the arbitrarily chosen reference observer at n0, and x is as in (2.2).
This 7-dimensional space, called the operational space-time will be denoted
by Yq.

Our first proposal is thus just the following: we do not identify a priori a

space-time point seen by different Lorentz observers as they correspond to
different realities in terms of measurements, hence, as their relationships with the
above given notion of state is different, to a priori different properties of the
corresponding physical system.

3. Action oi the Poincaré group on Yq

Let us first construct on this space Yq, of coordinates (y, x) the action of the
Poincaré group, conformally to the physical interpretation that we have given for
this space.

We first choose, V£g[R3 a coset representative Lj of the Lorentz group 2
modulo the rotations $, such that

L*:n0^n(x) (3.1)

where Lj can be identified with a Lorentz transformation satisfying

1^(1,0) (VÏ+ë,x) n(x) (3.2)

the set of all observers corresponding then to the upper half hyperboloid

H+ {ne3K(4)|n2=(n°)2-n2=l,tt°>0} (3.3)

with W(4) the Minkovski space. The transformation (3.2) is then unique up to a

right multiplication by a rotation a e 3 : L* L- -a. For each observer, n refers to
the direction of the rest frame trajectories of his clocks, i.e. the direction of its
(operational) time-axis. We had already been led to the introduction of this vector
in a slightly different context [12] but with the same physical interpretation.

By definition (y°, y) represents the coordinates of time and space for the
reference observer at no (l,0), hence a space-time translation aeT4 corresponds

for this observer (x 0) to

U(a)(y,0) (y + a,0) (3.4)

On the other hand a Lorentz boost does not change the interpretation of the y
coordinates (in terms of clocks and rods of the reference observer) so that the
boosts (3.2), should give, for x 0,

U(Li)(yQ,y,Ô) (y0,R(Li)y,x) (3.5)
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with R(Lx) an a priori arbitrary space-rotation. Finally we may ask that for this
reference observer a rotation a corresponds to a change of choice of axis of an
amount a, i.e.,

L7(a)(y0,y,Ö) (y°,ay,Ö), Vae^ (3.6)

The important point is now that these three assumptions (3.4), (3.5) and (3.6) are
compatible and determine uniquely (up to a choice (3.2)), an irreducible
(nonlinear) representation of the Poincaré group. This representation is explicitly
given by

U(a)(y,x) (y + L^a,x), VaeT4 (3.7)

U(A)(y, x) («(A • Lta?)y, *(A • I*)) (3-8)

VA € 2, the Lorentz group, and with the notation of the coset decomposition

A Li(A)-a(A) (3.9)

and finally, by definition

U(a,A)=U(a)U(A) (3.10)

The irreducibility of this representation is meant in terms of bundle representation

(with base xeR3 and fiber iVt(4)). In fact this irreducibility is verified in a

very strong sense, as the representation is transitive on Yq, so that this space can
be identified with an homogeneous space of the Poincaré group $$. One can check
that

Y,=$/3 (3.11)

with S the rotation group in 3-space.
In terms of neH+, with the relation (3.2), this representation in (3.7)-(3.10)

can be rewritten as

U(a, A)(y, ft) ((LXjALjy + L~XAa, An) (3.12)

with LA =_Ljj(ft), so that the rotation in (3.8) is just the Wigner rotation associated
to ft and A.

It will be useful to compare this representation in Yq (in terms of the
measuring devices of the reference observer) to the more direct one (in terms of
all measuring devices) defined in SK(4) x H+ by

Via, A)(x, ft) (Ax + a, An) (3.13)

with the advantage of making a comparison with the usual framework easier, by
simple projection tt:(x, ft)>-»x.

In fact one can check that the operator W : SW(4) x H+ —> Yq defined by

Wix, ft) (La1*, ft) (3.14)

interwines (3.12) with (3.13), so that both representations are simply equivalent.

4. Simultaneity and physical states

We have defined as actual a property whose corresponding test measurement
would give a positive answer with a probability equal to one. Concerning
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space-time, such a measurement consists of measures of positions in space (with
rods) and with values in the subsets of U3 and of measures of time with a set of
equidistant clocks [16] and with values in IR. Necessarily such a measure is related
to a well defined class of observers and it is possible to represent it unambigously
in Yq by a set of the form (x°, Ax, ft), with x°e[R, AxçR3, fteH+. The point is
now that a Lorentz boost does obviously not transform such a set in a similar one,
the spatial extension referring only to a well defined ft. A possible property is thus
not transformed in a possible property in the above sense, but in a complicated
(and non-operational) mixture of space and time measurements. This means that
a Lorentz boost does not have to be a symmetry of the state space, as relating
different properties and not different equivalent descriptions of the same property.

