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Stability and relative stability
in nonlinear driven systems

Rolf Landauer
IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598, (U.S.A.)

Abstract. Fluctuation activated escape from a metastable state to a more likely
state has long been a subject of theoretical attention. We illustrate the existing methods by
application to noise induced errors in underdamped Josephson junction circuits. Concern with
escape from the metastable state has been extended, during the last two decades, to include a
concern with relative stability in open systems. The sophistication of some of the recent theories
may have obscured the simpler and more important physical aspects which are reviewed here. We
emphasize the simplicity of transport in the most common one-dimensional situations. We discuss
the two different forms for the diffusion current, Ddn/dx and d(Dn)/dx, commonly found in the
literature. The more likely of several competing locally stable states cannot be identified by simple
criteria which are only concerned with the states being compared. The detailed kinetics along the
pathways connecting such states, where the system is rarely found, cannot be ignored. As a
consequence we cannot expect to discuss the origin of life, or evolution, by reliance on thermody-
namic or information theoretic criteria, without attention to the detailed pathways for the process.

1. Introduction

Escape from a metastable state, activated by thermal fluctuations, was
studied long ago in such problems as thermionic emission from metals, or in the
Becker-Doring theory of nucleation. We will regard such processes as Brownian
motion. The motion of some of the principal degrees of freedom will be treated
explicitly; their interaction with other degrees of freedom, and with the rest of the
universe, will be represented by frictional effects and noise. Thus, deterministic
equations of motion drive the system toward preferred states of local stability, and
noise permits it to get away from there. This viewpoint is principally due to
Kramers in a paper [1] which is frequently cited, but whose full content is often
left unappreciated. Kramers’ paper dealt with motion in a one-dimensional poten-
tial and was generalized to many-dimensions by Brinkman [2], Landauer and
Swanson [3], and Langer [4]. We cite three recent notes [5] as an indication that
this many-dimensional problem has not yet reached the settled and definitive state
of the one-dimensional case. If, however, we consider a spatially extended system
with translational invariance, e.g. an unlimited one-dimensional chain of coupled
particles, all in the same potential, we regain some simplicity, despite the infinite
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number of degrees of freedom. Such systems were the focus of an earlier review
[6], and will occur only peripherally in the present discussion. Kramers’ approach
can also be broadened to more general dynamic systems, which do not necessarily
represent motion in a potential, but nevertheless exhibit competing states of local
stability. Early discussions include those by Stratonovich [7], and by this author
[8]. In such systems the noise can be, and generally will be, a function of the state
of the system. This was explicit in Refs. [7] and [8], but has been rediscovered in
the recent literature via the use of new terminology, ''multiplicative noise' and
"external noise."

There are recent, clear, and detailed reviews of this field [9,10]. The
purpose of this shorter item is different. I believe that the generality and formality
of some recent contributions has served to obscure some of the simple and impor-
tant aspects. This paper is, of course, devoted to a discussion of physics. Else-
where [11] I have described the sociology of the field.

Fluctuations are important in the attempt to receive weak signals, or
in the attempt to make precision measurements, and this led to the character of the
early theory [12]. Fluctuations, however, can also determine the overall qualitative
behavior of small systems, and this emphasis on small systems clearly takes us away
from the "thermodynamic limit", characteristic of much of the literature in statisti-
cal mechanics. Fluctuations can play a key role in biological processes, particularly
in the understanding of the early stages in the evolution of life [13]. Indeed,
biological evolution is dependent on genetic mutations, and these are fluctuations.
To cite another example: digital computer circuitry, using Josephson junctions, has
become sufficiently miniaturized so that thermal noise, while perhaps still not
crucial to design, is no longer totally irrelevant [14]. The effects of alpha particles
and cosmic rays on integrated silicon circuitry are much more dramatic [15], and
have been a matter of practical concern for some years, and can also be considered
to be noise.

2. Escape from underdamped well; Josephson junctions

As a prototype problem, we briefly discuss an example taken from the
analysis of Josephson circuits [16]. Essentially, the same equations also arise in the
analysis of externally synchronized oscillators [6], and in the analysis of a particle
in a tilted sinusoidal potential, as shown in Fig. 1. We shall here, for simplicity,
emphasize the sinusoidal potential. The potential has the form ‘

V = V_(1 - cosf)—Fb, (1)

where 0 is the coordinate of motion. The particle in this potential is also assumed
to be subject to viscous forces and to thermal noise. A particle in the metastable
state at P, can be carried over the adjacent right hand barrier as a result of noise
forces. If the system is heavily damped, then the particle will end up at P;. If the
system is lightly damped, the particle will continue past further barriers and end up
in a state with continuing motion to the right. The equation of motion is



Vol. 56, 1983 Stability in Nonlinear Driven Systems 849

md + y0 = —8V/08 + ¢, (2)
with noise forces
<EOF)> = 2ykT8(t — t'). (3)
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Figure 1 P2
Single particle potential of Eq. (1).

