

Zeitschrift: Helvetica Physica Acta

Band: 56 (1983)

Heft: 1-3

Artikel: New type of soliton solutions from a Landau potential describing the --- transitions in (C₃H₇NH₃)₂MnCl₄

Autor: Muralt, P. / Kind, R.

DOI: <https://doi.org/10.5169/seals-115410>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 17.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

New Type of Soliton Solutions from a Landau Potential Describing
the β - γ - δ -Transitions in $(C_3H_7NH_3)_2MnCl_4$

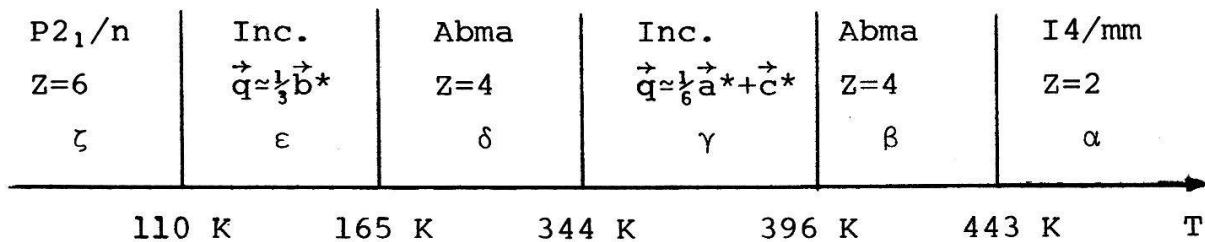
P. Muralt, R. Kind

Laboratory of Solid State Physics, Swiss Federal Institute
of Technology, Hönggerberg, CH-8093 Zürich, Switzerland.

Abstract: The incommensurate γ -phase of the perovskite-type
layer structure compound $(C_3H_7NH_3)_2MnCl_4$ is sandwiched
between two phases (β, δ) which have the same structure.
The Landau potential describing this behaviour reveals
besides the plane-wave solution also a new
type of soliton solutions which differ from the solu-
tions of the sine-Gordon equation.

Introduction

Perovskite-type layer structures of the formula
 $(C_nH_{2n+1}NH_3)_2MnCl_4$ with short hydrocarbon chains ($n < 5$) are known
to exhibit several structural phase transitions which are con-
nected with reorientational jumps of the alkylammonium chains
¹. Within this family the compound $(C_3H_7NH_3)_2MnCl_4$ is a spe-
cial case because of its complicated phase sequence with two in-
commensurate phases ^{2,3}. The different phases are denoted as
 $\alpha, \beta, \gamma, \delta, \varepsilon$ and ζ .



The most interesting feature is the reentrant behaviour
of the γ - δ -transition. It was shown by means of NMR-NQR that the
 β and the γ -phase have indeed the same structure ⁴. They differ
only in the saturation of the order parameter of the α - β -transi-
tion. This reentrant behaviour could be well described by a

Landau-type free energy /4/. It was shown that a plane wave modulation is an exact solution of the corresponding Euler equations. In this contribution we want to stress also soliton-like solutions in order to explain the observed types of x-ray satellite reflections.

Incommensurate Wave Vectors of the γ -Phase

An x-ray analysis of the γ -phase revealed three types of satellite reflections /2/:

type A1: $\vec{q}_1 = \alpha \vec{a}^* + \vec{c}^*$, $\alpha \approx 0.17$, strong
 A2: $\vec{q}_2 = 2\alpha \vec{a}^*$, weak
 B: $\vec{q}_3 = \beta \vec{a}^* + \vec{c}^*$, $\beta \approx 0.05$, weak

\vec{q}_1 and \vec{q}_3 are zone-boundary vectors on the H line near the Y point, \vec{q}_2 is on the A line (notation according to ref.5). The type A2 satellites are obviously due to a higher harmonic of the type A1 modulation and are generated by a third-order anharmonic potential $V_3(Q_{q_1-q_2}^2 + Q_{-q_1-q_2}^2)$. The origin of the B-type modulation is still an open question.

The commensurate part of the modulation ($=\vec{c}^*$) destroys the A-centering of the unit cell. The superspace group compatible with the A1 reflections is N_{111}^{Abma} /2/. The soft mode leading to this superspace group must transform according to the irreducible representation H_1 , which splits at the Y point into the one-dimensional representations Y_1^+ and Y_3^- having at the Γ point x^2 and x symmetry respectively. At the Y point there is no degeneracy of modes and therefore no Lifshitz invariant is allowed. At the other end of the H line, at the T point ($\frac{1}{2}\vec{a}^* + \vec{c}^*$), all modes are doubly degenerate and Lifshitz invariants can be formed. The mode softening with a wave vector close to the Y point is in our case due to a coupling of two modes with Y_1^+ and Y_3^- symmetry.