This is of course not in contradiction with the relativistic invariance, the
latter referring to the whole description of the system and not to this particular
part which is the state. We now want to make all these considerations mathematically

precise and therefore first define a notion of simultaneity which corresponds
to the natural intuition of 3-dimensional space extension. Our bigger space Yq
makes it precisely possible.

For a given observer, at ft, two events y1 and y2 will be called simultaneous if
they are related by a pure space translation beU3, hence, by (3.12)

L„(yi-y2) (0,b) (4.1)

This definition generalizes in the whole Yq by the following convention: we shall
call two events (y1; fta) and (y2, ft2) simultaneous, if and only if there is a space
translation b such that

Li,y1-Lfl2y2 (0,b) (4.2)

It is easy to verify that this relation is an equivalence relation, that will be denoted

(yi, fti)~(y2. ft2) (4.3)

In view of the above interpretation of Yq, two events (y1; ftx) and (y2, ft2) are thus
simultaneous if their time components (for the observers fix and ft2 respectively)
are equal (after of course a general agreement on the choice of a zero of
space-time as in the usual Minkovski space).

The relation (4.2) can also be written as

yi " "i )>2 ' n2 (4.4)

with ft Lft1 • ft0. We shall call t the following corresponding function on Yq

r(y, ft) y • n y^niL (4.5)

and dr the following associated dynamical differential 1-form.

dT(y,n) niLdy» (4.6)

In order to explicit the significance of the above simultaneity relation, let us
briefly examine its symmetry properties. It follows from (3.12) and (4.2) that if
(yi. fti)~(y2. n2), then

Uia, A)(y1; fti) - Uia, A)(y2, ft2) A(0, b),

V(a,A)e^, some fesT3 (4.7)
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so that the simultaneity relation is covariant under ^ß. But it is obviously not
invariant. Its invariance subgroup, defined at a point z (y, ft) e Yq by the set of
all transformations g which map all events simultaneous to z into events
simultaneous to gz, i.e.,

Giz) {g e ^ I gz' ~ gz, Vz' with z'~z} (4.8)

is isomorphic Vz e Yq, to the semidirect product

G T4 D3, (4.9)

with T4 the 4-translations and $ the space rotations.
In view of (4.5) we may characterize by t a surface of simultaneity (and call it

T-surface), the set of all z' which are equivalent to some z, i.e., the equivalence
classes defined in Yq by (4.2). By definition one moves along such a surface by a

space translation, or by a change of observer without change of time coordinate.
Let us finally calculate the stabilizer Hiz) of a T-surface through a point z,

i.e., the subgroup of ^ß (and of Giz)) consisting of all elements which map all
events simultaneous to z into themselves,

H(z) {ge^|gz'~z,Vz'~z} (4.10)

It is easily obtained and is Vz g Yq isomorphic to

H=T3§)% (4.11)

Let us now interpret these results. In view of the given interpretation of the
space Yq, the group G is the group which maps a set of actual properties into an
equivalent description of the same actual properties (passive action), hence a state
into a state. It is thus by definition the space-time part of the kinematical
symmetry group [8]. On the other hand H correspond to the transformations of
actual properties into actual properties at the same "stage" of the evolution (same
T-surface), hence, as

G/H^Tq (4.12)

with T0 the time translation group, the evolution can be parametrized by the time
of any arbitrary observer, all being proportional to t.

The set of all space-time properties (referring thus to all observers, hence to a
whole T-surface) is of course not independent, (and will in fact even depend on
the dynamics). This is somehow similar to the localization of a particle in a region
of space, which is not independent of the localization of this particle in another
region of space. There might thus be redundances in this description. We shall
therefore in the present paper first only consider systems whose knowledge is
assumed to be completely determined when determined for a particular ri, and
such that the results do not depend on this choice. This means for a point particle
for example that knowledge of state and evolution at any fixed ft is assumed to be
sufficient to determine unambiguously the trajectory (and all other desired
properties of that particle).

It is important to note firstly that this assumption is not necessary (there
might be in principle systems not satisfying it) and secondly that this assumption
does not modify the symmetry. The Lorentz boosts do not belong to G in (4.9),
they are not kinematical symmetries in the precise sense we have given; they are
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not bound to be represented by automorphisms of the state space. They will thus
play a different role in the theory, in fact as a constraint for the possible forms of
the dynamics, as we shall see in Sections 6 and 7.

The main result obtained so far is thus the following: the state space of a

relativistic system is given by some ft e H+ and a state space KA, carrier of a
representation of the kinematical symmetry group which, as far as space-time is
concerned, is given by the stabilizer GA of ft, isomorphic Vft to the group G given
in (4.9).

There is another direct way of explaining this conclusion: for any observer
the state of N classical point particles can be represented in space-time by N
equal-time points. The set of all possible states for this observer is given by the set
of all possible N equal-time points. By definition it is his state space. The
space-time automorphism group of this space is %$ when N =1, else it is G The
description of the state of an extended system implies thus a lowering in the
space-time symmetry of the state space.

