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SCENARIOS FOR THE ONSET OF CHAOS
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I. INTRODUCTION

The aim of this paper is to give a simple and qualitative descrip-
a\

tion of the transition to temporal chaos observed as well in experiments '

as in dynamical systems * > Roughly speaking, we are going to

present a classification of these routes according to the number of indepen-
kdent frequencies present just before the transition. Landau x proposed a

scenario in which the destabilization of an infinite number of independent

frequencies would lead to turbulence. Ruelle, Takens and Newhouse

showed that after the appearance of at most three independent frequencies in
a given physical system, there exists arbitrary small deterministic perturbations

which could give rise to chaotic behaviors, described by some stable
solutions of ordinary differential equations : the so called "strange attractors".

The picture which emerges from this result seems to be compatible with
a\_

experimental results and numerical simulations This does not mean

that the transition to chaos consists in a scenario where three frequencies

necessarily appear. At the contrary, the transition has been many times observed

after periodic and biperiodic states.
We are now going to describe the one and two-frequencies scenarios with some

details. The three frequencies cases will be discussed in the conclusion.
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II. SCENARIOS WITH ONE FREQUENCY : ABRUPT TRANSITION TO CHAOS, INTERMITTENT

TRANSITION, THE CASCADES

Hopf bifurcation is the natural mechanism which leads to the

appearance of a frequency in a non-equilibrium system. The question we want

to ask here is what happens when the resulting periodic state looses its
stability. Floquet theory *> states that a periodic motion is linear^ ly stable

if its Floquet multipliers have a modulus less than one. Let us consider an

infinitesimally small perturbation y(t) of a periodic solution Q (t) of
period T of an n order ordinary differential equation (y y ...y
$ ($, •••$„)• The eigenvalues of the nxn matrix M defined by

y (t+T) M y(t) ->
are the Floquet multipliers associated withthe solution $ (t). They give us the

contracting and dilatingfactors in the eigendirections of M which multiply
a small perturbation to (p after one period T. There are essentially three
ways for a periodic state to loose its stability when only one external parameter

is varied.

ImA

ß>f*c^c

IReA

f**Hc
f*c
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Fig. la represent the positions of the Floquet multiplier in the complex

plane for different values of an external parameter

Fig. lb represent the corresponding bifurcation diagrams Crossing through

+1 corresponds generically to the collision between two periodic
orbits followed by their disappearance. The stable solutions will
always be represented by full lines, the unstable ones by dashed lines.
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1. A Floquet multipliers crosses the unit circle in the complex plane through
+ 1 (Fig. la).

2. A complex-conjugate couple of Floquet multipliers crosses the unit circle
(Fig. 2a)

3. A Floquet multiplier crosses the unit circle through -1 (Fig. 3a).

In case 1, elementary bifurcation theory " tells us that the

periodic orbit generically disappears.

Case 2 leads generally to the appearance of a quasiperiodic behavior with two

independent frequencies.

Im A
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ß>Hc

JReA

-*•/"

a>2

"?,"

b
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Fig. 2b correspondsto the supercritical situation. In this case, the nonlinear
terms saturate the instability and give rise to a supercritical stable
solution with two independent frequencies.

Fig. 2c corresponds to the subcriticai case. Here, the nonlinear terms have

opposite effects : they act to give a quasiperiodic solution before
the bifurcation point,which is unstable.

Case 3 gives rise to a periodic solution with double period.
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Fig. 3 (b) and (c) correspond respectively to the supercritical and subcriti-

cal cases. A represents the amplitude of the subharmonic with half
frequency.

Let us consider now each case in the context of the transition to chaos.

1- A Floquet multiplier crosses the unit circle through +1

In the generic case the disappearence of the periodic orbit can

lead to any kind of behavior. If it is chaotic we expect an abrupt transition
to chaos with hysteresis effects. Actually although this transition exists,
another scenario has also been observed : the intermittent route to chaos.