) \vec{a}^ , \vec{b}^* , \vec{c}^* are given for the A-centered unit cell.

Thermodynamic Potential and Discussion of the Euler Equations

A free energy explaining the reentrant behaviour of the γ - δ -transition is given in ref. 4. A coupling of the order parameter with the density of the layers leads to renormalized Landau coefficients $\hat{A}(T)$ and $\hat{B}(T)$ containing both linear and quadratic terms in $(T-T_0)$. Outside the γ -phase the density of layers must exhibit a linear term in the temperature dependence to provide the reentrant behaviour. The free energy density is thus given by:

$$g = g_0 + \frac{1}{2} \hat{A} \eta \eta^* + \frac{1}{4} \hat{B} (\eta \eta^*)^2 - \frac{1}{2} \kappa \frac{d\eta}{dx} \frac{d\eta^*}{dx} + \frac{1}{2} \lambda \frac{d^2\eta}{dx^2} \frac{d^2\eta^*}{dx^2}, \quad \kappa, \lambda > 0$$

The plane wave $\eta = A e^{i q_0 x}$ ($A = \text{const.}$, $q_0^2 = \kappa/2\lambda$) is an exact solution of the resulting Euler equations. A more general solution can be obtained within a constant-amplitude approximation ($\eta = A e^{i \Phi(x)}$, $A = \text{const.}$). In this case Φ can be expressed in terms of elliptic integrals of the first kind. Introducing the function

$h = \frac{1}{q_0^2} \cdot \left(\frac{d\Phi}{dx} \right)^2 - 1$ the Euler equation for the phase Φ reads after one integration:

$$\left(\frac{dh}{dx} \right)^2 = 4 q_0^2 (h+1)(h^2 - \mu^2) \quad \mu: \text{integration const.}$$

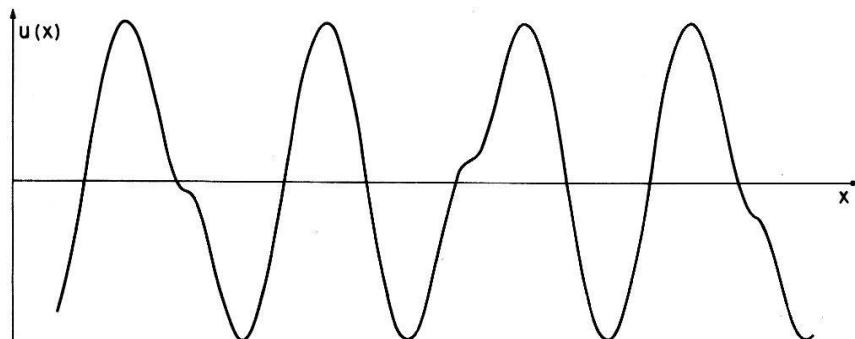


Fig. 1 Normalized atomic displacement $u(x) = \sin(\phi(x))$ for $k = \sin^{-1}(89^\circ)$.

The solution can be evaluated by the integral

$$x = \sqrt{\frac{1}{1+\mu}} \frac{1}{q_0} \int_0^y \frac{dy}{\sqrt{1-k^2 \sin^2 y}}, \quad h = -1 + (1-\mu) \sin^2 \varphi, \quad k^2 = \frac{1-\mu}{1+\mu}$$

or written in a condensed form:

$$\phi = \int_0^x \sqrt{1+h(x')} dx', \quad h(x) = -1 + (1-\mu) \sin^2(\sin(q_0 \sqrt{1+\mu} x))$$

In the plane-wave case, $h=0$, $\mu=0$ and $k=1$.

Some results are shown in Figures 1 and 2. In contrast to the solution of the sine-Gordon equation where only higher harmonics are obtained our equation leads also to "subharmonic" parts which would explain the B-type x-ray reflections.

By introducing h into the free energy $F = \int g dV$ one gets: $F = F_0 + V \left\{ \frac{1}{2} \left[\hat{A} + \lambda q_0^4 (-1 + H(k)) \right] A^2 + \frac{1}{8} \hat{B} A^4 \right\}$

$$H(k) \approx 2 \langle h^2 \rangle - \frac{1-k^2}{1+k^2}.$$

The average of h^2 is given by $\langle h^2 \rangle = \frac{\int \frac{1}{2} h^4(y) dy}{\int \frac{1}{2} dy} / \int \frac{dy}{\sqrt{1-k^2 \sin^2 y}}$.