In quantum mechanics this is even more important, as wave functions will be
defined, in function of n, in 3-dimensional space surfaces perpendicular to these
vectors ft and containing quantum correlations and superpositions (as in a
succession of slices along the t-axis, again a picture whose automorphism group is

only G). That these correlations need to be described by a simultaneity argument
is not only experimentally established [14] but is logically obvious: if one
measures, say, the position of an electron on a screen, then the wave packet has to
"know" immediately and everywhere in the space that the particle has been
localized, so to avoid the possibility of another localization ("after", "elsewhere")
where the wave function would "still" be nonzero.

The recent measures of Aspect [14] confirm that this "information" inside of
the wave packet indeed occurs at supraluminal speed. This is not in contradiction
with relativity, as this "information" cannot be used for the transmission of
signals. If the wave function represents the system, hence if given a space-time
point the value of the wave function would be fixed for all coordinate systems,
then such an instantaneity in the wave packet reduction would make no sense in
contradiction with experiment. If however we follow as here the point of view that
the wave function represents only the knowledge we have of the system, only the
point on the screen has an objective meaning, and different observers may have
different wave functions collapsing on different simultaneity planes. We see thus
that the wave packet reduction makes the introduction of such a ft absolutely
necessary for consistency.

5. State spaces of elementary systems

We now come to the systematic derivation of the (irreducible) state spaces
which correspond to the above analysis, i.e., to the corresponding classification of
elementary physical systems. We shall use for that purpose a recently developed
group-theoretical formalism [9], that we first very briefly remind and in which it is
possible to treat simultaneously and in a common language classical and quantum
physics.

This framework is characterized by the fact that we consider as possible state
spaces (topological) direct unions of separable Hilbert spaces

K=Vs&s,seS (5.1)
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each state being thus given by a point sQeS and a ray i/.^ in the corresponding
Hilbert space £>S(i. Classical and quantum physics indeed appear as the two
extremal cases where each Hilbert space is one dimensional or respectively, where
S is a single point. More generally such a choice (5.1) makes it possible to
describe systems where some of the observables have a quantal behaviour
whereas other ones are of the classical type in the sense that they commute with
all other ones and have a purely discrete point spectrum. Because of their
interpretation, this latter type of observables has also been called superselection
variables. They should not, by the way, be confused with superselection rules, the
latter refering to observables which are in addition conserved quantities. In our
framework this is in general not true and even then, it can only be asserted when
the dynamics are known (see Section 6), whereas the above framework is yet
precisely independent of the interactions and of the evolution.

Corresponding to the points of view discussed previously, the physical system
is characterized by a set of observables corresponding to all measures that we
(possibly) perform on it. The usual physical equivalence postulates in the descriptions,

correspond then to the action of the (complete) kinematical symmetry group
[8] defined by its action on the possible outcomes for all observables, as just seen
in the particular case of space-time.

This is sufficient for characterizing the properties of the system and it is, as it
should be, independent of the dynamics. Hence the latter does not change the
interpretation nor the representation of the observables.

The state spaces (5.1), for a given system, are further specified by the
following two main assumptions: firstly they should carry (as automorphisms) an
irreducible representation fot the above mentioned kinematical symmetry group.
Secondly they should carry a (sufficiently faithful) representation of all properties,
hence of all observables corresponding to the physical system. For the first
condition we have appropriately generalized in [9] the idea of induced representations

[17] on (5.1) and for the second, the idea of systems of imprimitivity [18].
As an automorphism of (5.1) is given [19] by a permutation tt of S and a

family {Us} of isometries

tW$,-*&»(,) (5 -2)

one can restrict ourselves for the irreducible representations to the case where the
actions induced via tt by G on S is transitive so that one can identify S with a

quotient space

S G/H, H Stab s0 (5.3)

for some s0eS and one can restrict ourselves to the case where all Hilbert spaces
are isomorphic. Corresponding to H let g hgks(g) be the (right) coset decomposition

of g e G for a fixed set of coset representatives ks(g) normalized with k,(e) e,

e the unit of G, and with the convention

Kà) " so s(g) g_1 • So (5-4)

with the natural action of g on S G/H. Let us now choose £>So to be the carrier
space of a unitary projective representation h>-^L(h) of H, with arbitrary
multiplier weZ2(H, 1/(1)), i.e.,

Lihx)Lih2) coiK, h2)L(ft1ft2) (5.5)
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with co : Hx H—» U(\). One can now define a unitary projective K-representation
of G on (5.1) induced by this representation L of H by

l/.(g) L,(gW(g) (5.6)

with

Ls(g) L(v(s,g)) (5.7)

vis, g) being the associated G-S-H-cocycle [20]

vis,g) ks-g-kg\s (5.8)

and £(g) corresponding to the action of G on S

ê(g)<fc=<fr8., (5.9)

It is important to note that in (5.6) there is no phase factor, unlike in the direct
integral case, forcing the projectivity of U to be completely carried by H. This
implies e.g. that the Planck constant that turns out to label such an co is
necessarily zero in the classical cases whereas nonzero in the quantal cases [12].