The rate of escape from a well is generally taken to be of the form vexp [-U/kT],
where U is the height of the barrier relative to the minimum, and » is a frequency.
All of the sophisticated discussions in this subject concentrate on the description of
v. Uncertainties in this frequency can, in some problems, amount to many powers
of ten [17]. Figure 2, taken from Ref. [16], illustrates the results of both theory,
and of numerical simulation, describing the escape rate as a function of :}Elping.
The dimensionless damping constant in Fig. 2 is defined by G = y/(mV ) " ". The
escape rate is measured in units defined in Ref. [16], and not needed for our
purposes. For overdamped motion the escape occurs in a diffusive way across the
bottleneck at the top of barrier. The escape rate decreases as the viscosity increas-
es and as the diffusion coefficient decreases. A well known result for the escape
rate, from Ref. 1, labelled KM in Fig. 2, and covering the case of heavy and
moderate damping is

r= —A((La? + 1oy 1H2-1)e ™/, (4)

27 | wy | 4 2

Here r is the escape rate expressed as a probability of escape, per unit time, for
particles in thiz igit}% well. n = y/m is the momentum relaxation rate.
Wy = wp(l - F7/ Vo) is the frequenfyzassociated with particle motion in the
bottom of the initial well. wy, = (VO/ m) is this frequency at F=0, called plasma
frequency in the Josephson junction literature. wy is the analogous imaginary
frequency associated with the unstable potential curvature at the barrier. At very
low damping, however, it is clear that a particle executes almost conservative
motion, and the escape up in energy, out of the well, must become difficult. This
deviation from Eq. (4) was already understood by Kramers, who also derived the
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result labeled KL in Fig. 2. Unfortunately, a good many later authors failed to
appreciate Kramers’ discussion of this extremely underdamped case. The KL result
in Fig. 2 arises from the assumption that the particles are diffusing up along the
energy or action coordinate, with the probability or population going to zero at the
energy of the barrier peak. The unlabelled result in Fig. 2 is a recent refinement of
Kramers’ KL approximation [16]. It proceeds by treating the uphill diffusion, in
the initial well, just as Kramers did, but in the range above the barrier peak as-
sumes the presence of continued uphill diffusion and simultaneous flow out of the
well, across the barrier.

1.0 1

081

061

r/rfs

04+

0.21

0.0 ; + } 4 — —
0.0 0.1 0.2 0.3
G

Figure 2
Escape rate for F/ Vo = 0.985, and a barrier height of 3.938 kT. The theoretical results described in
the text are compared with computer simulations of escape events denoted by (+) and (%).

3. Heavily damped case

Let us now turn explicitly to the heavily damped case, in which the
inertial term in Eq. (2) becomes negligible. This leads to a Fokker-Planck equation
for the probability distribution p(#), often called the Smoluchowski equation. It
has the form
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%+divj=0, (5)

where the probability flux j is, in turn, given by
i =vp—Dap/a8. (6)

Here v is the drift velocity, v= —pVV with p = 1/y. The diffusion coefficient D
and the mobity p are related by the Einstein relation, D = pkT. We would like to
make two observations about this case, and some of its minor modifications. The
minor modifications include the case where motion occurs on a discretized one-
dimensional lattice, and also includes the case where the motion is not that in a
potential V, but represents some kind of more general system dynamics. We
believe that in the steady state (dp/dt = 0), but a steady state which can include
sources and sinks, this is an exceedingly simple problem. Furthermore, it is the
steady state results which are needed most frequently. This point was discussed in
in an Appendix to an earlier conference paper [6], and with the kind permission of
the Editor of these Proceedings and of the Plenum Publishing Corporation, New
York, include this material here as Table I. The material is adapted in its format,
and also condensed slightly to eliminate overlap with the rest of this text. Note
that Table I has its own separate citation list, at the end of Table 1.