The minimum of F with respect to k is obviously independent of A and coincides with the minimum of $H(k)$. This function is shown in Fig. 3. It can be seen that the plane-wave solution ($k=1$) has a lower free energy than a solution with a space-dependent $\frac{d\Phi}{dx}$. However, our free energy contains only the leading terms necessary to explain both, the incommensurability and the reentrant behaviour. A complete free-energy density up to the fourth order of

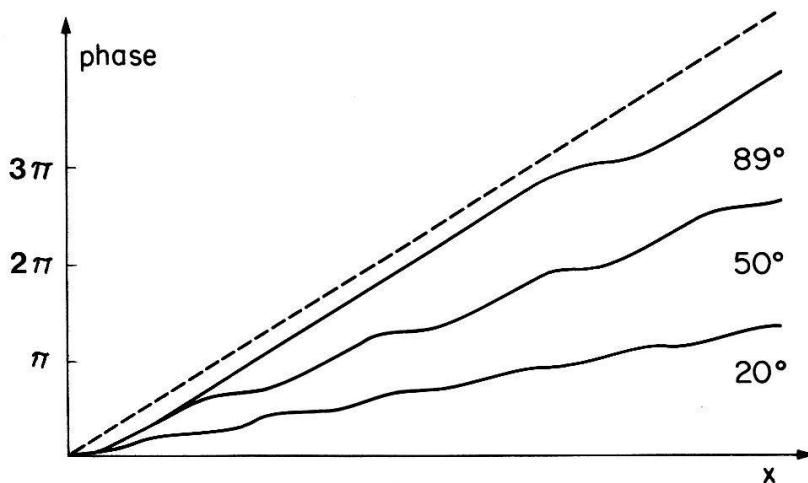


Fig. 2 Phase angle ϕ vs. x for different values of $\sin^{-1}(k)$.
The dashed line corresponds to the plane-wave solution.

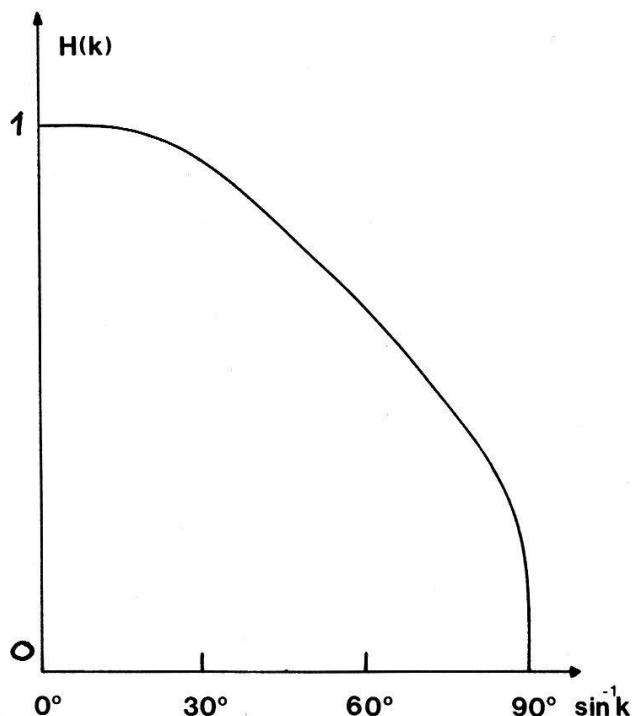


Fig. 3

The function H (as defined on the preceding page) vs. $\sin^{-1}(k)$.

the amplitude should also take into account the terms $\sigma \left(\frac{dn}{dx} \frac{dn^*}{dx} \right)^2$ and $\rho \left(\frac{d^2n^*}{dx^2} \frac{d^2n}{dx^2} \right)^2$. Especially the first of these terms with $\sigma > 0$ would favour a solution with $k < 1$, since with lower k the value of $\left\langle \frac{d\Phi}{dx} \right\rangle$ is reduced.

The effect of a space-dependent amplitude can not be predicted since it would require the solution of two coupled strongly non-linear Euler equations. It was shown/6/, however, that the amplitude variations do not play an essential part in modulated structures of the $\beta\text{-K}_2\text{SO}_4$ family.

To conclude we can say that our Landau potential doesn't only describe the reentrant behaviour but also explains all kinds of the observed x-ray satellites. The crucial experiment to test our theory should be the measurement of the temperature dependence of the splitting and the intensity of the B-type reflections.

This work was supported in part by the Swiss National Science Foundation.

- /1/ R. Kind, Ferroelectrics 24, 81 (1981) and refs. cited therein.
- /2/ W. Depmeier, Acta Crystallogr. B 37, 330 (1981) and refs. cited therein.
- /3/ W. Depmeier and S.A. Mason, Solid State Commun., in the press.
- /4/ P. Muralt, R. Kind, R. Blinc and B. Zeks
Phys.Rev.Lett. 49, 1019 (1982).
- /5/ C.J. Bradley and A.P. Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, Oxford 1972.
- /6/ R. Blinc, P. Prelovsek and R. Kind
Phys.Rev. B 27, (1983), in the press.