Zeitschrift: Helvetica Physica Acta

Band: 56 (1983)

Heft: 1-3

Artikel: Incommensurate crystal phases
Autor: Janner, A. / Janssen, T.

DOl: https://doi.org/10.5169/seals-115408

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-115408
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta, 0018-0238/83/010665-11%1.50+0.20/0
Vol. 56 (1983) 665-675 (©Birkhauser Verlag Basel, 1983

INCOMMENSURATE CRYSTAL PHASES
A. Janner and T. Janssen
Institute for Theoretical Physics, University of Nijmegen

Toernooiveld, 6525 ED NIJMEGEN, The Netherlands

1:Introduction

The aim of the present paper is to explore how the superspace descrip-
tion of an incommensurate modulated crystal can be used for investigating
crystal phase transitions.

The superspace group approach is explained briefly in section 2. For
more details +the reader is referred to the references given there. Then,
the relevant ideas and results of two specific one-dimensional microscopic
models leading +to phase diagrams involving incommensurate crystal struc-
tures are briefly reviewed. Subsequently the same models are considered
again but now in a superspace-adapted formulation, the advantage of the ap-
proach being more that of a symmetry-adapted formulation than that of a
group - theoretical use of the crystallographic superspace symmetry occuring
in these models.

In order to investigate the latter aspect as well, the classical theory
of Landau for continuous phase transitions is considered and extended to
allow the use of superspace symmetry as present in incommensurate crystals.
In the last part of this paper such an extension is presented, which indeed
allows to characterize second-order phase transitibns involving incommen-
surate phases as well. This even when different modulation dimensionalities
(the so-called internal dimensions) or when commensurate phases occur . As
one intuitively expects, in these phase transitions the Lifshitz condition
plays an important role. One can show that the existence of Lifshitz in-
variants is required in second-order phase transitions between crystal
phases of different internal dimension. The present treatment has neces-
sarily a sketchy character and more details will be given in another paper.

2.The Symmetry of Incommensurate Crystal Phases

The fundamental structural property of an ideal incommensurate crystal
is to have a density p whose Fourier wave vectors span a Z-module M¥* of di-

mension 3 and of rank 3 + 4 :
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>

p(¥) =, B(k) e . (2.1)
kEM*

This means that the wave vectors ; are of the general form :
k = ha* + kb¥* + 1c* + m1§1 * e ¥ mga, (2.2)

where h,k,1,m,,...,m, are integral coefficients (the indices). The basis

vectors appearing in (2.2) are 1linearly independent over the rational
numbers. We suppose that ;*, B* and c* span the 3-dimensional reciprocal
lattice A¥ of a basic crystal structure, and that 31""’Ed are modulation
wave vectors. This is not necessary but useful.
The 3-dimensional space V is then extended to a (3+d)-dimensional one by
considering the above basis of M* in V as a 1-to-1 orthogonal projection of
>

a basis of a so-called superspace VS. Then the Fourier wave vectors k are

projections of reciprocal lattice vectors ks 2

= * + * + * + * + + * € L%
kS he kb 1lc m1d1 e mddd % (2.3)

+> >
The (3+d)-dimensional vector ks = (k,kI) has an internal component denoted

&>
by kI. In terms of the indices we can write

k = (h,k,l,m1,...,md) as well as k_ = (h,k,l,m1,...,md) (2.4)

but of course those (same) components refer to different bases. This al-
->
lows to interpret PA(k) as a Fourier component ﬁ(ks) of a function P_ de-

fined in the superspace (the supercrystal) by :

iksrS
= z N
Ds(rs) - ﬁ(ks) e (2.5)
s

with

Ty = (r, 5, k,ry = kr + EI% and 6(ks) = 5(k). (2.6)
Note that

p(r) = os(r,f)q _o - (2.7)

The symmetry of the incommensurate crystal is then the Euclidean symmetry
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group G, of p_, i.e. a (3+d)-dimensional space group called superspace
group. In terms of the Fourier components the symmetry condition takes the

form :
& 1Rsks.v

B(k) = B(Rk) e ®

(2.8)

for g, = { R, | v, } € G_ and R_=(R,R), with R and R;

mations in 3 and d dimensions, respectively, and Vg the translational com-

orthogonal transfor-

ponent. The theory of superspace groups and their applicatien to crystal-
lographic problems are discussed in refs.[1] and [2].
3.0ne-Dimensional Model for Thiourea
Thiourea, SC(NH2)2 (and also the deuterated one), shows [3] a high tem-
perature paraelectric phase (P) with space group 916 = Poma ; it has

2h
between T = 201 K (and 212 K respectively) and B, = 169 K (and 185 K

respectively) an incommensurate displacively modulated phase (I) with su-
perspace group Pnma(0,B,0)(0,0,s8) = PP??: (see [4] and for the notation [5]
where this superspace group is listed as 62b.2 ), and has a temperature=-
dependent modulation wave vector a along the ﬁ direction (a = Bg*), the
modulation wave being transversal. Finally at low temperature (T < Tc) it
becomes ferroelectric (F). The modulation can be described in terms of a
rotation angle ¢ of the polar thiourea molecules. This is the basis of a
one-dimensional model investigated by Parlinski and Michel [6] having the

following expression for the free energy :