There is a one-dimensional case which is not trivial, and not usually
discussed. Take the case where motion along the coordinate of interest, say @,
occurs via two different mechanisms. One mechanism causes jumps by a discrete
amount, say + 27. The other mechanism causes jumps over much smaller distances.
Now assume that motion to the right, over some range of @, occurs primarily by the
large discrete jumps, whereas the counterbalancing motion to the left occurs mostly
through the smaller jumps. We now have a one-dimensional situation where the
steady state does not reflect detailed balance, and which will be more complex than
the typical one-dimensional cases. The charges on a tunnel diode capacitance,
leaking away through the diode, but charged through an ordinary series resistance,
constitute an example of this situation [8].

The discussion in Table I is aimed primarily at the case where the
transport properties vary smoothly, but it applies equally to the case where the
jump probability between adjacent sites of a one-dimensional chain varies stochas-
tically [18]. Even in that problem, the evaluation of long range mobilities or
diffusion coefficients is trivial, unless we are interested in the case where the
probability distribution for jumps between adjacent sites emphasizes relatively rare
breaks in the chain, where the jump probability becomes very small.

4. Is the diffusion current d(Dn)/0x or D(dn/9dx)?

In Eq. (6) we invoked a form for the diffusive current in which the
diffusion coefficient is not differentiated. Actually both of the forms, cited in the
above Section title, occur in the literature. That may not be quite as silly as it
sounds. Consider first the viewpoint of the hot-electron physicist [19]. Take a
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Table 1

Simplicity of Transport in the Smoluchowski Equation

Consider first a classical gas of noninteracting particles, overdamped in their motion,
and spatially nonuniform in one direction. There are many papers on this subject,
treating particles crossing single potential barriers, and also particles in sinusoidal
potentials. Our key point: We invoke electrochemical potentials as the driving force for
particle motion. This is hardly a new point, and is implicit, but not explicit, in Kramers’
original paper (1940) on the thermally activated barrier crossing process. It is the
prevalent method in the semiconductor device literature (Shockley, 1950). After all, an
electron moving through a p region, in an npn structure, is crossing a potential barrier.
Electrochemical potentials occur in many other places, e.g. in the literature dealing with
the effect of activity coefficients on diffusion (Le Claire, 1949). The concept was
particularly emphasized by Swanson (1957).

Consider particles with mobility p and producing a flux
j= —pkr48_,ndU (T.1)
dx dx

as a result of a concentration gradient and also as a result of a.field induced drift term.
In Eq. (T.1) we have implicitly used the Einstein relation, D = ukT. We can rewrite
(T.1)

fom —pr BT OB 80 o 86U 4 R logn) = —pin (T.2)
dx dx dx dx

where ¢ is the chemical potential of the particles. In equilibrium ¢ is constant and its

derivative vanishes. For small deviations from equilibrium we can, to first order in the

deviations, take the n above, which multiplies dy/dx, as the equilibrium particle density

n (x). In the one-dimensional case, and in the steady state, j must be independent of x,

and

Yo /0. (T.3)
dx

The total drop in ¢, therefore, can be calculated by simply integrating this equation.
. B .
V(B)—y¥(A) = —jf, dx/p n (x). (T.4)

The extent to which the drop in ¢ is composed of concentration gradients vs. applied
fields is immaterial. We are essentially dealing with resistances in series and the driving
force must be largest where the "conductivity" pn (x) is smallest. Note that u can be a
function of x, it need not be constant. Furthermore, if j is kept inside the integral sign,
it can also be a function of x, allowing for an arbitrary distribution of sources and sinks.
Thus we can inject particles in one well, remove them from an adjacent well, and ask
how much deviation from the equilibrium population distribution between the two wells
is needed, to sustain the assumed flux over the barrier. We shall have occasion to refer
again, later, to the possibility of simultaneously injecting and removing particles.
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Table 1

So far, in the utilization of Eq. (T.4), we have assumed small deviations from
equilibrium. If, however, we are dealing with a linear diffusion problem, we can simply
scale up the currents and concentration gradients, and thus describe large departures
from equilibrium exactly. Note, however, that it is the concentration gradients, and
concentration differences, that scale linearly, not the deviations in . Thus, utilizing
8y = kTén/n, Eq. (T.4) becomes

g ( sn(A) n(B)\ _

= i [ dx/u 0 (r.5)
no(A) IIO(B) A

where 6n(A) and én(B) are the deviations from the equilibrium concentrations
ny(A) and ny(B) maintained at A and B, respectively. Eq. (T.5) is now valid for large
values of én(A), dn(B), and j, as well as for small values. Note that ny(x), in Eq. (T.5),
is independent of j, and does not reflect the perturbed concentration profile and its shifted
minimum. If we consider the application of a large force, with or without simultaneous
application of concentration changes, we can again return to Eq. (T.5) by choosing n, to
be the equilibrium distribution characteristic of the potential in the presence of the applied
force. Note that we obtained Eq. (T.5) indirectly, via Eq. (T.4), in order to make contact
with concepts used in other fields. It is, of course, not necessary to do this.

