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Abstract

We discuss a Monte Carlo technique to calculate the thermodynamic
properties of quantum lattice models. We use Suzuki's generalized Trotter
formula to reformulate the problem in terms of path integrals. Applications
treated in detail include the influence of quantum fluctuations on the
generalized 1-dimensional classical Wigner lattices introduced by Hubbard and

super—-localization in Holstein's 1-,2- and 3-dimensional molecular crystal

model.

1. Introduction

Although Monte Carlc methods have been widely used in classical
statistical mechanics, it is difficult to apply them directly to quantum
statistical problems mainly because such theories are formulated in terms of
non-commuting variables. Recently Suzuki (1) suggested that this fundamen-

tal problem might be solved by using a generalization of the Trotter formula

(1) . Given the Hamiltonian E = Zi_l H£ where each Hﬂ is bounded we have (2)
F 2R? E 2 B (m+2) p
Il A= = et Tt
p pmﬂ < e (z la)” exp [ r ta ] , (1.1a)

q:]_ q=1
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where _pH _gH o

Ly .. exp ( InP)l , (1.1b)

pm = [exp( —

is the m-th approximation to the non-normalized density matrix

p=e = lim p_ . (1.1c)

This formula is used to approximate the partition function
z z7r e P8 = 1im z_ : (1.2a)
m>oe
by

Z =Tr p 2 (1.2b)
m m

In practical applications we have to choose H£ such that it is easy to dia-
gonalize each HK separately. We then insert complete sets of states between
all expcnential operators, work out all matrix elements analytically and
obtain an expression which looks very much like a partition function of a
(d + 1)-dimensional classical model (3,4).. Formally this approcach is closely
related tc the path integral formulation of quantum statistical mechanics
(5,6), the distance in the extra "Trotter™ direction playing the same role
as the imaginary-time variable appearing in the path integral. In general
the (d + 1)-dimensional system is complicated and a rigorous treatment is
extremely difficult.

We know from classical statistical mechanics that the Metropolis
Monte Carlo method (7) is an efficient importance sampling technique for
estimating physical properties within certain statistical errors. The rela-
tionship between the quantum problem and the (d + 1)-dimensional lattice
model then suggests that one should try to use this computational method to
calculate the properties of quantum models. However from (1.1) it is clear
that the equivalence between a d-dimensional gquantum lattice model and a
(d + 1)-dimensional lattice model becomes exact if and only if the size of
the lattice in the Trotter direction goes to infinity whereas in most appli-
cations and especially in the case where the (d + 1)-dimensional model is
simulated by means of a Monte Carlo method it is impossible to calculate the
properties of the infinitely large system. Furthermore the quantum nature
of the problem causes a number of additional difficulties, which are not
present in a Monte Carlosimulations of a genuine classical model. Due to
conservation laws (such as conservation of the number of particles, magneti-

zation etc.) there are a large number of configurations with zero weight and
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as it is very inefficient to generate these states during the simulation; a
substantial amount of extra, complicated, code is required to solve this
problem (8,9). In the case of fermion statistics a fundamental problem arises
because in most representations some matrix elements of 6m are negative (5,6).
The basic idea of our approach is to regard (1.1 - 2) as a means of
generating systematic approximations to the partition function of the guantum
model. Since the Trotter formula (1.1) does not specify how one has to com-
pose the Hamiltonian it is clear that there is the possibility of finding
several useful (d + 1)-dimensional representations. Therefore it is necessary
to be able to compare the properties of the various approximations on a
quantitative basis and more important , it is absolutely necessary to study
the convergence of the physical quantities as a function of m. Aan advantage
of working with lattice models is that it is possible to carry out exact
(numerical) calculations as long as the system is not too large. Indeed, for
small systems one often can diagonalize the full Hamiltonian directly and
therefore we can investigate the pwoperties of the approximations as a func-
tion of the Trotter dimension. Note that the upper bound Eq. (l.la) implies
that the convergence of the results will be very slow if the temperature goes
to zero (B + ®). It is only because detailed model calculations for small
systems (10-12) have shown that it is possible to obtain accurate estimates
of the thermodynamic properties of the quantum model at low temperatures for
a relatively small value of m, that this approach can be expected to work
well. 1In addition we can and should use these exact (numerical) results to

check the Monte Carlo algorithm.