P

fv(e)) + f,wp(d’n“‘”n-p) + (80

)} (3.1)

= -
B o~

ntp

at molecular positions na (n any integer) with local potential V(¢n) given
by :

2 3

_ 4
V(e ) = ae + hey

+ Do (3.2)

(where a describes the harmonic term and h and b the anharmonic ones) and
an intermolecular potential (essentially due to the dipole-dipole interac-

tions)



668 Janner and Janssen H.P.A.

Wl -0 ) = a (e -0

ORI N ORI (3.3)

From this medel, by numerical calculation and by adjusting a number of
parameters, the authors have been able to describe phonon dispersion curves
in the paraelectric phase leading through softening of phonon branches to
the modulated phase, to derive a phase diagram (as a function of h and a1)
invelving commensurate as well as incommensurate regions and to get alse
information on the form of the modulation wave. The main ideas can be il-

lustrated on the basis of the simple harmonic modulation :
= (-1)% cos(nqa). (3.4)
One then gets the free energy (3.1) in the form :
F=%p +%p (3.5)

from which by extremalization with respect to the amplitude of the modula-
tion the different crystallographic phases follow :

%§—= o (A+ p°B) = O, (5.6)

i.e. the P-phase for p = 0 and the I and the F phases for 92= -A/B. The
phonons in the P phase are then. obtained from:

32F|

2
2100 = - w(q) (3.7)

and the modulation wave vector qm from :

2F

T =0 (in the I and F phases). (3.8)

&:ég_Elastic Chain Model

The one-dimensional model proposed by Janssen and Tjon [7] for studying

dynamical (and thermodynamical) properties of incommensurate crystal phases
driven by elastic forces, invelves competing harmonic interaction terms

between first, second and third nearest-neighbours and a (stabilizing)
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anharmonic fourth-order term. Starting from atomic positions at
r =nat u n any integer (4.1)
n n
the Hamiltonian is given by :
H=2og—+7V (4.2)

with

1 2 2 2.1, A
V=3 z {a(un—un_1) +B(un—un_2) +6(un—un_3) +2(u w ,)7}. (4.2a)

n n-1
The equilibrium positions ug then follow from the condition :

—=0, any n (4.4)

and one gets the vibrational modes by considering the dynamical equations

o
= + .
for u, uy En :
2
oY AV E = m wzen. (4.5)

This eventually leads to soft modes and to a modulated phase for +the ap-
propriate values of the parameters. Describing the I-phase in terms of a
one-dimensional modulation function u, =u (nga) one gets the modulation

wave vector q from :

2
-gl= 0 and 8_V> 0 (4.6)

q aq2
and by comparing the corresponding values of the energy. In this way, by
numerical calculation a phase diagram ( in the a,8 parameter plane ) has
been obtained. Analytical expressions have also been derived in the con-

tinuum limit, for which the potential energy takes the form :
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dx ¢ 1 2,14 .1 .2

= — —— +— + - L4
Ve s fpat gt ot (4.7)
The extremality condition for V leads by the Euler-Lagrange formula to the
equation :

pE'' =0+ 53. (4.8)

The solutions are Jacebi elliptic functions whose +type depends on the
values of the parameters. The potential energy is then expressible in terms
of complete elliptic integrals. From all that follows also the wave —length
and the form of the modulation. A thermodynamical treatment (in the mean-
field approximation) allows to derive further properties [8], but the
essential features appear to be already correctly described by the simple
Hamiltonian approach discussed above.

5.Superspace adapted formulation of the models

The reformulation of the microscopic models presented above will be done
now for the Janssen-Tjon model. The same can be done for the Parlinski-
Michel model as well.

The first step is a restriction of the considerations to modulated dis-
placements u, which are periodic (but not necessarily incommensurate with
the underlaying basic structure) with wave vector q,and involves thus a

phase variable T according to
u (1) = u (nga + 1) = un(T + 271 ) (5.1)

for any T real. Introducing that dependency in eq. (4.2) one gets a family

of 1-dependent Hamiltonians :

H (1) =

{

) < iy (O o

B15%

z
n
showing two-dimensional lattice translational invariance in the superspace,
i.e. in the space which extends the space of positions of the chain mass

points with an extra dimension associated with the phase of the modulation.

The generators of +these lattice translations are given by the following

transformations :
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(a,2a) : n+n+ 1 and T+ T~-qa (5.3a)

(0O,b) ¢ n-+n and T + T+ 27 (5.3b)
Incommensurability occurs for :
qQ= v— ( v irrational). (5.4)

The potential energy (4.3) can be expressed by the integral :

271
V= -%—J’O at { gox(0)%+ B[x(7) - x(w=7)01% + (5.5)

+ %ﬁ[x(T) - x(r-211)]2 * %X(T)4 }

for x = x(nqa) and T, = qa. In order to investigate (5.5) 1let us first
consider X(T-T1) and x(r-211) in Taylor expansion at x(T) up to the first

order. One gets :

2w
N 1 2 1 1 2.2
Vv = -5-1? _ro daT { -é-ax + Ix4 + -2-(8 + 26)T1X }c (5‘6)

Extremalization using the Euler-Lagrange equations leads to the following
condition for the equilibrium positions :
ox''= ox+ 1 (5.7)
with exactly the same parameter values as found in (4.9) for the continuum
limit.

