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THE NMR-LASER - A NONLINEAR SOLID STATE SYSTEM SHOWING CHAOS*

E. Brun, B. Derighetti, R. Holzner and D. Meier
Physik-Institut, Universitdt Ziirich, CH-8001 ZUERICH.

1. INTRODUCTION

The remarkable results on iterations of continuous maps of an interval into it-
self by J.M. Feigenbaum, J.P. Eckmann, S. Grossmann, and others [1] have stimu-
lated experimentalists to search for pathways from simple to chaotic behavior
of nonlinear physical many-body systems. For the most simple devices, such as
driven nonlinear electronic oscillators, the existence of a Feigenbaum scenario
within certain parameter ranges has been demonstrated convincingly [2]. There
the approach to chaos goes over a set of period-doubling bifurcations with uni-
versal scaling properties. Physically more complex systems, such as Rayleigh-
Bénard cells [3],chemical reactors [4], optically bistable devices [5], lasers
[6] etc, yield experimental results which have to be interpreted with caution.
Unknown noise sources, long-time drifts, slowing-down and hysteresis effects,

a complex structure of the interlaced basins of attraction, and an extreme
sensitivity on control and system parameters hamper the unambiguous determina-
tion of defined roads to chaotic behavior from the so far reported experimental
material.

In this communication, we report novel experimental observations along the
road to chaos of a tuned low-Q solid state spin-flip NMR laser which, accor-
ding to our earlier work [7], should show the universal Fe1genbaum scenario
under certain conditions.

We have studied the nonlinear low-frequency response of the NMR laser
activity to an external sinusoidal perturbation of one of its system para-
meters. Comparison of experimental results with computer solutions of an ap-
proximate theoretical model based on Bloch-type order parameter differential
equations reflect instructively some of the difficulties an experimenter may
encounter when he is out to detect unpaved physical roads to chaos.

2. THE RUBY RASER AND ITS MODELLING

A single ruby crystal (A1,0,;Cr3*), onto which an rf-coil is wound, is cooled
inside a microwave cavity to 1.6 K in a magnetic field B, of about 1.1 T. A

100 mW microwave generator is tuned to a selected ESR 11ne of Cr3* near 30 GHz,
causing an enhancement of the nuclear magnetization M by means of dynamic nuc-
lear polarization (DNP). Adjusting the DNP pump properly leads to a negative
nuclear spin polarization (spin inversion). If now the coil is tuned with an
external capacitor to one of the am=+1 NMR transitions of the 27Al nuclear

spin system, spin energy is radiated coherently into the rf-coil, provided

that M is pumped above a certain threshold. The coil provides the slaving feed-
back field BY which causes the superfluorescent ordering of the precessing
spins. The system then behaves laser-like. Thus we call it NMR laser or RASER
(from radiowave amplification by stimulated emission of radiation).

*The work is supported in partial by a grant of the Swiss National Science
Foundation.
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We have shown [8] that a low-Q ruby raser may, to a good approximation, be
treated as a homogeneous two-level system if only one NMR mode is excited. Then
it can be modelled on time through generalized Bloch-type equations for its
order parameters. If the raser is forced to purely absorptive behavior where
the NMR frequency wy coincides with the resonance frequency w; of the tuned
coil and the raser frequency wg of the emitted radiowave (typically 12 MHz),

we may neglect dispersion. Then we characterize the raser by three macroscopic
order parameters only. They are the longitudinal magnet1zat1on M,, the rotat-
ing magnetization My, and the rotating raser field BY which is 90° out-of-phase
with respect to My. Under certain conditions (Tow-Q case, weak raser activity,
fast effective pump) we can simplify the general raser equations drastically
[9]. For the (1/2, -1/2)NMR mode, for example, we obtain in the rotating frame
approximation (in SI-units)

dMV

at - 9YMZ B, - MV/TZ (1)
dMZ

€ = My Ba - (M, - M/T (2)
BY = - % unQM, (3)
d d

with Bl=Bl+B§. By stands for an additional rf-field and may be a phase-locked
external driving field, or an effective noise field, or a superposition of
both. The term M, /T, describes the dissipation of phase memory of the presess-
ing spins. (M,-My)/Te represents the DNP pumping mechanism with Mg the effec-
tive pumping magnet1zat10n and T, the effective pumping time.