2. One-dimensional fermion model

In this section we consider a ring of M sites described by the
Hamiltonian
. M % M M

_ + 1
H = -t -2 (cici+1 + ci+lci) + 5 .Z .}: V|i_j|ninj " (2.1)
i=1 i=1l j=1

The hopping energy t will usually be taken to be 1 and VZ denotes the £-th
neighbor interaction. The fermion operator cz(ci) creates (removes) a
particle at (from) site i, the operator n, = c-;ci counts the number of fer-
mions at sits i, the total number of particles being N.

Model (2.1) is relevant to the description of electron motion in
quasi one-dimensional organic conductors (13-15). To a good approximation

the electron motion in some of these charge transfer salts is determined by
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the spinless fermion Hamiitonian (2.1): 4k§ in the electron system corresponds
to waﬁe vector 2kF in the spinless fermion model (2.1). In the classical
limit (t = O) the model is equivalent to an Ising model with competing inter-
action which is already a non-trivial many-body system. Pokrovski and Uimim
(16) and alsc Hubbard (14) have given an algorithm to determine the ground-
state of this classical (Ising-like) model. It has been shown that this
classical model has a rich variety of Wigner lattice ground state configura-
tions (14) and exhibits a complete devil's staircase (17). The classical
Wigner lattice picture has been put forward by Hubbard (14) and Torrance (18)
as a possible mechanism to explain the presence of 4k; scattering in X-ray
and neutron diffraction experiments on TTF-TCNQ salts (19). If there is only
nearest-neigbor interaction the Jordan-Wigner transformation maps the Hamil-
tonian (2.1) onto the anisotropic spin-1/2 Heisenberg chain

v
__t X x VY _l z Z
H Lo(0,05,9 ¥ 930 Y 38 93%541) ¢ T

X . .
where Oi, G{ and Gi stand for the Pauli matrices. The properties of this

spin model have been studied very extensively and one can show that if the
fermion density p=N/M = 1/2, the fermion system (with v, = Q) undergoes a
ground-state metal-insulator phase transition at v, = 2t, For p # 1/2 the

1
system is always metallic (20).

For the sake of simplicity we will.confine the discussion of the
approximations to the case with nearest-neighbor interaction only. For model
(2.1) we can either split up the Hamiltonian in kinetic and potential energy
or we can write the Hamiltonian as a sum of local two-site Hamiltonians.

~

The first choice yields an expression for pm (10,11) which is formally iden-
tical to the path integral of a continuum fermion system (5,6). In the local
split-up approach there is the additional freedom of chosing a particular
ordering of the site-dependent Hamiltonians and therefore the expression for
the approximate partition function will depend on the particular ordering of
the site-dependent blocks. (3,4,8)

To study the convergence of the approximations as a function of the
Trotter dimension m we first calculate the energy, specific heat and static
correlation functions for short chains and we compare these data with the
results obtained by diagonalizing the full Hamiltonian (2.1) numerically.

From our exact numerical calculations we conclude that results

obtained by means of the path integral representation converge faster than
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those obtained by using the local decomposition. We have also carried out a
similar calculation for the spin model (2.2) and came to the conclusion that
in the case of the isotropic (v1 = 2t) Heisenberg chain the two-site approach
is superior (12). We have chosen the path integral approach as the basis for
our Monte Carlo work because it is more general and converges faster. To
simulate the fermion system we only need to make a slight modification to the
standard Monte Carlo algorithm in order to remove the problem of negative
transition probabilities (10, 11). To test the Monte Carlo procedure we first
reproduce the exact (numerical) results for small systems for a set of model
parameters and several values cof m. We have found good agreement between
exact and simulation data for all systems for which the exact (numerical)
results can be obtained with modest computational efforts. This apparently
is not the case for an algorithm (22) that implements the Barma and Shastry
break-up (4). This shortcoming can be due to the fact that their algorithm
is unable to select all possible states: it does not generate an ergodic
Markov chain.