Taking now the full Taylor expansion into account, extremalization re-

quires instead of the usual Euler-Lagrange equation the condition :

o m
2£+ T (_1)111 d 3L

ox d'rmmz 2 5.8)

m=1 9x

with x(m) = 3"x/37" . An alternative possibility is to take into account eq.

(4.4) first and only then to go over to the phase-dependent description.

One then gets an expression for the potential which depends on T, = qa in
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the form :

2n
Vo=Vl = J dt £(1,1,). (5.9)
xn 0 :

=0 (5.10)

which leads to the equation :

y'(2rn )=y () (5.11)
268
for
2n
y (11) = fdt x(71) x(r-11). (5.12)
0

For getting a better feeling of these equations 1let us consider the

sinusoidal modulation case :

x = p sin (nqa), x(1) = p sin (1), (5.13)

then eq. (5.9) becomes :

.27 5 5 5
L I dr f(T,T1) = A+ p"B+ Cp'cost, + Dp“cos2t, , (5.14)
0
and condition (5.10) leads to :
(B + 48 cosr1) sint, = 0, (5.15)

i.e. to the non-modulated case (for sin t, = 0) and to the modulated one

1
(for cos(qa) = -B/48), a result which has been discussed in the paper of

Janssen and Tjon as well.
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Note that in the present case we have y(r1) = % cos T and equation
(5.11) leads also to (5.15) .

6.Landau Theory for Continuous Phase Transitions

What follows simply recalls the basic ideas of Landau’s theory and fixes
the notation. One starts from a high temperature (T > Tc) crystal density

po(;) having space group G as symmetry :
G p_=p . (6-1)

Then the low-temperature (T < Tc) phase is described by a density p with
symmetry group G and one supposes that G is a subgroup of Go :

Gp=p =and G c Go' (6.2)

The difference density ¢ is expressed in terms of irreducible representa-

tions D* of G, with basis functions ¢§(¥) :

and
v(¥) = & ¥ o UT). (6.4)
aj Jd J

As a first simplification, Landau restricts the considerations to a single
irreducible representation. Writing the free-energy density F as a function
of ¥ and V¢ one has ( due to continuity) invariance of F with respect to
the group G . So one expands F in uth order (homogeneous) G -invariant

terms :

Fu) = (w) .o a
Flv,v) = B, * ;L As ¢j1""¢ju (6.5)

where Fo is the high-temperature free-energy term and s labels the various
invariants. Minimalization of F requires vanishing of second-order terms at

T=1T
o
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(2) -
A (Tc) = (6.6)
Stability of To requires absence of third-order invariant terms, i.e.
o 1
D D =0 6.7

where D?3) is the third-order tensor product of Da, and D1 is the identity
representation. Homogeneity, i.e. the condition that the low temperature

phase is a (commensurate) crystal leads to the Lifshitz condition:
a v 1 -
(700" 1) =0, (6.8)

where sz] is the antisymmetric tensor product of D% with itself and D' is
the vector representation. As is well known, the presence of Lifshitz in-
variants is connected with incommensurate phase transitions [9] [10], and
in what follows we briefly discuss its role in the superspace-adapted for-
mulation.

T.Superspace Extension of Landau Theory

One embeds the crystal density (the high- and the low-temperature ones)
in the superspace as soon as one of the two phases involved describes an
incommensurate crystal. In the case that the internal dimension is dif-
ferent, one extends (possibly in a trivial way ) the structure in order to
have both crystals described in a same superspace. Then the conditions
(6.1) +to (6;4) are again verified for the appropriate superspace expres-

sions. In particular for T < Tc and in the notation of section 2 one has

> > > > > >
= + P
p (r,t) _ p (Tst) * v (r,t) (7.1)
with GS Py = Pgs Gospos = e and Gs c Gos' Then the free- energy density

is considered as a function of the internal variable f
-+ -
F(r,8) = P (v, ¥v) (7.2)

where V =-§%. Then the group-theoretical steps indicated in egqs. (6.4) +to

(6.8) can be performed again.
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As it will be shown in more detail in another paper, it follows that the
transitions between crystal phases having the same internal dimension
(commensurate + commensurate, 1-dimensional modulated + 1-dimensional modu-

lated, and so on) requires :
(Df,yed’ I D) =0, (7.3)

i.e. absence of Lifshitz invariant terms. Note that in equation (7.3), D'
is the 3-dimensional vector representation involving the positional ( and
not the internal ) space.

The presence of Lifshitz invariants leads to terms in the superspace

free-energy density of the form :

r_(%,1) = A(z) o3 (7,%) o 4QED - ... (7.4)

v Qs+ > s+ > E e

from which by extremalization using the Euler-Lagrange equation one gets
superspace-periodic solutions, and in general thus incommensurate modulated
crystal structures.
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