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MELTING OF TWO-DIMENSIONAL SOLIDS

Rudolf H. Morf

Laboratories RCA Ltd., Zurich Switzerland

Abstract

Experiments and computer simulation studies on two-dimensional
melting are reviewed. Results are compared with predictions based on the
theory of dislocation-mediated melting.

1. Introduction

Previously, it was believed that melting is quite generally a first-
order phase transition. Recently, however HALPERIN and NELSON [l] developed
a theory which leads to a higher-order melting transition in two-dimensional
(2-d) systems. This theory is based on the idea, proposed by KOSTERLITZ and
THOULESS [2], that melting is caused by an instability in the 2-d solid for
the creation of free dislocations. It predicts an upper bound for the mel-

ting temperature Tm
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k T < 1 ,_‘_gt_lqz (1)
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where p and A are the Lamé coefficients measured at Tmland ao is the lattice
constant. If the solid does melt via the dislocation unbinding mechanism
the inequality becomes an equality and, in this case, striking predictions
are made: At temperatures T » Tm the system has lost its resistance to shear
and translational order with a correlation length .; (T) of translational

order which decreases exponentially with temperature,

S(T) ~ 2xXp A/(T_Th)\' ) - (2)

The critical exponent ¥ is nonuniversal and depends on the sym-
metry of the crystal. However orientational order is predicted to persist
up to a temperature Ti)»Tm, at which a second phase transition associated
with the unbinding of another type of defect (disclinations) destroys the
orientational order. The intermediate phase is characterized by an orienta-

tional order parameter

-l . -l
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where GB(?') is the angle relative to an arbitrary reference direction of

=g
the bond between two nearest-neighbor particles at position r. The constant
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p reflects the type of symmetry: for melting of triangular lattices p = 6
and for square lattices p = 4 corresponding to the persisting hexagonal or

cubic symmetry of this phase for which the names "hexatic" and "tetratic"
have been coined [l]. Defining the orientational correlaticn function

- »
3 (R) = <WP(R) \P‘,(O)> , (4)
which, in the solid, for large separationslﬂ, tends to a positive constant

[3], Halperin and Nelson showed that the presence of free dislocations for

temperatures'T)ﬂ%lleads tc a power-law decay
9p(3)~ R—'lp (5)
with a temperature-dependent critical exponent rlp which increases mcno-
tonically with temperature from zero at Tm to 1/4 at Ti' This is in marked
contrast to the behavior of a conventional fluid for which all correlations
decay exponentially at large distances. At temperatures TT)TE the presence

of free disclinations leads to an exponential decay of gp(R) with a correla-

tion length gp which diverges like
1
f ~ epr/(T—T.) /2 TYT. (6)
P i i

as the temperature approaches the disclination-unbinding temperature Ti'

The theory developed by HALPERIN and NELSON [1l] is based on con-
tinuum elasticity theory, in which long-wavelength phonons, dislocations and
disclinaticons are taken into account. The quantities which determine the
physical behavior are the Lamé-coefficients P and )- and the core energy of

dislocations EC and disclinations E which plays the role of a chemical

a’
potential for these defects. The theory is based upon an expansion in the
fugacity of dislocations y = exp - EC/kBT and similarly for disclinations.
This expansion is well behaved if the core energies are large, i.e. for
small defect densities. The core energies depend in a very nontrivial way
on the interparticle potential [4]. 1If the fugacity of dislocations 1s not
small at Tm’ implying a high density of dislocations, a first-order phase
transition from solid to isotropic fluid is likely to occur. Particularly
in these cases, the possiblilty must be considered that special types of
arrays of dislocations (e.g. grain boundaries) will drive the (first-order)
transition [4, 5].

Other theories of 2d-melting, based on Van der Waals ideas [6] and
on Landau theory [7] have been proposed. They all lead to a single first-

order transition from solid to isotropic liquid.
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2. Experimental Results

In order to test the striking predictions of the theory of disloca-
tion-mediated melting - the existence of an orientationally ordered fluid
and the universal relation (1), a great experimental effort has been under-
taken. To summarize the present situation: In substrate-free thin film
systems no evidence of a hexatic (or tetratic) phase has been obtained
although in ligquid crystals a 3d-stacked hexatic phase has been discovered
[8]. Investigations on freely susSpended liquid-crystal films by both mechani-
cal measurements [9] and synchrotron X-ray studies [10] show first-order
transitions from crystal to ligquid although on 3 layer films an orientation-
ally ordered phase has been found [9, 10]. In experiments with rare gases
adsorbed on graphite both first-order and higher-order melting transitions
have been seen. In these systems the situations of melting of solids which
are either commensurate or incommensurate with the graphite substrate must
be distinguished. While both Xenon and Argon on graphite melt from in-
commensurate solid to ligquid [11, 12], the system of Krypton on graphite
melts from commensurate solid to liquid and therefore substrate effects play
an essential role [12] which we will not discuss here.