We now discuss some of our simulation results. Detailed information
about the arrangement of the particles can be extracted from the static
structure factor S(q). We have previously demonstrated (10,11,23) that our
simulation data are in agreement with the behavior expected in all special
cases of the model (2.1). An interesting problem that is not yet amenable
to conventional treatment but can be studied by means of our method is the
influence of a non-zero transfer energy t on classical 1 - d Wigner lattices.
For p = 13/32 (which is approximately equal to the charge transfer in TTF-
TCNQ) the classical (t = 0) ground state configuration is given by
[10100101001010010100101001010100 > (23). For this configuration S(q) peaks
at g = 13m/32, 191/32. The arrows in Fig. 1 indicate the position of the
wave vectors 2kF (= 131/16) and 2(m - kF). In Fig. 1 we show simulation data
for the set of parameters that should correspond to the case of TTF-TCNQ (14).
The plots demonstrate the effect of turning on the more-distant interactions.
Our simulation data indicate that the nearest neighbor interaction is not
sufficient to have a pronounced maximum at ZkF. The hopping term redistribu-
tes the spectral weight in such a way that a large number of configurations
gives a large contribution to the étructure factor and wipes out most of the
details of the classical Wigher lattice. As soon as the next-nearest neigh-

bor interaction is turned on'S(q) peaks in the neighborhood of the expected
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L2 17 N:13 M=32 o v,=7 v,=0 v,=0
m=32 p=2 o v1=7 v2=3 V3=0
e V1=7 V2=3 V3=1

S(q)

T TC 3T 2T
2

Fig. 1. The wave vector dependent static structure factor S(qg) of a one-
dimensional system of interacting spinless fermions for several
values of the near-neighbor. couplings Vﬂ' Solid lines are guides

to the eye only.

g-values. Apparently a non-zero next-next-nearest neighbor interaction re—
duces the difference between the weights of the 2kF satellites and the g =T
configuration, a behavior which is diffiqult to understand on the basis of
simple intuitive arguments., From our simulation data (23) we conclude that
the behavior of a system with a half-filled band (p = 1/2) is different from
that of a system where the band is not half-filled (p # 1/2).

3. Electron-phonon model

In this section we study a lattice model in which one electron is
coupled linearly to the lattice displacement of the site where it resides.
Our goal is to calculate the thermodynamic properties of Holstein's molecular

crystal model (24-27), a model that is frequently used to describe small
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polarons. We assume that the electron moves in a d-dimensional hypercube of
linear size M and that there is only one lattice degree of freedom per site.
For simplicity of notation we will formulate the theory in one space-dimen-
sion. The formulas for 2- and 3-d systems can be derived in exactly the same

way. The model Hamiltonian reads

H=H +H, + H, , {3.1a)

1 2 3
M o
_ 1 2
H1 =5 .Z P, (3.1b?
i=1
wg M 2 U.)? M M +
H, =% £ x, + — I x.,X. + A L x,c,c., , (3.1c)
2 2 . i 2 . iTi+l i7i’i
i=1 i=1 =1
s + +
= - .1d
H, £ 'Z (cici+1 + Ci+1ci) . (3.14)
i=1
; ; _ 2 2 1/2
The mass of the oscillators is taken to be 1, {i(gq) = (wo + w, cos q) is

the frequency of a vibration with wavevector g,X is the electron-lattice
coupling strength and t is the kinetic energy associated with the nearest-
neighbor hopping motion of the electron or hole. Momentum and displacement
of the lattice distortion at site i are denoted by pi and.xi.