For a high potential barrier, near which n, is very small compared to its value
elsewhere, it has become common to invoke the approximation used by Kramers, in
which the spatial variation of n is represented only through the second derivative of the
potential at the maximum. We can see, however, from the above result, that in the
steady state case it is trivial to go beyond that.

If the particles are charged and interacting, the above equations are still valid. Now,
however, the density perturbations and the field variation are no longer independent, but
are related through Poisson’s equation. It can then be shown (Landauer, 1978) that over
large distances the drop in the applied voltage, multiplied by the particle’s charge, must
equal the drop in ¢.

If, instead of a one-dimensional continuum problem, we have a ladder of points, and
the particles make transitions only between adjacent points, we can still write

i = nns 1 (O¥n—8¥, 1), (T.6)

where 8y is a small deviation, in the electrochemical potential from its equilibrium
value, at the nth point, and the "conductance" 8,n4+1 depends upon the jump rates.
Then the total change in ¢, across a ladder of points, is just the sum of terms j/ Bhn+1
one per step.

Let us now go on to point out that the same methods apply to more general dynamic
open systems, and to small departures from their steady state. Once again we can
discuss a discrete ladder or, alternatively, a continuum system. To emphasize the analogy
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Table 1

with the equations already written down we will discuss the continuum case. We assume
that there is a probability distribution p(q), whose flux is j, with q denoting the stochas-
tic variable of interest. We assume

i=pv(q)—Ddp/dq (T.7)
where the first r.h.s. term represents the deterministic laws of motion, and the diffusive
term represents the fact that ensemble members are not all compelled to follow that law.
We will not pause to ask when the above equation will be a good approximation; that is
a more subtle question than the things discussed in this Table.

From (T.7) we find that the steady state distribution function, at j=0, is
If we now assume p = B(q)p, then

j = —D(3B/da)p,, = —DB~'(3B/3q)p, (T.9)

or j= —D(0 log B/3q)p. Thus if we let ¥ = log B then j = —=D(8y/3dq)p or

¥(ap)~¥(a)) = — [ (i/Dp)da (T.10)
q

If we are close to the steady state, then, to first order in j, we can replace p by p in the
above equation. Just as in the transition from (T.4) to (T.5) we can eliminate y, and
thus find

8P(q2) 8,0((11) q, '
- = — | (i/Dpg)dq (T-11)
p(dy) 0 (ay) L2

without restrictions to small departures from P

Let us now break away from the steady state case for some more general remarks.
Many authors discuss the '"first passage time' question: How long does a particle now at
X, take to get to x,, for the first time? While this question exists for all the variants we
have discussed above, let us use the specific language appropriate to a continuous
coordinate x, and to motion in an overdamped potential, U. Let us insert a current j at
point x,, and remove the particles the moment they reach the location x,. Thus if x,>x
we will have a solution of the equations, given at the beginning of this Table, in which ¢
is constant, for x<x;. At X, we must match on to a solution which corresponds to the
injected current, and which vanishes at x;. This matching requires continuity in ¥, or n,
at x,. The particles injected at x;, will build up a total integrated density proportional to
the time they spend in the space under consideration. Thus
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Table I

jT = [ ndx, (T.12)

where the integral is evaluated from the solution we have described, and gives us the
desired averaged first passage time 7. If X, is near the bottom of a bistable potential, and
X, is at the peak of the barrier, then 1/7 is not the escape rate. A particle reaching the
peak of the barrier has an equal probability of falling back into its original well and
continuing on into the new well. This makes the escape rate 1/2r. (This particularly
simple explanation for the factor 1/2 was pointed out to us by B. J. Matkowsky and Z.
Schuss.)