The above construction can also be shown to be exhaustive in the sense that
every irreducible projective K-representation of G is equivalent to an induced
representation of this type [9].

In view of the following application, we also mention the associated observables

in such a K. They are given by a slight generalization of the notion of
systems of imprimitivity [18]: let T be any G-space and 93(T) the Borel sets in T.
In physical applications T is nothing but the set of all possible values of a given
observable [8]. We consider the mappings

P:Ae93(T)^PAe^(K) (5.10)

with tyiK) the projections in K, i.e., the families {Ps, seS} of projectors in the
corresponding Hilbert spaces S~>s. Assume further that the maps (5.10) satisfy

(i) P<j>=0K,PT lK
(ii) PA-PA. PAnA.,VA,A'eS3(T) (5.11)
(iii) PUAi X PA., for Aj n A,- cp if i f j and i, je I, a countable set

where sums and multiplications are defined over S term by term.
We have called supersystems of imprimitivity these maps when they satisfy in

addition the following covariance conditions

(L/(g)PA(7(g)-1)s=(PT(g).A)s (5.12)

Vs e S, and with r the G-action on T.
A particular, very simple but important solution of (5.10), (5.11) and (5.12) is

given by T S and

(Pa), Xa(s)-1, (5.13)

with xa the characteristic function of Ae93(S) and ls is the identity on !qs. This
observable is the above mentioned super-selection or classical variable.

More generally we have shown in [9] that all supersystems of imprimitivity
can be canonically associated to the above induction procedure and to usual
restricted Mackey systems of imprimitivity based on Q^, for the appropriate
subgroups of H. The latter in £>s correspond of course to the quantal observables
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(as being related to self-adjoint operators and their spectral resolutions). We refer
to [9] for more details, and for the explicit form of the corresponding imprimitivity

theorem.
More important for us here is that it has been possible to deduce from these

results a workable method for deriving all irreducible K-representations
associated with a given set of observables (i.e., admitting supersystems of
imprimitivity for each element of this given set). We also refer to [9] on this point.

Let us now apply this method to our problem and consider a simple massive
elementary particle. We assume that the state of this physical system is
characterized, at ft, by its observable qA iqA,qA) in the corresponding space and time
and a 3-momentum pA in the space at ft (i.e., the plane perpendicular to ft in the
g1"" metric), where neH+ is arbitrary but fixed.

The kinematical symmetry group GA is then obtained from (4.13) for what
concerns space-time and from the additional postulate for pA that there exists no
absolute rest-frame so that the choice of the zero of momentum in pA is arbitrary
(else there would bean absolutely at rest). Let us remember once more that we
talk about the symmetries of the description and not the symmetries of the state
themselves (or of their evolution). We thus have

Pn~ Pn + Wn, wAeiT*)A=M3 (5.14)

The kinematical symmetry group GA is thus generated by elements

{iwA, a% aA, aA), wA e (Tf)Ä, a°Ae (T0)Ä, a* e (T3)ft, aA e %}

with the following defining action

iPa, aA) «-> iaAipA + wA), qA+a°A, aAiqA + aA)) (5.15)

If we now apply the above mentioned formalism, then we find in a unified way
exactly two families of solutions, i.e. of irreducible projective K-representations
of GA admitting the corresponding observables qA, pA and qA. Without entering in
the detailed calculations we just list the results:

(a) The classical particles

In this solution S is given by the 6-dimensional phase space TA {ipA, qA)} at
ft, times the corresponding time axis Uqo so that

KA Vr^^&UT))^^ (5.16)

where _ô(D'T)sC2<,+1 is the carrier space of the usual 2o- + l-dimensional spin a
representation of -\sA, the rotation group in TA. The representation explicitly reads

UiaA)%^qUlù ^{p^.+al^+^
U(wn)%^qUìù %ts+^qUj (5.17)

U(aA)%Uqoqsi D°iaA)%a^.qlaiiqj

with ibt=ÇQ(D<fr)), whereas the observables are obtained (as in (5.13)) via the
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characteristic functions

qniàqA)%^qoÂli xA4.(4)^{ft,,qo>4î}

Pni^Pn)%pA.QUni X^iPiiWip^teJ (5-18)

qïiAqî)%UqoAiù x^q^udte
A state being a ray in the corresponding £>„ there is a one-to-one correspondence
between points in the phase space together with the time axis at ft, YA x |Rqo, and
the a 0 states. The above solution can thus obviously be identified, up to the
additional possible presence of a (quantal) spin, with the usual framework of
classical mechanics.