To derive a path integral representation of the partition function
we decompose the Hamiltonian according to (3.1a) and use the Trotter formula
(1.1). We can evaluate the integrals over all phonon coordinates and electron
momenta analytically and find that Zm = cZEZi,where c is an unimportant nume-
rical factor . Formally our result (28-30) is identical to the Feynman path
integral for the large polaron model (5).. ZE is the approximation to the
partition function of the free-phonon system,

Zi describes an effective electron system with nearest-neighbor
coupling and retarded long-range interactions caused by the electron-phonon
coupling. The calculation of the electron contribution Zi is not trivial and
we are forced to use the Monte Carlo method to calculate estimators of the
expectation values.

The thermodynamic functions of interest are the approximations to
the polaron energy and derivatives of the polaron free energy Fi = - %—ln ZZ
with respect to the coupling A. The first derivative of the free energy is
related to the expectation value of the electron-phonon interaction energy

+
Eix.c The fluctuation on this guantity is given by

L.CL.
111
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12)F§1
2t o

(3.2)

A discontinuity in BFi/BX or AFz as a function of A means that the free
energy is not an analytic function of the coupling A and in analogy with the
theory of phase transitions this indicates that the system undergoes a
(ground state) transition.

We now summarize some of our simulation results. From a comparison
of simulation data, weak-coupling and strong-coupling results for the energy
(28,29) we conclude that the simulation data are in good agreement with
either weak-coupling theory as long as A is smaller than a critical value Ac
or strong coupling theory if A > Ac. This is illustrated iniFig. 2 where we
compare Eg and the results of weak- and strong coupling theory for the ground
state energy in the case of 2- and 3-dimensional electron motion. This plot
also shows that B = 5 corresponds to a very low temperature for these systems.

The kinetic energy decreases rapidiy as the coupling A increases. In the

12 B=5.m=32
0~Ei,2—d
F
10~ m-E_.3-d
8r -
=W
>
e ]
Lp——a"® * 2
_A
o 2
i | ] |
0 1 2 3 L
A

Fig. 2. Comparison between the ground state energy (dashed line: 2-d model,
dashed-dot line: 3=d model) obtained from second order perturbation
theory, the energy in the strong-coupling regime (solid line) and
simulation data for Ei (solid dots: 2-d model, solid squares: 3-ad
model). This plot shows that in our units (t = 1, = 1) the inverse

temperature B = 5 corresponds to a very low temperature.
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2 m=32

™
1

l | l |

0 0.25 05 0.75 1
g

Fig. 3. The critical value ) of the electron-phonon coupling as a function
c .
of the phonon gap g at the Brillouin zone boundary. The dashed line
is a theoretical result obtained from comparison of weak and strong

coupling expansions.

neighborhood of Ac’ AFi has a pronounced maximum. To a good approximation,
the peak position kc can be found by equating the weak- and strong-coupling
expansion of the ground state energy. Simulation data for 1-, 2- and 3-
dimensional systems show essentially the same features. The larger the
spatial dimensionality, the larger are the fluctuations AFE. The fluctuations
decrease with increasing temperature. In the critical region the kinetic
energy of the 2- and 3-model drops more rapidly than in the 1-d case. This is
consistent with the observation that the transition in two and three dimen-
sions is more abrupt than in one dimension.

In Fig. 3 we depict the dependence of the critical coupling lc on
the gap g of the phonon dispersion at the Brillouin-zone boundary q = 7.
Here we have chosen the parameters Wy and w, such that w, = (1 + gz)/2 and
w, = (1 - gz)/Z. We conclude that within the limitations of the Monte Carlo

method (7) there is strong evidence that the critical value of ) below which
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self-trapping does not occur, goes to zero if the optical. phonons become soft

(30) .
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