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Abstract

The basic phenomenology of the SOL-GEL transition is reviewed. Distinctim
is made between reversible and irreversible gelation, which can be interpreted
correspondingly as an annealed and quenched process. The geometrical nature
and the driving mechanism of the SOL-GEL transition is described and analogies
and differences with other typesof phase transitions are pointed out.

Classical theories, which neglect Toops predict a set of critical exponents
rather different from those predicted by percolation models. However more rea-
Tistic kinetic models seem to fall even in a different universality class.When
solvent effects are taken into account, the occurence of critical density fluc-
tuations gives raise to interesting multicritical phenomena, which can be de-
scribed by a lattice gas Potts model. The structure of the gel network in the
vicinity of such multicritical point is predicted to be rather different from
the usual one,.
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1. - Introduction

The basic theory for the SOL-GEL transition, based on the appearance of
an infinite molecule, was originally proposed by Flory and developed in a se-
ries of classical papers by both F]ory(1) and Stockmayer(z). More elaborated
models have been introduced later. They are all based on "connectivity" as the
key mechanism to explain such transition. In this talk I will review the basic
phenomenology and describe the different models of the SOL-GEL transition,
stressing the analogies and differences with the more familiar thermal transi-
tions such as the liquid-gas.

2. - Basic Phenomenology

The SOL-GEL transition is characterized by a drastic change in the visco-
elastic properties of the system (for general reviews see Refs. (3) - (7)). In
the sol-phase the viscosity is finite, while in the gel-phase is infinite and
1ike a solid can sustain a shear stress. At the transition point the viscosity
n diverges coming from the sol-phase and the elastic shear modulus E goes to
zero, coming from the gel-phase.
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To describe the process from a microscopic point of view we consider the
simplest case of gelation, the polyfunctional condensation of f-functional
monomers, Suppose that all the monomers are identical and that each has f-func
tional groups then can react with one of the f-groups of another monomer. For
f > 3 the system develops branched polymer.

A characteristic parameter is the conversion factor p, which is the frac-
tion of reacted groups. If p = o only monomers are present,for p = 1 all the
monomers form one macroscopic "infinite" molecule. (Of course the macromolecule
is infinite only in the thermodynamic limit). There is a critical value P>
such that for p < Pe only finite molecules (also called "clusters") are pre-
sent. This is the "sol" phase, while for p > P an infinite molecule ("gel"
phase) is present coexisting with finite molecules.

3. - Relevant Quantities and their Exponents

We now define the quantities of interest and the corresponding exponents
which can be measured near the gel point,or which have been studied using theo-
retical gelation models. The mass s of an s-cluster is the number of monomers
in such a macromolecule. Assuming scaling, the average number ns(p) of s-clus-
ters per monomer is

ns(p) ~ s ' fe s9) (s > o,¢ =

the weight average (or the mean cluster size) degree of polymerization DP is
defined as o,
DP = EL_:i__Ei o« |€|‘Y )
Z's ng
%' denotes the sum over all finite clusters but excludes the infinite cluster.
For simplicity we will assume always the same critical exponents on both sides
of the phase transition.

The gel fraction G which is zero for p below Pe is

=1 - 3 « B
G=1-12 n, =€ p > P -

The probability p(r) that two monomers at distance r belong to the same cluster

g(r/t)
-7

r

p(r) -
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£ is the typical cluster radius which diverges at the gel point as

£ % ]El_\) )

all these exponents B,y,n,v can be expressed in terms of ¢ and
on1),(8) »(9)

The existence of a characteristic diverging length £ , an order parameter
continuously vanishing at the gel point, a strongly diverging quantity DP, re-
lated to the fluctuation of the order parameter(jo), makes the SOL-GEL transi-
tion similar to ordinary thermal phase transitions, such as the Tiquid-gas
transition.

We note that in thermal phase transitions, the thermal fluctuations are
the driving forces for critical behaviour. In the SOL-GEL transition the mech-
anism leading to critical behaviour is purely geometrical. To visualize this
mechanism imagine to be just below p.- The cluster distribution is character-
ized by large clusters of linear dimension £ . As p increases by a small a-
mount § p , many of these clusters coalesce, giving rise to much larger clus-
ters whose linear dimension is increased in ahighly non-linear way. It is this
non-linear response which leads to critical phenomena.