(b) The quantal particles

In the second family of solutions, S can be identified with the time axis at ft,
hence with the coset space GIHq« with

Hql {(wA,Q,aA,aA)} (5.19)

The space KA is given by

KA VRuo(22(IR3, d3xfl)Cg>£(D")V,, qaAeUqo (5.20)

with the representation

UiwA)Vq»(xA) exp iih-lwA ¦ xA)%oixA)

Uia%%i:(xA) Vq«+a«ixA)

UiâA)Vq:(xA) Vq«(xA-âA) (5.21)

UiaAnq^xA) D^ic^n^cx^x^
implying in particular the Weyl commutation relations

L/(w„)l/(âft) exp(ift-1wft • aA)UiaA)UiwA) (5.22)

which explicits the fact that quantum correlations are given, in this description, in
the planes perpendicular to n (in the g""" metric).

The observables position and momentum are given by

q^t**) ** • %iiXfi)

Pn^d^) ~-ind^q^xA)
corresponding to the characteristic functions in xA and in the Fourier transformed
space, whereas the time observable is given by

^(Aq^^x,) XAdtàVd-în) (5.24)

We note that here again, in all planes perpendicular to ft we have, as follows from
(5.23), the (equal-time) commutation relations

[(4)',(Pn)'] ^8li-ia (5.25)

with tA the identity in KA.
Except for the presence of the (arbitrary but fixed) ft e H-,., the above solution

can obviously be identified with the framework of non-relativistic quantum
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mechanics discussed in [8] and which is the usual one up to the presence of the
time observable due to the more general choice (5.1) with respect to single
Hilbert spaces.

We also note at this point that the representations (5.17) or (5.21) are not
characterized by any dynamical type relationship as it was the case for the
space-time Poincaré [2] or Galilei [21] groups where we had, respectively,

p2-m2 0
,2 (5.26)
p /2m -E constant

implying in both cases that the corresponding theories would in fact strictly
speaking only describe free particles.

Comparing now the relativistic situation with the non-relativistic one (see e.g.
[12]), we observe that the kinematical symmetry groups G are the same, the state
spaces are the same, with the same physical interpretation, (and this makes
comparison and taking limits easier), just the label ft has a different meaning: in
the non-relativistic case (see [12]), the set of all ft labels a 3-dimensional vector
space, corresponding to the Galilean boosts, so that all correlation relation
descriptions like the one in (5.25) are identified with each other. Obviously the set
{(1, v), v eIR3} is nothing but the non-relativistic limit of our hyperbolo'id H+.

In the here considered cases where the final physical predictions are assumed
to be fixed for any choice of ft there are however so far no difference at all:
the characterization of an elementary particle is the same in the relativistic and
the non-relativistic theories. In fact, if there is nothing relativistic in the obtained
state spaces, there is nothing non-relativistic either, as neither the Lorentz nor the
Galilei boosts belong to the corresponding kinematical symmetry groups. The
only adopted principle is that there is no absolute rest frame (zero for p) and this
principle is the same in relativistic and in non-relativistic physics.

What will change will thus be in the dynamics, the possible evolution
laws, as we shall now see explicitly.

6. Relativistic versus non-relativistic dynamics

In this section we want to show how it is possible to derive the possible
dynamics, on the so far obtained state spaces, by expressing the remaining
symmetry arguments at our disposal (Lorentz or Galilean boosts) in an appropriate

way.
Let us therefore first briefly remind how the dynamics enter into the play in

our framework, from a general point of view (refering to [22] for more details on
this point).

The evolution corresponds by definition to the changes of the states, hence it
is specified (if reversible) by a two parameter family of automorphisms of the state
spaces. For specifying the dynamics we thus have to introduce the parameter
itself, an evolution parameter that we also call t. Such a parameter cannot be
itself an observable (it is not a property but a label for the changes in the
properties [7]) and it cannot thus enter in the dependence of the generator of the
evolution so that the two parameter family reduces to a 1-parameter group.
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Together with some differentiability conditions we are led, in the space K in (5.1)
to the following generalized Schrödinger equations coupled with classical evolution

equations in the superselection variable set S:

s 3E(s) (6.1)

idTVs HsVs (6.2)

where the dot means differentiation with respect to r, {Hs, seS} is a family of
self-adjoint operators and 36 is a vector field on S. In order to find out the
allowable dynamics we now can and have to make more assumptions that will
lead to explicit (6.1) and (6.2).

In order to do that, we can take advantage of the fact that in our approach
we have a unified language, a unified mathematical formalism for the discussion
and the interpretation of the physical quantities in classical and in quantum
physics. Moreover we have in each of these cases the same state spaces for the
relativistic and for the non-relativistic cases. We shall therefore discuss the
(easiest) classical non-relativistic dynamical principle first and then generalize to
quantum physics on the one side and to relativistic dynamics on the other.