The genuinely time-dependent problem, which departs from the steady state that we
have discussed, is certainly more complex, and not without interest or importance. It is,
however, the steady state result which is often the one that is really needed. Further-
more in the case of a long lived metastable state, the longest of the relaxation times
found in the time-dependent problem, can easily be found from the solution of the steady
state problem described above, where we inject particles into one well and remove them
from the adjacent well (Landauer and Swanson, 1961).

References for Table I:

Kramers, H. A., 1940, Physica 7, 284.

Landauer, R., 1962, J. Appl. Phys. 33, 2209.

Landauer, R., 1978, in Electrical Transport and Optical Properties of Inhomogeneous
Media, J. C. Garland and D. B. Tanner, eds., American Institute of Physics,
New York, Sec. 9.

Landauer, R., and Swanson, J. A., 1961, Phys. Rev. 121, 1668.

LeClaire, A. D., 1949, in Progress in Metal Physics, Vol. I, B. Chalmers, ed., Interscience,
New York, p. 306.

Shockley, W., Electrons and Holes in Semiconductors, D. Van Nostrand, New York, 1950,
Sec. 12.4, p. 302.

Swanson, J. A., 1957, IBM J. Res. Develop. 1, 39.

CONFIGURATION SPACE

Figure 3
Complicated potential with many competing states of local stability.
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situation in which the band bottom and doping are independent of space, so that
the normal drift term is absent. Take the temperature spatially non-uniform, so
that D is a function of the coordinate x along which diffusion occurs. Start with an
initially uniform carrier density, i.e. dn/dx = 0. Then if we take j = —D(dn/9dx)
no current will flow and the carrier distribution will remain uniform. We know,
however, that is the wrong answer. Carriers in the hot region tend to leave it
faster than they arrive, in turn, from the cold region. The hot regions will end up
with a lower steady state carrier density. If, instead, we take j = —9(Dn)/0x, it
gives us a carrier redistribution in the expected direction.

Now consider a system in which there is a single, space independent,
temperature. Let u and D be functions of x as a result of reflecting barriers, which
have a higher density in one region of space, than in another. Let the barriers be
thin enough so that they have no effect on the chemical potential of the carriers,
but only on p and D. If we now start with a spatially uniform carrier distribution,
and a flat band bottom, then the carrier distribution should remain flat, i.e. j = 0.
Only the form j = — Ddn/dx will give that result.

This paradox has been resolved [20], though the resolution doesn’t
seem to be well known. Briefly put: It is only the total current that is significant,
not the diffusion term by itself. The drift term has a compensating ambiguity.
Refs. [9,21,22] make it clear that the ambiguity discussed here involves terms with
a formal similarity to the widely discussed Ito vs. Stratonovich question [23], but it
is in fact a separate and distinct issue. As is made very clear in Ref. [23], the Ito
vs. Stratonovich issue arises only if we attempt to start from a Langevin equation.
Unfortunately, the distinction between the two questions is sometimes blurred, and
we cite one recent example of that [24]. Eq. (2), used by us, is a Langevin equa-
tion, and if the temperature were taken to be a function of 8, would get us into the
Ito vs. Stratonovich problem. Generally, however, it is possible and advisable to go
directly from the physical kinetics to a ''master equation" describing the time
dependent probabilities, without going through the Langevin equation. Thus, for
example, the solid state transport literature discussing motion of particles in a
spatially variable potential, e.g. in a transistor, never invokes a Langevin equation.

The r.h.s. of Eq. (6) can be written in two ways

; dp 9
]=vp D-gg = up—ﬁ(Dp), (7)
with u =v + dD/30. Ref. [20] pointed to the physical interpretation which
distinguishes between the two velocities, u and v. The velocity v measures the
unbalance in the flow exchanged between nearby points, whereas u measures the
unbalance in flow in the two directions away from a given point. We will, here,
present a simplified version of the discussion in Ref. [20], applicable to the situa-
tion where we have a sequence of points on a line, and only allow jumps between
adjacent points. We also assume that the occupation probability, P, of the n*
point, varies only slightly between adjacent points, and make a similar assumption
about the jump probabilities. In that case, we can expect to represent the time
variation of P_ by a continuum approximation. n can, for example, represent the
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number of molecules of a particular species present in an open chemical reaction,
the number of quanta in a laser cavity, the number of electrons on a tunnel diode
capacitance, or a biological population. Let W, n41 Tepresent the probability of a
jump, per unit time, from the (n+ 1) site to the nth site. Similarly W +1,n Tepre-
sents departures from the nth site to n+1. Then the flux from n to n+1 is given by