4, - Classical Theory of Gelation

1)(2
The classical picture for gelation was proposed more than 40 years aéo{( )

This is based on the assumption that no cycles are formed in the molecules.
Nowadays we recognize this as the "Tree" approximation of the percolation mod-
e1(11) which will be discussed in the next sect. This approximation leads to
mean-field exponents which in percolation are valid only above the upper crit-
ical dimensionality dC = 6.

5. - Percolation Model

We recognize that the essential feature of this gelation process is

(12(13) would be suit-

connectivity and hence we expect that percolation models
able in describing such transition. I will describe first the standard random-
bond percoTation(B)(g) which is relevant to gelation in absence of solvent.
(See Sect. 9 for a generalization of this model to incorporate solvent effects).
In the percolation model monomers occupy the sites of a lattice. Between
two nearest neighbours of lattice sites, a bond is formed with a random proba-

bility p (Fig. 1, a, b).
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Fig. 1

Every bond configuration is characterized by a cluster distribution (mo-
lecules). Since the bonds are independent of each other the weight of a given
configuration of n bonds is given by pn(1-p)N'n where N is the maximum number
of bonds in the lattice. For small p the system consists of small clusters. As
p increases the average size of a cluster increases and diverges at the perco-
lation threshold Pe- This point is characterized by the onset of an infinite
cluster. Above P, an infinite cluster is present,

In this model the number of s-cTusterSnS is associated to the molecular
distribution in the gelation problem. From the connectivity properties of the
percolation problem one can calculate all the quantities of interest except
for the viscosity and the elastic modulus. One needs additional theories to
calculate them.

It has been suggested(14)

that the viscosity divergesat Pe like the con-
ductivity in a random mixture of superconductors (fraction p) and normal con-
ductors (fraction 1-p); while the elastic modulus goes to zero at P, as the
conductivity of a random mixtures of conductors (fraction p) and insulators
(fraction 1-p). There have been many attempts to relate these exponents to
other percolation exponents. In particular for the conductivity exponent t it
has been suggested(TS) the following relation t = % |v(3d-4)-8| which seems
to be rather well satisfied numerically.

Let us mention however that recently the analogy between conductivity and
elasticity has been questioned. Instead it has been proposed that the elastic

constant varies as g'd = gld

6. - Cluster Structure Near the Gelation Threshold

One of the main problems, not yet fully solved, is the knowledge of
structure of the network, since many macroscopic properties, such as the ela-
stic constant depend on it. In a network one has to distinguish between
"dangling" bonds or dead ends which do not contribute to the elasticity, and
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the backbone bonds which are all the others.
Recently some progress has been made in understanding the structure of
(16). It is found

that just below Pes the backbone of the typical cluster of Tinear dimension &

e

P <P
15 (c)

the backbone in the percolation model based on exact results

r —

P >p

Fig. 2 ta)
is made of cutting bonds or links such that if one is cut the cluster breaks
in two parts, and all the others which Tump in "blobs". The number of 1inks
Nans divergesin any dimension with an universal exponent 1, Nyipks = € 1.

A result which has been confirmed by Monte Carlo methods for d = 2 ! . The
number of the other bonds NB divergeswith a dimensionality dependent exponent
ZB’ NB o« e-ZB . The structure is self-similar for length scale less than £.
This result suggests that above P. the backbone of the network is made of "nodes
links and blobs", instead of "nodes and 11nks"(18). The observation that the

bonds may be partioned in links and blobs was originally made by Stan]ey(ig).

7. - Comparison between Classical Theory and Percolation Model

The view that the percolation model describes the SOL-GEL transition
better than the classical theory (at least in the critical region) is far from
being universally accepted. A comparison of the main predictions is given in
Table I. For more details see Ref. (6).

Unfortunately the experimental data are not so accurate in the critical
region. In particular it is very hard to determine Pee This in turn gives a
large indetermination on the exponents. However recently Schmidt and Burchard
analysed the Tight-scattering data and the weight data of the gel fraction and
used the relation ¢ « GV/B , DP « G_Y/B, in this way they got rid of p_
and extracted v/R and y/B which take rather different values in the compet-
ing theories,and a better comparison is possible, From table I the experiments
seem to agree better with the percolation model.