Since BY can beeliminated ad1abat1ca11y, we may describe the compos1te
system: nuclear spins, electronic spins, DNPpump plus radiation field in a 2-d
phase space by the nonlinear equations

de 9 d

yule (- ?'UOHQY MV + 9Y51)MZ = MV/Tz (4)
sz 1 d

% " 3 UOHQY Mv - vBY) MV = (MZ = Me)/Te 1 (5)

These are our raser equations on wh1ch our analysis is based. Typlca1 system
parameters are the filling factor n = 0.5, the dephasing time T, = 30us, Tg =
0.1s, Mg = -1.6 A/m, the quality factor of the coil Q = 100, B? W=t T,

vy is the gyromagnetic ratio of 27Al. The numerical factors are spin factors
stemming from the spin-5/2 of 27A1 and its fictitious spin¥2 (two-level) des-
cription. To demonstrate the reliability of the model we compare in Fig. 1
the transient behavior of the raser with computer solutions of (4) and (5).
The top picture shows the observed envelope of the raser output after the LC-
circuit has been tuned to wy at t = 0. The output voltage in function of time
is directly measured at the coil and stored on an oscilloscope or in a digital
transient recorder. After tuning, a delayed giant pulse (clipped by a factor
of 10) appears. Then after a dead time of approx. 0.15s follows a spiking
behavior which is damped out to the steady raser activity. The two graphs below
represent the corresponding computer solutions. The curves depict Mv(t) and
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M,(t). The raser output is proportional to My. M, cannot be measured directly.
The result that a perfectly tuned low-Q raser (or laser!) may be modelled
onto trajectories in a 2-d phase space (M, M,) is rather surprising. However,
this has been tested for driven NMR systems aTso where bistability, pseudo-
bistability and steady spiking behavior have been found [7].

Fig. 1. Raser transients after tuning
| (Q-switching)

o

T ||

= Fig. 2. Modulated raser output due to forced

~ pgrameter modulation e.g. of Q, Mg,

g{q B or T,. The time interval between

g” equal time markers (dots) is 0.03s.
:- 00 15

.30 45
TIME (s)

3. RASER MODULATION

[he so far discussed system is effectively restricted to a 2-d phase space. The
solutions of the nonlinear equations of motion behave regularly in time, and
me finds only simple pictorial representations for the orbits in phase space.
[0 augment its dimension, where one expects to detect basins of complex behav-
ior, we let anexternally controlled system parameter vary in time. One has the
shoice to modulate either Q, My or BY. By applying a weak time-varying field
jradient to B,, we can effectively modulate T,, even. We have modulated, for
:xample, the pumping magnetization sinusoidally with a frequency @ close to
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the eigenfrequency of the linearized raser equation near its steady state so-
lutions. Experimentally Q can be estimated from the observed response of Fig.
1. A modulation of the raser output is shown in Fig. 2. A typical value for

f =q/2n is 30 Hz. If F is the modulation strength, the raser may now be mo-
delled by

9 d
g6 = (=7 uonQy M, + 9yBI) M, - M /T, (6

L= (punQy M, - yBD) M- (M- M (1-F sin at))/T,.  (7)

e L3

4. SUBHARMONICS AND CHAQOS: RASER EXPERIMENTS

With the periodic low-frequency drive we add two control parameters to our
system, the strength F of the drive and its natural period T = 2n/Q which we
call period-1. For F-values below a certain threshold F, the system is attrac-
ted towards a stable limit-cycle of period-1. Increasing the control parameter
then leads usually to a series of bifurcations at Fy, n =1, 2, 3... where at-
tracting Timit=cycles of period-zn are born. In Fig. 3. we show the results of
an experimental attempt to observe such a sequence of bifurcations which ends
in a chaotic state. Extreme care is necessary to reproduce the depicted asymp-
totic stable Tlimit-cycle behavior of defined period-2". Unidentified noise
sources lead to spurious spectral components which already show up in the phase-
space portraits and the power spectra of low-order limit-cycles. These effects
often lead to a truncation of an expected bifurcation sequence. Any attempt to
estimate universal constants from such data is fortuitous.