J= = Wn,n+1Pn+1 + Wn+1,nPn' (@)
Now let
1
W, = E(wn+1,n + Wy ne1) (9a)
1
W, = "Z_(Wn+1,n_wn,n+l)‘ (9b)

Then Eq. (8) becomes
j=W(P . +P)-W,(P,. , —P). (10)

Clearly this has the form of Eq. (6), differing only as a result of the discretization.
The first r.h.s. term of Eq. (10) corresponding to the first r.h.s. or drift term of Eq.
(6) is proportional to the unbalance in jump rates between adjacent points, defined
in Eq. (9b). The second r.h.s. term of Eq. (10) contains the population difference
P .1 — P,, analogous to dp/d0, multiplied by Wg, a jump rate which weights
jumps in both directions equally. Eq. (10) can also be written in the form:

.1 1
)= EPn+1[Wn+2,n+1"wn,n+1] + EPn[WnH,n_Wn—l,n] = B §L1)

D is given by

1 1
= [E(W“’““ + Wn+2.n+1)Pn+1_5(Wn+1,n + wn—-l,n)Pn]-(12)

Consider the two r.h.s. terms which are written out in detail in Eq. (11). In the
first of these P, is multiplied by what is essentially an unbalance in velocities
away from the point n+1. The next term has the same form, but is evaluated at n.
The fact that Eq. (11) averages these two terms, evaluated respectively at n+1 and
at n, is not significant. The basic point: the probability densities, in this term, are
multiplied by the unbalance in velocities away from a given point, analogous to u.
The final term, D, given explicitly in Eq. (12), involves factors of the form
(Wn,n +1+t W +2.n +1)- Once again, if the probabilities vary slowly with n, this
does not differ seriously from (W_ A T Wy +2.n +1)- The latter, however, is the
symmetrized expression of Eq. (9a), which we have already equated with the
diffusion coefficient in our discussion of the second r.h.s. term of Eq. (10). Thus D
has the form 3(Dp)/d0, and it is this term which, in Eq. (11), is accompanied by a
drift term which contains u, rather than v.
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The question which we have just belabored is discussed, with varying
degrees of success, in a number of publications. We can cite only a few [25],
without analysis of their exact relationship to our discussion.

S. Particle in tube of nonuniform temperature

Noise is not always as simple as in Eq. (3), where it is related to a
space independent damping constant, but instead can depend on the state of the
system. A simple and instructive example consists of charged particles, in a long
thin insulating tube [26]. The particles are assumed to keep their charge un-
changed when they bounce into the walls of the tube, but to take on a velocity
characteristic of the local wall temperature, at each encounter with the wall. This
temperature will be taken to be variable along the length of the tube. The charge
on the particle permits us to put the particle in a force field, by depositing charges
on the outside of the tube. At first, however, we assume that no such field is
present. The cross-section of the tube, and therefore the mean free path, will be
assumed to be small compared to the scale of variation along the tube. The
particles will be taken to be noninteracting; they do not equilibrate through a gas
pressure. Let us also assume the inelastic scattering at the wall to be completely
diffuse, so that the direction of the reflected particle will be independent of its
direction of incidence. Thus, the geometrical paths of the particles will be inde-
pendent of the temperature profile; the temperature only influences their speed.
The time the particles spend in a given portion of the tube will be inversely propor-
tional to their velocity. Their density then varies a 1/T1/2, We can come to the
same conclusion through the methods of the preceding section. The far r.h.s. form
of j, as given in Eq. (7), is valid if u is the average velocity of particles away from a
given point, rather than the velocity measured by the transitions between nearby
points. Under the assumption of complete thermalization, u as used above, vanish-
es. Thus in the steady state Dp must be constant. Then, if the jump distance
involved in the determination of D is temperature independent, it is only the jump
frequency, proportional to particle velocity, and thus proportional to T!/2, which
causes D to vary. Thus, p varies as 1/D, or as 1/T1/2,

We see, not surprisingly, that particles tend to gather preferentially in
the cold parts of the tube. We can also, without further analytical details, assume
that if the nonuniformities induced by the temperature variation are large compared
to those caused by applied fields, at the typical temperature involved, then the
temperature effects will predominate.