This scenario can be described as follows. Although the periodic orbit disappears,

just after the crossing through +1 of its Floquet multiplier, we still
observe on the signal some periodic part separated by chaotic bursts. This
phenomenon is reminiscent of the intermittency effects observed in fully devel-

g
lopped turbulence. As we increase a control parameter If the duration of
the periodic parts of the signal decreases. The transition is a smooth transition

described by the inverse of the mean time "£, of the periodic part of
the signal

rL « h-iJc)1/2 <t' =0 for Y<Vi

a
The explanation of this scenario has been given by Manneville and

Pomeau "~> The basic idea is that a conflict occurs between a chaotic attrac-
tor and the periodic orbit when this orbit still exists and is stable
This competition is won by the periodic orbit,and the chaotic set looses its
stability until the disappearence of the periodic state
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With an additional control parameter we can go continuously from

the abrupt transition to the intermittent one
10

In the case of a symmetry (in contrast to the generic
case) for the mode of destabilization through +1, the bifurcation leads to
two periodic orbits with the same frequency which exchange under the symmetry.

If the bifurcation is subcriticai, we have again either an abrupt transition
with hysteresis or an intermittent one. In the supercritical case, we can ask

the question of a next crossing through +1 for the newly-born orbits. Since

they are no more symmetric we come back to the generic case previously
discussed. A possible scenario appears if in-between the symmetry has been

restored by a different mechanism.

H1 ^2 K3

Fig. 4 Illustration of the spontaneously broken, via bifurcation,and restored,
via homoclinic bifurcation;mechanism. The reflection is here x -^-x.
For U > |%!j, a pair of non-symmetric stable equilibrium solutions
appear which undergo a Hopf bifurcation for \S; L/ For |J/>(J^ we

observe a homoclinic bifurcation which gives rise to a unique

symmetric periodic solution.

If such mechanism occurs, we can imagine a cascade of spontaneously broken

symmetry through a bifurcation followed by a resyrrmetrization., via a homoclinic

bifurcation, which could lead to chaos. It turns out that this scenario,
proposed on the basis of simple dynamical systems il has been observed

in ordinary differential systems lì and in partial-derivative equations KZ

as well, and is likely to occur in real systems when the needed symmetry is
present. This scenario is reminiscent of the period-doubling one.

Renormalization-group arguments can be used to predict and compute numerically various

exponents describing the transition. The analysis follows closely those of
the cascade of period-doubling discussed below.
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(b) c(a)

(f)d (e)

A numerical investigation of the system of differential equations
X t-jti-j1)

y ¦'itf.y' t«'i f (-J
X3

z r -Stkl rxy + fbï2

with oc 1.8, p= -0.07 S 1.5 yields
(a) a pair of stable homoclinic orbits (J* .0760710)
(b) a stable symmetric orbit LT .05)
(c) a pair of stable orbits if 0.034)
(d) a pair of stable homoclinic orbits |J -=.0321825)

(e) a stable symmetric periodic orbit LÎ =.0321)

(f) chaotic attractor )J .02)

Fig. 5

2- A complex pair of Floquet multipliers crosses the unit circle

In the supercritical situation we observe generally the appearance
of a quasiperiodic behavior with two independent frequencies which will be

discussed in the next section. In the subcriticai case, we can have either
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an abrupt or intermittent transition to chaos.

3. A Floquet multiplier crosses the unit circle through -1
The subcriticai case corresponds again to the possibility of an

abrupt or intermittent transition io In the supercritical case, we can

imagine a scenario of repeated period-doubling bifurcations. This scenario
1f 'l'iexists and is probably one of the most famous routes to weak turbulence ' J.

The cascade of period-doubling bifurcation or the parametric cascade arises
in simple one-dimensional non-invertible map!., in ordinary differential
equations, partial-derivative equations,and finally in real systems. This cascade

has been successfully described by renormalization-group methods ' ' ' '

The main consequence of this analysis is the existence of universal
exponents describing for example the "speed of bifurcations" or the low-
frequency behavior of the Fourier spectrum at the onset of chaotic behavior
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Illustration of the period-
doubling cascade on the para-
metrically pumped pendulum *<¦

j-Vb
The equations of the system
are :

§ tVGt u;ü2(l--fF69.ß.t)Svf!e-u
We have choosen for the
numerical simulation
Jl L0o= 2, 9 =.18 s"1

and showed on Fig.6(a,b,c,d,
e,f) the power spectrum for
respectively the frequencies

2, 1, 1/2, 1/4, 1/8 and a
chaotic state.