726 Coniglio H.P.A.

TABLE 1 Experiments Classical Theory Percolation Model (d=3)
1 0.45
1 1.7
0.5 0.88
v/B 1.65.3.3 0.5 2
Y B 4 .5 1 4

The values for the percolation model are the best numerical data
from Ref. (6)

8. - Free-Energy Singularities: Reversible and Irreversible Gelation

In thermal phase transitions we know that the free energy has singulari-
ties at the critical point. A question which recently has received some atten-
tion(21) is whether the gel transition is accompanied by a free-energy singu-
larity. In order to answer such question we have to distinguish between rever-
sible and irreversible gelation.

Reversible gels are characterized by the fact that the bonds are not permanent
and they can form and break in thermal equilibrium (annealed). As discussed in
moredetails in Ref. (21) the "annealed" free energy does not show any singular-
ity at the percolation threshold. The gel phase is more similar to a highly
viscous liquid, with strong analogies with the glass transition(14).
Irreversible gels are characterized by permanent bonds (quenched). To be more
precise for a given distribution of bonds the system is made of different
species of molecules (monomers, dimers...). The free energy of such system
averaged over all possible bond configurationshas been estimated(21) and ex-

hibits the same singularity as the average number of clusters F Sl

. o
sing = €

6. - Solvent Effects

In the random percolation model presented in Sect. II, no solvent was
taken into account. A more general model, the site-correlated random-bond per-
co]ation(zz), has been introduced to take into account solvent effects, which
may strongly influence the gelation process. In this model (Fig. 1c)

i)  every site can be occupied either by a monomer or by a solvent molecule;
ii) the monomers are not randomly distributed, instead it is assumed a corre-
lation of the standard lattice-gas model. Finally random bonds between

nearest-neighbor monomers with a temperature-dependent probability are
assumed.
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To study the gelation process we have to distinguish again between rever-
sible and irreversible gelation,
In reversible gelation the bonds are not permanent,therefore the monomers

keep their individuality. The thermal properties are obtained solving the

lattice-gas model, the well-known phase diagram shows a consolute temperature
TC below which the phase will separate into two phases like in an ordinary
binary mixture (Fig. 3).

The gelation line, which separatesthe sol-phase from the gel-phase, is
instead given by the percolation threshold in this site-correlated random=-
bond percolation. It is interesting to note that by changing solvent one can

! . T
T"‘“'L.Zr‘::%?fl—?’f’-k_..? I

0 05 1 ; 0 0.5 1
Fig. 3 _ (a) © (b)

realize the interesting situation in which the critical line ends on the con-
solute point, which corresponds to a higher-order critical point, where both
the thermal correlation length, and the connectedness length diverge Fig.(3b).
Along this critical line the gelation process is characterized by random-per-
colation exponents, with a crossover to lattice-gas exponents at the consolute
point. This shows that the large density fluctuations in the vicinity of the
consolute point strongly influence the gelation process.

These results have been found using the Migdal-Kadanoff renormalization
group(23), e—expansion(24) and Monte Car]o(zs)
to confirm this crossover effect, however the phase diagram in the case of

polymer ge]ation(zz)
(26)

. There are no experimental ddta

» 1S 1n agreement with the experimental results of Tanaka

and coworkers . It is interesting to note that the phase diagram of Fig.(3)

has strong analogies with other phase diagrams of completely different systems,

such as the A-line in the He 3 -He 4 mixture(27), the phase diagrams of adsorb-

ed systems such as krypton on graphite(28), branched polymer in a so]vent(zg).

These analogies are not surprising, in fact all these systems can be de-
scribed by the dilute s-state Potts model for different values of s (Table IV),

which all have similar phase diagrams(30).
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TABLE IV System Model Dilute s-state Potts
branched polymer in site-correlated 0
solvent random-bond
animal (Ref.29)
gel in solvent site-correlated 1

random=bond
percolation (Ref.22)

A-Tine He3-He4d Blume Emery 2

Griffiths (Ref.27)
Krypton-adsorbed Berker Ostlund 3
on graphite Putman (Ref.28)

Irreversible gels are obtained from the monomer solvent mixture, by form-

ing quickly a fraction of permanent bonds, at a quenching temperature TQ. Once
these bonds have been created the system no longer consists of single monomers
but of permanent clusters (monomers, dimers, trimers, possibly including an
infinite polymer network). Later the temperature may change inducing even first-
order transition(31) (
be the same independent of the varying thermodynamic temperature. An interest-

gel collapse), but the cluster distribution will always

ing aspect of strong gels, which has not received much attention experimental-
ly, is that quenching (bond formation) occurs exactly at the critical consoled
point. In this case the resulting size distribution of macromolecules is per-
manently influenced by the highly correlated distribution of monomers (although
the consolute point may be shifted after the bonds have been formed, due to the
(32),
ed, it should exhibit unusual elastic properties about which 1ittle is known
at present.