6. Open systems and biology

Consider an asymmetric bistable potential well, with two wells of
unequal depth, separated by a barrier. In thermal equilibrium it is easy to discuss
relative stability, i.e. the relative occupation of the two wells, through the use of
the Boltzmann factor. Changing the behavior between the wells, at the barrier, can
change the relaxation rate, i.e. the ease with which particles move over the barrier,
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but won’t change the relative probabilities of occupation between the two wells, in
the steady state. More general dynamic systems, with several competing states of
local stability, do not have such a simple behavior. These more general systems
include the bistable potential well, if different parts of the well are allowed to have
different temperatures, as in the case of the particle in the tube that we have just
discussed. For such more general systems relative occupation probabilities depend
on the detailed kinetics along the whole path between the wells, including the
unlikely states near the barrier. This concept, already implicit in Ref. [8], was
emphasized in later papers, and it seems superfluous to rederive this point, even
though some of the physical chemistry literature was slow to accept it [27,28].

We do, however, want to repeat and stress one obvious consequence.
In a multistable system, far from equilibrium, we cannot expect - at least not with
great generality - to recognize the steady state distribution function, or the relative
probability of the locally stable states, from any examination of the system which is
limited to the neighborhood of the most likely states. Commonly advocated
principles involving entropy maximization, entropy production, entropy curvature,
etc., which typically disregard the behavior near states which are rarely occupied,
just will not work. The most well known of these principles, that of minimal
entropy production, is, of course, only intended to apply to systems close to
thermal equilibrium. Even there, however, it has serious limitations [29], and if
stated with sufficient care, cannot be regarded as a very general physical principle.

We have emphasized the need to take fluctuations along the whole
pathway into account. There have been attempts to discuss relative stability
through generalizations of Maxwell’s equal area rule, as applied to the liquid gas
phase transition. These attempts (See Ref. [26] for citations) invoke the determin-
istic equations of the system, without regard to fluctuations. Our viewpoint,
stressing the role of fluctuations, is most clearly essential for small systems. In the
case of large systems, transitions between relative states of stability occur by
nucleation of a new phase, followed by expansion of the nucleus through domain
wall motion. The kinetics of wall motion do not, generally, depend appreciably on
the fluctuations [6,30]. Thus, in a large system, where there is opportunity for the
formation of nuclei and domain walls, the favored phase is determined by the
direction of wall motion and, therefore, not by fluctuations. On the other hand,
the transition rate is determined by the number of nuclei, and these arise through
fluctuations. We point out explicitly that if we are concerned with the origin of
life, or with molecular biology, we are likely to be concerned with small systems, in
which each item of information is contained in a few degrees of freedom.

We now go on to discuss the implications of our viewpoint for evolu-
tion, and for the origin of life, adopting an approach which P. W. Anderson [31]
has labelled the spin glass view of evolution. In our case it stems from discussions
with Charles Bennett, in 1974. We cite only the latest of the papers [32] present-
ing this view. Evolution is viewed as a progression through a series of states of
local stability. Think of these as roughly analogous to the minima of the potential
diagram shown in Fig. 3, located at the end of Table I. In contrast to Fig. 3,
however, we are not dealing with motion in a potential, but with the time develop-
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ment of a more complex open and dynamic system. Evolution, takes us from one
long lived state, to another nearby one, through fluctuations. In the later stages of
evolution these fluctuations take the form of genetic mutations. These replace the
thermal fluctuations in Fig. 3, which can take us from one valley, to a deeper one.
In a many dimensional case, corresponding to Fig. 3, the fluctuations typically have
to take us far enough to develop a nucleus of the new favored phase; after that the
coherent dynamics of the system, via motion of domain walls, can take over. The
biological case is very similar. Not just any fluctuation will do, the right genetic
mutation that will push us a little way toward the new state is required. After that,
the deterministic biological mechanisms can take over. Note, also, that Fig. 3,
drawn in one dimension, is misleading in its implication that a transition to a lower
lying valley may require a transition toward a valley which is far away. Biological
space has a huge number of dimensions, and each state of local stability is sur-
rounded by a great many other states of local stability, and not just two, as in Fig.
3

If biological evolution can be viewed as described, then the relative
stability of locally stable states cannot be evaluated simply by comparing the two
states. The kinetics along the pathways must be taken into account. We cannot
expect to predict the more likely life forms, or states of ecology, toward which
progress is likely to occur, by comparing these states, but must take the pathways
into account. In particular, any attempt to invoke thermodynamic or information
theoretic comparisons between the competing locally stable states cannot provide
answers.
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