While Ar on graphite appears to have a higher-order melting transi-
tion for a wide range of coverages [12],Xe on graphite displays a first-order
melting transition up to coverages close to one monolayer but clear indica-
tions of higher-order melting at a coverage of 1.1. monolayer ‘[11]. 1In these
systems synchrotron X-ray scattering experiments reveal correlation lengths
in the fluid which become as large as the sample size (A#100 nearest neighbor
distances) as the melting point is approached and a temperature dependence
consistent with (2).

Although in the incommensurate solid the graphite substrate does
not directly couple to the translational order parameter it does produce
orientational ordering fields [13] and it has been speculated [12] that these
might be the origin of the higher order-melting transition. This point of
view has been challenged very recently: An X-ray scattering experiment with
Xenon on graphite at just below one-monclayer coverage [l4] was interpreted
as evidence for the existence of a very narrow hexatic phase lTi—TI?l/Tmz. 1%)
which, it was argued, would be there in the absence of the weak orientational
fields (without affecting the order of the transition). Clearly, to clarify

this issue it would be desirable to study systems with smooth substrates and
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one example that has been studied experimentally is the system of electrons
trapped at the surface of liquid Helium. At the densities of the experiments,
the system is in the classical regime where the thermal energy is much greater
than the Fermi energy. After the first successful experimental observation

of the formation of a triangular electron "solid" [15] attempts were made in
order to measure the shear modulus and its behavior was found to be compatible

with prediction (1) stated as an equality [16].

3. Results from Computer Simulations

A great deal of effort to clarify the nature of 2d-melting has also
been devoted to computer simulations. The first simulation of 2d melting per-
formed on the system of hard disks [17] showed evidence of a first-order
melting transition very similar in appearance to melting of the 3d hard sphere
system although with significantly smaller melting entropy AS (a0.35 kB
per particle). A possible connection of dislocations with 2d-melting was
inferred from simulations of the Lenard=Jones system [18] at about the
same time when the seminal ideas by Kosterlitz and Thouless were published
[2]. The starting point of a real controversy was then the simulation of the
Lenard=-Jones system by Frenkel and McTagque [19] who analyzed their results
in the spirit of the theory of dislocation-mediated melting. They calculated
the orientational correlation function g6(R) (eq. 4) the behavior of which
seemed to indicate the existence of an hexatic phase. This interpretation
was subsequently challenged by a number of investigators [20, 21, 22], who
suggested that owing to the fact that this simulation was carried out at
constant density the system was actually undergoing phase separation and the
régime interpreted as the hexatic phase was actually a régime of two-phase
coexistence. Another simulation of this system (constant density MonteeCarlo)
by Tobotechnik and Chester [23] indicated that there may be qualitatively different
behavicor depending on density. At relatively low densities they find a
behavicr of the elastic constants consistent with eq. (l) stated as an equa-
lity and a very gradual and smooth increase of the potential energy. At
higher densities, however, they find a first-order transition with elastic
constants at melting considerably greater than the Kosterlitz-Thouless values
(1) and a steep noise rise of the energy.

Quite compelling evidence of first-order melting has also been ob-

tained for the system with l/rlz—interactions [24] which is consistent with
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the Lenard-Jones system results at high densities [23] where the repulsive
l/r12 part doﬁinatés. The possibility has been discussed [25] that the order
of the melting transition of 2d systems may depend on the "softness" of the
pair-interaction potential. Indeed, in 3d-systems, it has been found that the
"first-orderness" [26] (measured e.g. by the entropy of melting &S) is de-
creasing as the interaction becomes softer (e.g. for decreasing n in the pair
interaction of the form l/rlz) and one might expect a similar trend for 24
systems [22, 25]. A Monte Carlo simulation of the l/r6 system by McTague,
Frenkel and Allen [27] indicates that this may be true. Using a microscopic
definition of disclinations and dislocations they analyze the temperature
dependence of defect densities and correlation functions, the behavior of
which is consistent with the theory of dislocation-mediated melting. How-
ever, they were unable to determine the order of the melting transition.

Results of more recent simulations of various systems with even
softer inverse-power pair interactions, e.g.the one-component plasma (log r
interaction) [28, 29], the 2d-electron system (l/r interaction) [30] and the
system ofinteracting dipoles (l/r3—interaction) [31], have, in fact éll
been interpreted as evidence for a first-order melting transition with
roughly the same melting entropy of 0.3 - 0.35 kB, which is consistent with
the thecretical results obtained by Ramakrishnan[7]. However the interpreta-
tion of these simulation results is controversial. Both the one=-component
plasma and the electron system are incompressible,and as a result the density
has to be continuous at melting and two-phase coexistence will not be allowed
in a finite range of temperatures [25]. The observation of hysteresis and
two-phase coexistence in these systems was however used in order to conclude
that melting 1s first order. 1In fact this observation shows that these
simulations are not really in equilibrium near the melting point,and thus con-
clusions about the order of the transition and the value of the melting en-
tropy are not convincing although they may be correct.

