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STABILITY OF ACOUSTIC AND OPTICAL SOLITONS IN A DIATOMIC CHAIN

St. Pnevmatikos, M. Remoissenet, University of Dijon, Dijon, France
N. Flytzanis, University of Crete, Iraklion, Greece.

In this pa-p"eri""we Will be concerned with the propagation
of solitons of the compressive and rarefactive type in nonlinear
atomic chains, i.e. we look for permanent profile solutions that
preserve their form under collisions (except for a possible phase

shift) or they are long lived. For interatomic potentials that
can be expanded in a Taylor series in the relative atomic displacements

(keep the first few terms) approximate analytic results
can be combined with computer experiments if we consider smoothly
varying waves.

A related discrete problem is the propagation of pulses
in distributed transmission linesd}. An LC-circuit with two
nonlinear capacitors interchanged can serve as an analog computer
for the diatomic chain but with a modified interatomic potential.
With some modifications and the inclusion of electronic polarizability

the nonlinear diatomic chain could be a reasonable model

to describe ferroelectrics{2} and go beyond the self consistent
phonon approximation.

The continuous limit in monatomic chains leads to equations

for which the soliton solutions are known. For diatomic
chains, however, little work has been done and this only in the
case where two smooth functions can describe the displacements of
the two different masses M^ and M2 {3-6}. For a diatomic chain
there are both kink excitations of the acoustic type and modulated
waves. Here the case M^^M2 will be considered (M^=M2 being a limiting

case)except for the envelope type solutions where we present
the monatomic case but also give some results for M]^!^.

In the model the nearest neighbor atoms (NN), with relative

displacement R, feel a potential
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*(R)= G(-|- R2+ -y- AR3+ -J- BR4) (1)
where G,A and B are force constants (A=0 unless stated otherwise)
The equations of motion for the displacements Z (W of the odd

(even) particles with mass M^(Mo) in the nth cell (two atoms per
cell of length 20) are given by

M]/Zn= G(Wn - 2Zn + Wn_!) +GA {(Wn-Zn)2- Un-W^ft
+ GB l(Wn-Zn)3 - (Zn-Wn_!)3} (2a)

M2Wn= G(Zn+i - 2Wn + Zn) +GA {(Zn+l - Wn)2-(Wn-Zn)2}

+ GB i(Zn+1-Wn)3 - (Wn-Zn)3} (2b)
We can decouple the two equations to 0(em) (m=4 for acoustic, m=3

for optical) with e a small dimensionless parameter by choosing
Z~0(e1), Zx~0(el+.3), Zt~0(e1+k) and similarly for w. The l,j,k
could be different for acoustic or optical excitations. We go to
the continuum limit (with x=2nD) and use an ansatz {3,6}that
relates W(x,t) with Z(x,t) and its derivatives.

W(x,t)=A.(Z+b1DZx+b2-| Zxx+b3-JpZxxx+b4^4Zxxxx) (3)
The constants X,b j ,b2 ,b -, ,b a are determined so that the two equations

of motion are compatible to 0(em), and X can take two
values X^ 2 l»-^l/^*2"^ Tne equation for Z(x,t) is easily solved and

analytical details are given in previous work {3,6}.
i. X, =1 (acoustic mode): we obtain a Boussinesq type equation for u=Zx

utt=c0Vxx+p(u2)xx+q(u3)xx+huxxxx <4)

with p,q and h depending on G.A.B.Mj^ and M2.For (NN) interactions the
solution is a supersonic kink for Z (compressive or rarefactive
depending on the values of the parameters p,q,h). If we include
second nearest neighbors (SNN) the dispersive term can become

negative (h< 0) so that we have subsonic kinks. This has been found
for M1=M2{7} For Mi^M2 and (SNN) we can easily apply the
previous procedure for a quartic potential (A=0 in (l))if we include
a nonlinear term in the ansatz of equation (3), and obtain eqn(4)
with different constants. Computer simulations have shown these
kinks (pulses in Z to propagate with no lattice pinning or
discreteness effects for any mass ratio if the soliton width L is
much larger than D. Since L~l//V-c0 the solitons must be moving

near the speed of sound c0-
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In Fig. 1 we show a quasi-
elastic head on collision
between two acoustic
excitations for a diatomic chain
of 400 atoms and additive
SNN interactions
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Figure 1

ii. X=-M]i/M2 (optical mode): For the quartic potential (A=0) and

small but finite Z,W of 0(e) we obtain keeping terms to 0(e3)in
(2) an envelope soliton for the odd atoms:

x-vet X-VntZ(x,t)= Assedi (5)cos

The amplitude Am, the width determining parameters for the envelope

Le and the carrier wave LQ and their corresponding speeds ve
and vQ are given in terms of two small arbitrary parameters plus
a wavenumber k and a frequency to which are related through the
the linear dispersion relation for the optical branch near k«0