Let us first discuss the spinless case (o- 0) and choose for simplicity the
arbitrary zero in H+ so that ft ft0 (1, 0). As this index ft will be fixed in the
following, we also omit for simplicity of notation altogether both indices a and ft
everywhere.

(a) Non-relativistic dynamics

We shall here follow an idea due to Jauch [15]: we first suppose that 31 is an
Hamiltonian vector field with respect to the usual symplectic form on phase space
and with generating function H, so that we have

q= — (6-3)
- dp

with q a possible function of the only observables, i.e. of q, p and q°. Jauch then
defines an elementary massive particle by the fact that there exists a constant m
such that under w in (5.14) q transforms like

w
U(w)qU(w)~1 q+— (6.4)

- • - m

which reflects in an obvious way the effect of an instantaneous Galilean change of
reference frame. It follows from the supersystems of imprimitivity in (5.18) that
thus

4=-(p-A(q°,<j)) (6.5)
m -

with A three arbitrary functions of q° and q. With (6.5) we can now integrate
(6.3) and we immediately find

H ^-(p-Â(q°,q))2+V(q°,q) (6.6)
2m -
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with V again an arbitrary function. The dynamical principle (6.4) allows thus to
derive very easily the usual general Hamiltonian (6.6) with arbitrary (non-
necessarily electromagnetic) external fields A and V. It is nice in this respect, as

emphasized by Jauch, to remark that the particular form (6.6) is thus not bound to
a particular kind of interactions, but really rests on a deeper common symmetry
argument as in (6.4).

The reasoning easily generalizes to the quantal case if we write (6.2) for the
observables (Heisenberg picture). The space (5.16) and the representation (5.17)
are replaced by (5.20) and (5.21) whereas (6.3) now reads for each q°eR

4 i[Hq0, q] (6.7)

Let us now use the same dynamical principle (6.4) with correspondingly changed
representations for q and U(w). It directly follows from (5.23) that

q=— Hftâx-Âqo(x)) (6.8)
- m

with again A„o(x) three arbitrary functions. If we now assume that the operator
Hqo in (6.7) is in the image of the Weyl-Wigner transformation of a Ci-function
in p and q, we may write formally

[H(p,q),qi]=-^7H(p,q) (6.9)
- - - dp

so that, with (6.7) and (6.8) we obtain directly, together with (5.23)

Hqo(- ihd„ x)=—i-ihdx-Âqoix))2+ Vqo(x) (6.10)
2m

which is the usual most general Hamiltonian for one spinless massive quantal
particle. For what concerns (6.1), the superselection variable evolution, we may
simply postulate (see [7]) that

q°=l (6.11)

which means that the time flows in an undisturbed newtonian way, so that the
time variable, being linear in t, can indeed be used as the evolution parameter.

(b) Relativistic dynamics

Let us now show how the very simple derivation of Jauch above generalizes
to the relativistic framework, first in the classical case. We therefore again and for
the same reason write the 3-velocity q (defined, we remind it, with respect to the
tacit ft) as (cf. e.g. (2.70) of [23]) "

4~ (6.12)
- op

i.e. we assume Hamiltonian equations in the plane perpendicular to ft. What now
changes is the transformation character of this quantity under a vv -translation in
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momentum space, the relationship being no longer linear as in (6.4). Let us define

ftP'4) 7r4fn (6-13)
- - Vl-q2/c2

and postulate the following generalization of (6.4) for a single massive spinless
particle

-ta -ta. w
Uiw) fip, q) Uiw)-1 fip, q) +- (6.14)

_ _ _ _ m

In the non relativistic limit (6.14) obviously gives (6.4), and this equation clearly
reflect the effect of an instantaneous Lorentz change of reference frame.

It immediately follows from (6.14) and the supersystems of imprimitivity
(5.18) with (5.17) that

fip,q)=-ip-Âiq)) (6.15)
- - m

with A again arbitrary. Inserting (6.15) in (6.13) and resolving for q we easily find
that

a, e ¦ cjp-Ajq))
q _, (6.16)
- V(p-A(q))2 + m2c2

where the sign e ±1 comes from the fact that we have in this derivation to take
a square root. Using now (6.12) we immediately find as the most general
corresponding Hamiltonian

H=e-c^ip-Âiq))2+m2c2+Viq) (6.17)

with A and V arbitrary functions of q0 and q. This Hamiltonian determines the
evolution of p and q in the usual way whereas for q° we may again simply assume

q°=l (6.18)

reflecting the fact that for each observer the time flows in an undisturbed
newtonian way.

We shall of course call a particle the system for which e +l and an
antiparticle the one for which e — 1.