On the other hand, both experiments [16] as well as computer simu-
lations of the electron system [32] have found a behaviour of the shear
modulus consistent with dislocation-mediated melting. Indeed,.based on this
theory and using the analytical values for the elastic constants A. and }u
and the calculated values for the dislocation core energy [4] a prediction
of the melting temperature was possible [32] which agrees with the experimen-

tal result.
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At this point we should 1like to discuss a serious problem of all
numerical simulations of 2d-melting: In simulations of thermodynamic systems
one generally uses as a criterion for equilibrium the condition that for a
given temperature the system evolves to the same final (and thus
equilibrium) state independent of the initial configuration. This |is,
however, generally not the case in simulations of the crystalline state and
near melting. If the system 1is cocled from the liquid state through the
freezing transition there generally remain many defects (e.g. grain
boundaries, wunpaired dislocations, interstitials etc.) which cannot be

annealed and which are not present in equilibriumn.

This cbservation casts doubt on the reliability of simulations in the
vicinity of the melting point, since fluctuations to the disordered (fluid)
state are essentially irreversible. Also, it is important to note that, if
2d-melting is associated with dislocation unbinding, the equilibration of
systems of dislocations will require extremely 1long time due to the fact
that dislocations can move easily only in one direction, the glide direction
(parallel to the Burger's vector 3), while motion in the climb direction
(perpendicular to '3) requires the presence of interstitials and vacancies
which should be  scarce [4] in the vicinity of the melting point

(particularly if a higher-order melting transition occurs),

In order to circumvent this problem of the extremely slow climb motion
of dislocations in atomic systems, Saito [33] simulated a system of
dislocations (with unit Burger's vectors) on a lattice. In contrast to the
particle systems where dislocations are composite objects whiose motion
requires the correlated motions of many particles, in Saitc's system the
dislocations are the "particles", simulated in the grand-canonical ensemble.
In this case, the diffusion of dislocations can be made essentially
arbitrarily fast and independent of direction relative to the Burger's

vector and thus equilibration is easier to control.

The simulation was carried out for two different values of the
dislocation core energy. For the case of the larger core energy, a higher-
order dislocation- unbinding transition was observed with values of the
elastic constants consistent with (1) as an equality and a smooth increase
of energy. For the lower value of the core energy, clear indications of a

first - order transition were observed with a significantly greater
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discontinuity of the elastic constants and a sharp rise of energy at T as

m*
well as hysteresis. This behavior may be compared to the observations on
the Lennard-Jones system [23] in which the order of the transition may
depend on density. It would thus be of interest to know the dislocation

core energies for different densities of the Lennard-Jones system.

So far, the core energy has only been calculated for the 2d electron
solid (at T=0) [4]. 1Its value is about 50 percent larger than the larger of
the core energies in Saito's simulations and thus, based on these
considerations, the 2d electron solid may melt via a higher- order

dislocation-unbinding transition.

Further evidence that this may be the case has been obtained from
simulations by the author [34]. Two independent sets of molecular- dynamics
simulations were carried out on systems with 780 and 1560 electrons subject
to periodic boundéry conditions and in a uniform positive background: One
starting from the very-low-temperature solid (T~ %Tm), the other starting
from the high- temperature fluid (T 2 2Tm). As the solid was heated up, the
shear moduIUS»y(tﬁ was determined from the frequency of transverse phonons
[321]. As discussed ébove, agreement was obtained with the theory of
dislocation-mediated melting as well as with analytical calculations of
p(T=0) and dp/dT(T:O) [35,36,37]. At T,, a state characterized by
exponential decay of translational correlations, but by algebraically
decaying orientational correlations was observed, consistent with (5).
However, while this hexatic-like state was stable during the time of the
simulation at this temperature (a time corresponding to 400 zone-boundary
phonon perieds), it is not clear that it represents a thermal-equilibrium

state since I was unable to obtain such a state by cooling the liquid.