Fig. 6
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This closes our section on the scenarios to chaos after one frequency. Other

one-frequency scenarios could emerge from numerical simulation or experiments

but our feeling is that the ones described above are, with an exception

for the spontaneously broken-and-restored-symmetry cascade, the most

probable.

III. TWO FREQUENCY SCENARIOS

When a periodic orbit looses its stability with a couple of complex

Floquet multipliers crossing the unit circle in the supercritical case, a

quasiperiodic behavior with two independent frequencies generally appears °.

In the phase space a quasiperiodic behavior is represented as an

endless motion on a torus. This invariant surface is materialized by the winding

ergodic trajectory. The existence of quasiperiodic motion is a difficult
mathematical problem. In a more physical language we are considering the

problem of the interaction between two oscillators. The natural tendency of such

an interaction is towards the mode-locking : i.e. one oscillator is always

trying to slave or lock-in the other. When they succeed to do so, the trajectory

is no more winding an infinite number of times around the torus. Indeed,

we get a periodic solution. Varying one external parameter one can succeed to

unlock the two oscillators until we get a new locked state. The picture which

emerges from this is complicated. We expect locked states with quasiperiodic

states in between, the locking occuring everytime the ratio of the two

frequencies becomes rational.
This apparently does not leave a lot of chance to observe quasiperiodic

states. Indeed, such a chance exists and relies on a deep mathematical re-
25suit Nevertheless, the probability of finding two independent frequencies

decreases when we increase the coupling between the oscillators. Let us first
discuss the case where the transition to chaos occurs during a locked state.
The problem is then reduced to that of the transition after one frequency pre-

24
viously observed In particular, cascades of period-doubling have been

frequently observed in this case. A non-trivial transition occurs if we are able

to keep fixed the ratio of the two frequencies to an irrational value. We then

get a smooth transition to chaos again characterized by critical indices, where

the invariant torus looses its regularity and becomes a "fractal". The signature

of this irregularity can be seen in the signal as an irregularity of the
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phase. The self-similarity property of the solution at the transition, involves

universal numbers depending on the irrational ratio of the frequencies.
JO Ol

A renormalization group again describes this transition '

Up to now this transition has never been experimentally observed.

This is essentially due to the difficulty to keep fixed the ratio c^/sy. The

only reasonable way to see the prediction of this theory would consist to
consider a self-oscillatory system on which a frequency would be externally
imposed and varied continuously as we vary some other control parameter in
order to keep the ratio oj^ /fl fixed. To close this section of the transition
to chaos after two frequencies, let us mention the possibility of bifurcation
for a quasiperiodic solution More precisely, when the frequencies are

sufficiently independent we can consider them as uncoupled, and then imagine

far such a quasiperiodic solution all the bifurcations of periodic solutions.
In particular intermittent transition after the disappearance of the
invariant torus has been experimentally observed Cascade of periodic-doubling
for quasiperiodic solutions can also be imagined. Numerical simulations on

29
systems displaying such a cascade suggests that such a scenario is rather
unstable against the tendency to lock-in and undergoes a transition to chaos

after a locked state. Our feeling is that the transition after a quasiperiodic

behavior is very rich and also, except when it reduces to the one-frequency

scenario via locked modes, probably difficult to observe quantitatively
in real experiments.

IV. CONCLUSION

We could be tempted to discuss now the three-frequency scenarios.
We can imagine successive lockings in two-frequency regimes and a transition
after such states. We probably can also describe a transition where the three-

dimensional torus looses progressively its regularity with critical indices.
Bifurcation could lead to intermittencies, first-order transitions and even

period-doubling scenarios. In some of the cases alluded to the three-dimensional

torus is not destroyed, for chaotic behavior needs only a three-dimensional

space to set in. This is one of the ingredients of the Ruelle-Takens-

Newhouse result on the existence of strange attractors near (in parameter

space) a three-frequency behavior.
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