Let us now generalize this principle to the quantal case given in (5.20),
(5.21), (5.23). We assume that [q, H] has no spectrum outside )-c, c(, so that we
may write

fip, q) [(l-^fr^)"1]1'2 • H> Hq0] (6.19)

and assume again, as dynamical principle, that

U(w) fip, q) Uiw)'1 fip, q) +- (6.20)
- - - - m

for some positive constant m, implying, from (5.21) and (5.23) that

/(p,q)=-(p-A„o(q)) (6.21)
- - m -
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Using then (6.19) and (6.21), squaring and using the fact that [q, H] commutes
with the operator under the square root and finally taking the left inverse, we
obtain

[q,Hqo]2 -^ (i_fÌ^£)(^_Aqo(4))2 (6.22)

which can be rewritten as

[q, Hqo]2(m2c2 + (p - Aqo(q))2) c\p - Aq..(q))2 (6.23)

Assuming now that (m2c2 + (p-Â)2) is invertible, and using that it is positive, so
as the right hand side of (6.23), and that it commutes with this right hand side, we
get

[q,Hqo] e • c(p-Â)[(m2c2 + (p-Â)2)-T2 (6.24)

which can be easily integrated, assuming that Hq<> is again in the image of a C1
function in p in q under the Weyl-Wigner transformation so that (6.9) holds.
Using moreover (5.23) explicitly, and introducing the time as before, we finally
find the following evolution

Hqo=e • c(m2c2 + (-iftôx-Âqo(x))2)1/2+Vqo(x) (6.25)

q°=l (6.26)

We thus obtain in all cases the usual spinless Hamiltonians, with now arbitrary
external fields without using the Lorentz boosts as a symmetry for K, but in the
more hidden way of instantaneous Lorentz transformation character in (6.14)
respectively (6.20). The Lorentz boost is also not a symmetry for (6.17) nor for
(6.25) whereas the theory is well known in the electromagnetic potential case to
be, as a whole, invariant [23], exactly as it is gauge invariant whereas the
Hamiltonians are not.

Let us also remark here that, although (6.25) looks like the square root of the
Klein-Gordon equation, it is now completely defined in the space K given in
(5.20), because x (see (5.23)) is now a self-adjoint operator on K contrarily to the
(even free) Klein-Gordon equation obtained from the representations of the
Poincaré group, this fact being at the root of some of the difficulties of this
equation. Moreover it has now really the satisfying simultaneous meaning of the
space variable and of the space position operator. This new interpretation
embodies also the fact that the solutions of (6.2) with (6.25) really contain the
spatial features (the form) of an obviously extended object: the wave function.

Let us finally remark that although particles and antiparticles do appear
simultaneously as one-particle theories, there is no pair annihilation as interpreted
as a transition to negative energy states. This last phenomenon is thus really a

pure field theoretical aspect (for which the K-spaces just obtained will be of
course meant as the basic building blocks).

7. Generalizations

The method we have just used for the determination of an allowable
dynamics can be extended to the classical (5.16) or quantal (5.20) state spaces
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with cr^O, and the appropriate representations (5.17) and (5.21) respectively, or
to the case where more particles are present. We want here just to briefly sketch
how this is possible, leaving for the moment open the question of the various
corresponding physical interpretations.

Suppose in the simplest case a classical spin 1/2 non-relativistic particle as in
(5.16) with the appropriate ft. We need, in view of (6.2), and in addition to the
vector field (6.1) given in (6.6) to determine in the two dimensional underlying
Hilbert-spaces a family of self-adjoint operators to express the dynamics. This
means that the operator q has to be given in a 2 x 2 matrix form, and can thus be
written

^(ir-o-^ pa 0,1,2,3 (7.1)

where we have used that a0 12 and the Pauli matrices a-,, tr2, a3 form a basis for
the self-adjoint operators in C2. Let us assume as the simplest possible dynamical
principle that the generalization of (6.4) is given by

rj(w)4t/(w)-1=4+--o-0 (7.2)
- m

Integrating as before we immediately obtain that the evolution is the same on the
base space S =Rq»xr3{q0, p, q} with the same Hamiltonian (6.6), whereas on C2

we now have

H««,Jf;) V-(q)aJf;) (7.3)
V-' q°,_5,q V-' q-",g,4

where V*(q) are 4 free integration constants, which may arbitrarily depend on q.
Absorbing the term V° in the potential V of (6.6) and changing notation, we can
thus simply write the spin part of the classical Hamiltonian as

HqoPq Biq°, q)-a (7.4)

where B is an arbitrary vector field.
In the quantal case the evolution in the space (5.20) with <r=l/2 is now

given, from (6.2) by a self-adjoint operator in (if2(IR3) x C2)qo together with
the same equation q° 1 as before, whereas the kinematical symmetry group acts
on the spinor

^-Gl!.), <">

as

Uiw, a0, a, a)%«»(x) DV2ia) exp (ift^wx^Xg-1*) (7.6)

If we integrate the dynamical principle (7.2) in the same way as for the spinless
case, we immediately obtain, together with the self-adjointness condition