In fact, the simulations starting from the high-temperature liquid
state exhibited serious equilibration problems already upon cooling to about
1.3Tm. At températures between 1.3Tm and 1.2Tm a sharp increase of the
orientational correlation 1ength.f6(T) was observed [34], hovever with very
large fluctuations between values of 2-3 a (where a is the position of the
first maximum of the radial distribution function g(r)) and values of the
order of half the System size (>10a for the smaller system and >15a for the
larger system). These fluctuations occur in configurations separated by of

the order of 100 zone-boundary phonon periods.
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Since no reliable equilibrium could be obtained at temperatures as much
as 20 percent above the melting point, conclusions about the order of the
melting transition and about the existence of an hexatic phase cannot be

convincing,

4, Simulations of the 2d - electron system in a symmetry-breaking field.

Assuming that the equilibration problems occurring around 1.2T, might
be caused by a large susceptibility of the system to orientational ordering
fields, it may be interesting to study their effect on the system. Recently,
I have carried out simulations of the 2d electron system subject to a field
Hg which couples to the orientational order parameter ¥s (eq.3) [38]. This

is done by adding an interaction term
=

1)
direction. The factor f(r)

P S Y
(—?—r r<e
£(r) = €= (8)
C) r > c

where ?{- is the separation vector between particles i and j and eij is its

cuts the summation off smoothly at a radius c=1.37a;which is approximately
midway between nearest neighbor distance g and second - nearest neighbor
distance, and at which the radial distribution function has a minimum. Using

an alternative definition of the orientational order parameter

A2 L
Mg = — T f(lrijb cos 6eij (9

we may write in analogy to magnetic systems
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where N is the number of particles.

The presence of the interaction ternm Vg (eq.7) 1leads to 1long-range
‘orientational order at all temperatures and would thus eliminate the hexatic
to isotropic - fluid transition at Ti (provided that the hexatic phase
exists). Also, the discontinuity of (M6) at T,, which is predicted even for
the higher-order transition described by dislocation-mediated melting theory
(1], would be replaced by a smooth variation of {Mg)y for any finite Hg.
This is in contrast to the situation one would expect if melting is a first=-
order transition: In this case, one would expect that the discontinuity of
(M6> would exist even at finite values of Hg, up to some critical value Hz

beyond which the transition would be continuous.

One can now make predictions for the melting curve Tm(HB)' assuming
either that the transition is continuous at Hg=0 or that it is first order
even for finite H6' In the latter case, the melting curve will be described
by the Clausius-Clapeyron equation which relates the slope of the melting
curve dTm/dH6 to the ratha‘AMélds of the discontiuity AM6 and the melting
entropy AS. 1In this case, it is also natural to expect that (M6>(T) has no
dramatic behavior in the solid close below T,»and the discontinuity 4Mg
should then be obtained reliably by extrapolating its low-temperature
behavior to the melting point T, From my simulations the discontinuity AMg
at Hg=0 is found to be [38]

AMg = 0.65 . (11)

In addition, using the value AS=0.3kg [30], one predicts a slope

dT _ 2.2 kg. (12)

d K

On the other hand, the theory of dislocation-mediated melting predicts
a nelting curve Tm(Hﬁ} solely using quantities defined in the solid (l,’h
E, and <(M6)(T)). One so obtains [38] a slope dTm/dH6 wnich depends only
weakly on Hg and for H6=O it yields

T -
Sh g, (13)

dH,
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more than a factor of two smaller than the Clausius-Clapeyron result (12).
Since the value used for AS is probably an upper bound for the true entropy
of melting and since AMg is known quite accurately, eq.(12) is likely to be
a lower bound for the slope of the melting curve at H6=0. if the transition

is first order.

I have carried out molecular-dynamics simulations [38] on systems with
780 and 1560 electrons subject to various different values of the
symmetry-breaking field (in the range %}kBTmé H65.L.kBTm). Two different
sets of simulations were carried out,one starting from the low - temperature
solid, the other starting from the high-temperature 1liquid. The melting
curve Tm(HG) was determined from the temperature dependence of both shear

modulus (cf. [32]) and translational correlation length.

The observed melting curve T (Hg) is in agreement with (13). Moreover,
this result appears to be very reliable because for H62,O.05kBTm the
simulation of the melting transition is reversible without hysteresis in
energy, correlation functions and orientational order (M6§,and no difference
between the two sets of simulations. Also, no discontinuities in energy and
(M6) are observed and the translational correlation lengthjis found to
increase dramatically in the fluid as Tm(H6) is approached from above, in a

manner consistent with (2).

These results imply that at 1least for finite H6, beyond some so far
unknown critical value H;ﬁ melting appears to be described by the
Kosterlitz-Thouless-Halperin-Nelson-Young theory. For small values of H6
(HéﬁiCLOSRBTm). the same equilibration problems as for Hg=0 are encountered,
and thus we cannot draw definite conclusions on the asymptotic slope of the
melting curve at Hg=0 and on the value of H:i which may turn out to be zero
in agreement with the theory of dislocation-mediated melting, and in this

case the hexatic phase would exist.
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