presence of large molecules . In particular if an infinite network is form-

7. - Branched Polymers

Let us consider the polymerization process described in Sect. 2 in the
very dilute 1imit where the molecules do not interfere with each other. In
this case we can consider the growth of only one isolated branched polymer.
The quantity of interest is theradius of gyration RS of an s-molecule as
function of s, RS « sP . A model for branched polymer is given by a single
cluster, also called lattice anima1(9)(34)(35). This corresponds to the very
dilute 1imit of the percolation problem. Recently crossover from percolation

)

A suitable model for branched polymer in a solvent is a lattice animal in

to lattice animal has beeen described.(33
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which the monomers interact with a nearest-neighbor interaction. This corre-
sponds to the dilute 1imit of site-correlated randombond percolation, and can
be obtained in the s = o limit of the dilute s-state Potts model(zg). Migdal-
(29) (36) give for this system
the following critical behaviour: (i) Random lattice animal, (ii) 6 or col-

Kadanoff Renormalization group and e-expansion

lapse. (ii1) percolation. (iv) compact. The behaviour (i), (ii), (iv) are
similar to that of a linear chain in a solvent. The percolation behaviour is

present only in branched polymers. This corresponds to a higher-order critic-
al point where the effect of the solvent is identical to the screening effect
due to the presence of the other clusters in the percolation problem.

8. - Kinetic Models
In the percolation model a strong assumption is the complete randomness
of bond formation. This corresponds to the rather ideal situation where the

bonds are formed instantaneously and at random. In reality the bond probabili-
ty may depend on the particular kineticsinvolved in the cluster formation. A
frequently used kinetic equation(37)(38), based on Smoluchowski's coagulation

equation is the following

dnS

_ I K " £
:j?_sl-{-s":s s's! ns. nS" nS ni KSSI nsl

where the first term corresponds to the rate formation of s-clusters, obtained
from the coalescence of s' and s" clusters (s' + s" = s), and the second to
the rate at which s-clusters are lost due to the coalescence of an s-cluster
with another s' cluster. This equation seems to be reasonably valid for infi-
nite mobility since every cluster can coalesce with another no matter how far
apart they are.

An analysis of the solution of this equation shows that the critical ex-

ponents strongly depend on the coagulation rate Kés.(38).

Another kinetic model originally suggested by Manneville and de Seze(39)
considersa lattice system in which sites can be occupied by two-functional or
four-functional units. The bond formation is obtained by random motion of ac-
tive centers. This can be considered the kinetic version of a static modé?ox41)
which was introduced to study polymer gelation. This model differs from the
kinetic one only with respect to bond formation which is completely random.

The static model exhibits random-percolation exponents, except for special

values of the paramers for which a crossover to self-avoiding walk is found.
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The kinetic model of Manneville and de Seze has been improved and deeply
studied by Monte Carlo methodgéz%he conclusion of this analysis is that the
ratio of the amplitudes of the second-momentum distribution above or below P>
is different from what is found in random percolation or in classic theories.
This suggests that this kinetic model belongs to a new class of universality.
The deviation from the universality class of random percolation cannot be
attributed to the mixture of two and tetra-functional units, as demonstrated
in the static model. Therefore it is more plausible to attribute this change
to the kinetic aspect of the model. Also in other models of cluster growth,
although non-pertinent to gelation, different kinetic models gave different

(43)

critical exponents . A1l these results seem to indicate that critical ex-

ponents seem to be rather sensitive to the details in the kinetic assumptions.

9. - Conclusions

The main features of SOL-GEL transition is connectivity. A good starting
point seems to be the random-percolation model for a system without solvent
and its generalization,the site-correlated random-bond percolation model, to
describe also solvent effects. Abetter founded theory for viscosity and elas-
ticity is needed. Experimental data analysis seems to indicate better agree-
ment with percolation models rather than with classical theories. However
more accurate experiments in the critical region and new experiments to in-
vestigate solvent effects are needed.

The kineticsseems to play an important role which must be taken into
account for further theoretical developments.
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