{6 }. The displacement of the even atoms can be obtained from
the ansatz in (3). Computer simulations show that the solution
keeps its permanent profile even for mass ratios up to M^/M2«5,
where pinning phenomena start appearing. This is probably due to
the omission of terms of 0(e->) whose coefficients become significant

for very different masses. Collision experiments of optical
with acoustic excitations show their stability {6 } while in Fig.2
we present two optical excitations in a head-on collision which
is quasielastic. We plot the displacements Zn of the odd (full
line) and Wn of the even (dashed line) atoms for different times
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Fig. 2 Optical-Optical soliton

collision for a diatomic
chain of 300atoms. Zn (solid
line), Wn (dashed lined)

N -0.18

0.18

T 1000

-0.18

T=1700 4 v
150 300

of the evolution (the two

curves are 180° out of pha-
ce). For the parameters used

the width of the oscillations

of the odd (or even)

atoms is of the order of Le

and since ve<< v0 the pattern

appears to be breathing.
The optical solution in (5) valid near kssO can be extended

to cover the whole dispersion curve by looking for fast oscillating

solutions with a smoothly varying envelope. To do this we

must separate the oscillations by writing for the monatomic chain
displacement

Yn(t)= Fn(t)ei(knD-Cût) + c.c. (6)

and then take the continuum limit of the envelope function Fn(t).
For simplicity here we consider Mj=M2 with a quartic potential
(A=0) while the addition of a cubic term (A=^0 for Mi=M2) will be

discussed. The calculations for Mj^M2 are quite lengthy and are
presented elsewhere (9). The solution is easy 'for F~0(e) with
Fxs0(e2), Ft»0(e2) while k and co to 0(e) are related by the linear

dispersion relation
r,2

D
s-ir.2 kD

(7)

By writing the complex amplitude in the continuum limit as:

,iôx(x-vct)F (x, t)= <b (x-vet)e (8)

with O real, and keeping terms to 0 (e^) we obtain for $

Xl>xx=p*-q«3 (9)

with
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X v2 - C2 coskD- (10a)
2

q 48—° Bsin4-^ (10b)
D2

p is given by a complicated expession including v and is of 0(e)
and ve is the group velocity dco/dk to 0(e). By mul tip lying (9 with
3>x and integrating we get:

1 rr.2 1 P *2L 1 q ^4 ta

~2 °x - — ~x * + "T ~X * const- (11)

If p/A.< 0 and q/X< 0 Ö is a pulse

« /p?! sech { /F7q (x-vet) } (12)

while for p/A.< 0 and q/X< 0 the envelope is a kink. Since X > 0

over the k-range, except a region near ksO, and for B> 0 i.e. if
the quadratic and quartic terms in the potential are additive, we

have envelope solitons, while for competitive terms (B< 0) we get
dark envelope solitons. If we look at the modulational stability
of plane waves we find they are unstable for B> 0 but stable for
B< 0 for any k. If we include, however a cubic part {3} there is
a critical frequency above which plane waves are modulationally
unstable depending on the competition between the cubic and quar-

r,tic coefficients A and B. The critical frequency is go =4a(3/2-a)
with a=AVB. The inclusion of the cubic term makes the derivation
tedious and will not be presented. If we include (SNN) even for
A=0 the stability depends on whether the force constants for (NN)

and (SNN) have the same or opposite sign, and on the k value {9h
To check the conclusions on modulational stability we must take
into account long range interactions.

In Fig. 3 we present an envelope soliton with a wave-
Vector ksl/D, which is quite stable while propagating even after
a collision with the fixed end of the chain. Computer experiments
are going on to check their stability under head on collisions,
and look at other k-values.

The nonlinear excitations considered here should also
appear in the structure factor calculations of molecular dynamics

The statistical mechanics of these systems have not been
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worked out (as in the fl>

problem in the displacive limit)
so it is not obvious whether
the nonlinear excitations would

give distinct features, and is
left for future work. We must
check the modulational stabili-

1 qq 200ty °^ plane waves for a cubic
and quartic potential including long range interactions. In
regions where dispersion is negative there are possibilities of non-
elastic collisions between acoustic excitations subject to
resonance conditions. Finally the interaction of these solitons with
mass or force constant impurities and their stability to disorder
should be of physical interest.

Concluding we see that in 1-d monatomic and diatomic
chains there are stable and long-lived kink excitations of the
acoustic type and envelope solitons which include optical solitons
The modulational stability of plane waves depends strongly on the
quadratic part of the potential.
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