(Hqo)(i =^-(p-(Âq,.(q))j)2 + (Vq„(q))i (7.7)
2m

(Hqo)12=W12(q) (HqT)21 (7.8)

with i 1,2 and where WJ2(q) is an arbitrary complex function. In the case where
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AX A2 we thus simply get

Hq° =ilïm~(P~ Äq°m2 + V^a° + â ' Ê^ (7-9)

which is the usual time-dependent Schrödinger-Pauli Hamiltonian.
The same reasoning immediately generalizes to the relativistic case, and we

obtain in the same way, together with (6.17) and (6.18)

HqOA3=a-BqoA (7.10)

in the classical case, and

Hqo [ec(m2c2 + (p-Aqo(q))2)1/24-Vqo(q)]cr0 + cT • Bqo(q) (7.11)

with (6.26) in the quantal case. These operators can be rewritten in a more
covariant way, for example as

HqoAP A%-" ¦ iFqoA)^ (7.12)

Hqo ec[m2c2 + (p-Aqo(q))2]1/2+ Vqo(q) + 2T • (Fqo(q))(lv (7.13)

with e.g. (in the rest frame of the particle) X0i d ¦ ctV, 2" ip- ¦ a'cr', d, peU
and where F is an arbitrary antisymmetric real tensor field on space-time. We
leave for the moment open the question of the quite apparent physical interpretation

of these results, of their consequences (e.g. the resulting spin motion [24])
and of their comparison with other recent similar progresses in the description of
single relativistic particles (see e.g. [25]). All what we want to point out here is

how, unless the very different symmetry hypotheses on the state space K (and on
the definition of relativistic states) we find, as a particular case (i.e., for a special
form of the dynamical principle) the usual theory of particles in external fields
(with, as shown, some improvements due to the new interpretation).

Another illustration is given by the description of JV particles: the set of
observables is then given, for each tacit ft, by

{pß,qß,q0}, ß l,2,...,N (7.14)

with for each ß the same action of G

{Pß.qß,qo}-^{a(p0+w),a(qß + a),qo + a0} (7.15)

(the time being the one of the observer, it is the same Vß). The corresponding
state spaces are then given by

K Vqt,ÂeJè (CgT1)) (7.16)

in the classical, and by

K Vqo(22(R3N)Cg) ® Cf+1]) (7.17)

in the quantal case. Writing the same dynamical principles as before, for each ß,
we immediately obtain as the simplest solution for the non relativistic spinless
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Hamiltonian

fl> X0- (Pe-(Âp)qotëi> • • • » ^n))2+ Vqo(q1;... ,qN) (7.18)

and for the relativistic spinless Hamiltonian

Hqo Sße0cV(pß - (Ae)qo(ql5..., qN))2 + m%c2jr Vqo(ql5..., qN) (7.19)

Here again, it is not the purpose of the present paper to discuss this particular
form of the dynamics, but to show that it represents a realistic example of
dynamics compatible with the new definition and covariance of the notion of
state. As for the wave functions, the Hamiltonians represent the description, here
at ft ft0, of the evolution (but not the evolution itself). This implies that in (7.19)
the fields are not necessarily external, but as depending on the N position
observables, they are also allowed to describe an action at-a-distance in the planes
perpendicular to the associated ft.

Conclusion

The Lorentz (or the Galilean) boosts contain in fact two distinct symmetry
principles: the first one asserts in both cases that there exists no frame which is
absolutely at rest. The second one expresses the explicit relationship between the
space-time coordinates of respectively to each other moving frames. That these
aspects are different can be seen in the simple fact that the first principle is
identical in the relativistic and non-relativisitic domains whereas the second is
correspondingly different. In the present paper we have exploited the fact that the
first principle is of kinematical nature and is thus related to a symmetry in the
description of the state spaces, whereas the second one is of dynamical nature and
is related to the possible forms of the evolution laws. We have shown explicitly
that we could in this way derive a framework compatible with the usual relativistic
known theories (eliminating by the way some usual difficulties) but allowing also
the description of extended objects (in a true 3-dimensional sense), and avoiding,
in a simple but argumented way the basic hypotheses of the well known no-go
theorems for interacting N particles. In fact explicit examples of such non-trivial
interactions compatible with the above scheme and thus giving the same results
have already been given in the literature [13] and successfully applied to concrete
physical situations as we have mentioned. One of the progresses (and of the
motivations) of the present reformulation of the state space aspects is that it now
allows for example, as we have seen, a covariant relativistic description (we do not
speak of the mechanism, here) of instantaneous wave packet reductions (as in the
non-local EPR paradox experiments), something which is-quite impossible with
the usual interpretation and definition of states. The result of this reformulation is
a new one-particle (and antiparticle) and a new N-particle state space theory,
natural base for a new field theory.
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