In our search for a Feigenbaum scenario we have observed a complex struc-
ture of the various basins of attraction. We have found many discontinuous
jumps from one particular limit-cycle to another. For example, from a limit-
cycle of period-3 (Fig. 4 ) to one of period-2 and from Timit-cycles of
period-N directly to chaos. Transitions of this sort are reminescent of a first-
order phase transition and are accompanied by strong hysteresis effects. They
are highly sensitive to noise and slow drifts. We have further found chaotic
regions where the spectra vary intermittently in time between phases of weakly
noisy quasi-periodic behavior and phases with strong broadband noise.

In addition, we have often detected so-called breathing modes where a
lTimit-cycle is low-frequency modulated which leads to an oscillatory behavior.
This effect is most commonly found in higher limit-cycles, but it has also been
observed for a period-2 cycle where such a breather seems to be extremely
stable. We believe that there is a close correspondence to similar observations
as reported by Giglio et al. [3].

To illustrate some of the complexity of the modulated raser response, we
show in Fig. 5 the raser amplitude in function of the drive frequency f=@/2n
for different fixed modulation strengths F. For small F-values (in relative
units) we have obtained the well-known nonlinear response curve with fold-over
and switching properties. The system remains for all values of f in a limit-
cycle of period-1. For F > 200, the response curve becomes multi-peaked with
strong sensitivity to f. This is due to chaotic behavior for example. The high
Jjumps are usually connected with the mentioned discontinuous transitions be-
tween different basins of attraction. Figure 6 shows the hysteresis loop for
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Fig. 3a. i i
rig. Ja. g?paerégxgn;cal phase-space portraits, time response, and power spectra
. u 9 ed raser in a limit-cycle behavior of period-2 and 4 with
erratic noise. The portraits depict the raser output vs. modulator signal.
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Fig. 3b. Experimental phase-space portraits, time response, and power spectra
of a modulated raser in a weakly noisy period-8 Timit-cycle and in a
chaotic state.
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the period-1 response which is reminescent to NMR bistability [7], here in the
low-frequency response, there in the rf-response.

Fig. 4. Predominately a period-3
Timit-cycle behavior of the
raser, The dots are markers of
period-1.
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5. SUBHARMONICS AND CHAOS: COMPUTER EXPERIMENTS

In order to model some of our experiments we have lTooked for numerical solut-
ions of (6) and (7). We present selected results which we consider as represen-
tative. The assumed system parameters are close to the actual physical values,

e.g. Q = 100, Bf- -107*° T, Mg= -1.6 A/m, T,=3x10"°s, Te=0.1s, ©=280s~ 1, F has
been varied between 0 and 0. 3

oA 0Ar ol
TRIIL TERREE ER B it g' i
e[ LR
SHERH TR A I HRT T
20.05_ --o.._.: -!;E I:: i :.:. %0'05-5'.3;':'53"!!' !!i'
--=sl,;?ifi Fretie SIRELINE S EEREEE
B ".[.i‘ il;i: _|;!8i !. i g’: !_!8
. ‘;. llI!l " L8 'l-
0 -u-g-.ug-on;llllpllllll il o} l'. | |:| l::I'Il |, "
0499 0.209 0.219 0.229 0223 0228 0233 0238 0243
F F
0.625(
= - T - Fig. 7. Bifurcation diagrams for
o et Traro et a modulated raser. F refers to
;_&5875-_.. JE -t the modulation of the DNP pump.
p= L The blow-up to the left shows
I Treel,, oL clearly the two pitchfork bifur-
el cations from a period-16 to per-
0.55 ) . , , L tee, i0od-32 and period-32 to a per-
0.2134 0.2135 0.2136 0.2137 iod-64 Timit-cycle.
F

