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MULTICRITICAL BEHAVIOR OF POLYMERS NEAR AN ADSORBING WALL

E. Eisenriegler, Institut für Festkörperforschung, Kernforschungsanlage Jülich,
Postfach 1913, D-5170 Jülich, W.-Germany

Due to possible technological and biological applications, the

statistical mechanics of polymer adsorption has been of longstanding interest.
Recently, the problem has been reconsidered both numerically [1,2] and analytically

[2,3,4]. This was stimulated mainly by recent advances in the field
theory of semi-infinite spin systems [5]. In the following, some of these

recent results are presented both for a single long chain with excluded-volume

interaction (Sec. 1) and for semidilute solutions in good solvent (Sec. 2) near

an adsorbing wall (or surface). As for other critical phenomena the behavior

near the adsorption temperature is independent of most details ("universality")
and one may discuss simple models.

1. Adsorption of a single chain

a) The adsorption threshold (-temperature)
The concept of an adsorption threshold can be explained most easily

for a single chain on a lattice half space (Fig. 1). The chain is made up of N
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Fig. 1. Chain on a lattice half space.

(nearest neighbor-) links. The statistical ensemble consists of all possible
chain configurations on the semi-infinite lattice.where'a lattice site may be
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occupied only once in a configuration ("real" chain or chain with "excluded-
volume" interaction),and one chain end is kept fixed at a certain lattice point
r.. e.g. at the surface. Each configuration has a Boltzmann-weight exp[N,-u]
with H^ the number of links in the surface. Here u=e/kgT and -e<0 an energy
gain per surface link.

Consider the ensemble average <N,> of N, which is a function of N and

u. For dimension d>2 of the semi-infinite lattice there exists a finite positive

value u such that
a

C o <
lim <N,>/N i for u co (1)
N~»

x l > 0 >
a

see e.g. Ref. [6], i.e. the chain is nonadsorbed (adsorbed) for T>T (T<Ta)

with kDT =e/o
a a a

b) Mapping to a magnetic problem

The mapping [7] of real chain statistics in free space to the n-vector
spin model of magnetism can be generalized [8,2] to the real chain problem of
Section la). In a continuum description this leads to a spin model in the half
space +={z>0} with Hamiltonian

J-i + J=i (2)

h(t) J ddr \ {(V*(r))2 + [t+có(z)] <j,2(r)}

for the n-component spin field !=(<(., <j> The phase diagram (Fig. 2) of the

Fig. 2. Phase diagram of
spin system in a half space.
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spin system shows a paramagnetic phase P and a ferromagnetic phase

BF as well as a phase SF with ordered surface and disordered buik,separated by

3 lines 0, S, EX of critical points which join in a multicritical point SB

(cSB,tb); see Ref. [9] for more details.
The partition function Z of the chain in Sec. la) is for large N and

small iw i then given by the relation [8,2]a

; dL e"L'(t_tb) Z ~ lim / ddr <^(r,)^(rQ)>

Xl(t-tb, c-cSB)

SB n«> Ì B r A X B X (3)

for (c,t) e P and close to SB. Here

L ~ N c"ccr ~ "a"" ~ "'""""'"a. ' ^
From now on we suppress the shifts t. and cSB as well as appropriate powers of
a large momentum cutoff A ~ I for the field $. Scaling behavior [5,9]

SB

Xl(t,c) ~ t"Yi *(ct_<p) (5)

of the spin quantity x^ implies a corresponding form

- .-*-L,cZ, r ~ L"1+^ ?(cL<p) (6)

for the chain partition function. The scaling form of Z has been verified by

Monte Carlo simulations in d=3 [2]. The singular behavior of as (c,t)
approaches the boundaries S,0 of P determines the behavior of ip for L-» in the

cases T<T T>T; S" and é are regular for small argument. With this information
a a

the mean number of surface links can be obtained [2]

<NX>~ 3c£n Z~(Llcl(1/tp)"1, L*. c"1)

for

as

(7)
<T < Ta> T - V T > V
N ~ L - «

Contrary to earlier conjectures [8,10,11] the exponent cp is not equal

to 1-v as shown first in Ref. [5] (v appears either in the chain diameter in

free space ~ Nv or the corresponding spin correlation length ~ t v). The numerical

discrepancy in d=3 is substantial [1,2]: cp r. 3/5, 1-v « 2/5.
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:. Semidilute solutions

Semidilute solutions (strong overlap between neighboring chains) can

be mapped [4] unto the "coexistence" limit t<0, H~0 of a spin system in a

magnetic field H with Hamiltonian

+

This corresponds to the magnetic phase BF in Fig. 2. The local monomer density
p at a point r=(rH,z) is determined via

H H
-TL - H J ddr +1(r) (8)

2
p(z,p,,c) lim lim <$ (r,z)> (9)

D
H-0 n-0

M ^H
_2

by the local energy density <<s) > of the spin system. Here t<0 is adjusted such

that the right hand side of (9) for z-°°, i.e. the bulk spin-energy density,
equals a given bulk monomer density p.

p(z~,pb,c) - pb~
ltldv_1 (10)

Scaling behavior of the n»0 spin energy density [4] implies a form

p(z,pb,c) pb'F(z/çb,z/çc) ; z,çb,çc » I (11)

with I a microscopic length, e.g. ~ range of monomer-wall interaction, and two

macroscopic lengths

çb~ itrv Sc~ icrv/cp (i2)

The length ç already appears in the problem of Sec. 1, where the single chain

for T<T, extends over a length ç„ perpendicular to the wall [2].
a c

Consider in particular T=T i.e. e =°°, where F in (11) depends only
a C

on one variable. The density at the surface depends upon iti in the form [4]

p(z=0,pb,c=0) - Pl(pb,c=0) ~ ltl(d"1)v_cp (13)

consistent with a surface free energy f ~ itP ^v
i|i (df\ *) and p^ ~ 3cfs-

Matching the t-dependence of (11) for £«z«ta:b to that of (13) leads to

p ~ Pb'(z/çb)a ; c 0 I « z « çb (14)

with
a -1 + (l-«p)/v (15)

According to Ref. [5] a/0 in contrast to the earlier conjectures [8,10,11].
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The numerical values [1,2] for cp in d=3 lead to a s» -0.3. The power-law behavior

of p in (14) persists even for T/T, as long as £«z«ç. Ref. [4] gives a
a DC

detailed comparison with the behavior conjectured in Ref. [11].
The result (14),(15) following from the behavior of the local field

theory (8) confirms a conjecture in Ref. [3] based on the behavior of the monomer

density close to the wall for a single chain (Sec. 1) which was shown [2]
to follow also the power law in Eq. (14) with the exponent (15).

I take the opportunity to describe this behavior for the single chain

(of Sec. 1) in more detail. Consider the monomer number M(z) in a layer of
width dz a distance z apart from the wall. For T<T and L~»

a

r <N1>-za r I « z « r
M(z) ~ \ L for c

(16)
1 0 l

çc « z

with <Nj> from Eq. (7). On integrating (16) from z=l to z=Sc> the leading
contribution is consistently independent of c~T-T, and proportional to L, i.e. to

a
the total monomer number. For T=T,, Eq. (16) also holds if ç is replaced by

/ c \ cl C

a length ó ' ~ Lv, proportional to the chain diameter in free space, and the

integral again is ~ L. For T>T and large L, i.e. Sc«Çh > the behavior of
M(z) is more complicated

<N1>-za f I « z « çc

M(z) ~ ^ z(1/v)-1 for <{ çc « z « çjs) (17)

,(s)
% ' « z

and shows a minimum near z=ç c
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