Figure 7 shows three bifurcation diagrams for F between 0.2 and 0.245. For

- each value of F 128 dots (one dot per period-1) are plotted which represent
the asymptotic solution M (t) of (6) and (7) at discrete times. We see clearly
a sequence of b1furcat1ons with period-doubling which leads to noisy bands
(with an inverse cascade of period-doubling bifurcations which are not evident
in the plot), a wide region with broadband noise and with a period-5 window
near F=0.234. From blow-ups, as shown in Fig. 7 (in the last graph), one may
determine the series Fj of bifurcations with period-doubling by 2", n=1, 2,
3, 4... which converge to Fc. With our moderate resolution in the F- sca]e we
have obtained the values F;= 0 159000, F,=0.196830, F,=0.209650, F,=0.212785,
Fs=0.213445, F¢=0.213595, F,=0.213625 from which one finds the series of
convergence rates A;=2.95, A,=4,09, A;=4.75, A,=4.40, A5=5.00 which have to
be compared with the Feigenbaum 1limit A _=4.6692016... Similar results have
been found with other system parameters “and for sequences in different win-
dows inside the chaotic bands.

The bifurcation diagrams in Fig. 8 illustrate a different asymptotic
behavior of the model system within the same range of the control parameter F
as in Fig. 7. It is the outcome of different choice of initial conditions.
With a few percent change in the initial conditions the system is attracted
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towards a stable period-3 cycle e.g. for F=0.215. Increasing F does not lead
to bifurcations. Slightly below F=0.2336 a jump to chaotic behavior results.
Further increasing F brings the system after a narrow chaotic region into a
period-5 window, followed by a sequence of bifurcations to limit-cycles of

period-5x2". The chaotic region and the period-5 window of Fig. 8 are identi-
cal to the ones of Fig. 7. :
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Fig. 8. Bifurcation diagrams fora modulated raser starting in period-3 Timit-
cycle (F = 0.215).

Figure 9 shows what happens when F is stepwise lowered. Starting in the
period-3 cycle at F=0.2005 leads to an irreversible jump to period-2 cycle
near F=0,1900. However, if we start in the noisy region at F=0.225, the system
follows the route of Fig. 7 1in the reverse sense. Hence, this route to and
from the chaos is reversible.

Figure 10 depicts phase-space and time behavior together with Fourier
Jower spectra of the period-8 cycle at F=0.212 and of the noisy band at
-=0.222. From Fourier spectra of low-order period-2" cycles we have found that
the power per doubling goes down by about 19 dB. '
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“19. 9. Bifurcation diagrams of a modulated raser showing an irreversible
transition (3.2) and a reversible path from and to the chaos.
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Fig. 10. Phase space portraits (M,, M), time behavior My(t) and Fourier
power spectra in an asymptotic periodic and nonperiodic state.

Figure 11 illustrates the dynamics of the irreversible transition from the
period-3 to the period-2 cycle near F=0.1886. The given phase-space portraits
are taken at various consecutive times, starting from a nonequilibrium initial
state. The 1st portrait shows a transient which seems to lead to the stable
period-3 cycle of the 2nd portrait. However, this is an illusion. As time goes
on, slow changes become manifest which can be recognized as weak nonperiodi-
Cities (smeared out time-1markers) in the 3rdand 4th portrait aftera long wait-
ing time between the 2nd and 3rd portrait. Then the situation changes drastically.
A wild transient builds up (5th portrait) which ends, after a short transient
time, in the stable period-2 cycle. InFig. 12 we give the time behaviour which
corresponds to the 3rd, 5th and 6th portrait. These graphs clearly show the fast
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nonperiodic phase when the system jumps from one limit-cycle to another after

a phase of extremely slow dynamics. We have found that the time spent in the
phase where slowing-down occurs can be many orders of magnitude longer than

the longest time constant of the system. This fact should not be overlooked
when experiments and calculations are performed on Timit-cycle behavior, other-
wise premature conclusions may lead to erroneous interpretations.

6. CONCLUDING REMARKS

From the bulk of our experimental data and model calculations we may draw the
conclusion that a Feigenbaum scenario indeed exists in laser-type devices. How-
ever, to get into the realm of its attractor requires carefully chosen initial
conditions within small ranges in parameter space. Further, in order to remain
there and be sure to have reached asymptotic behavior, extreme conditions have
to be met, not only with respect to noise but also to the long-time stability,
in particular. It seems that experimenters(including ourselves) have not
reached the goal yet where realiable quantitative tests of limiting values of
convergence rates.  and other universal scaling properties of nonlinear systems
but the simplest can be made.
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