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SEMICONDUCTOR DYNAMICS FROM FIRST PRINCIPLES: PHONONS, FORCES,
AND DIELECTRIC PROPERTIES

K. Kunc

Laboratoire de Physique des Solides Associé au CNRS
Université P, et M. Curie, &4 pl. Jussieu, 75230 Paris, France

Recent applications of 'direct' methods for ab Znitio treatment
of dynamical properties of semiconductors are summarized with
emphasis upon our own results based on the Local Density
Functional. Extending beyond the 'frozen phonon' approach, the
applications include treatment of forces (in perfect structures
and crystals with substitutional defects) and a 'direct' study
of certain dielectric properties.

1. INTRODUCTION

The approach termed 'direct' gave a new impetus to ab Znitio
theories of semiconductor dynamics and its present applications extend far
beyond the determination of energies of a few isolated phonons, its sole
ambition at the origins. In contrast to the classical approach, which
considers a phonon as a small perturbation to be handled by dielectric
response theoryl, the direct methods view a crystal with periodic distortions
as a new crystal structure, to be dealt with as a completely new system,
independent of the undistorted one. The direct methods became practicable with
development of the Local Density Functional2 (LDF) - though the general idea
does not depend on this particular method and is not restricted to total
energy, either. The direct approach is presently applied along three distinct
lines, that derive from the same Hamiltonian: enerpgies, forces and electro-
statics.

Difference in total energies, evaluated for structures with and
without phonon-induced displacements, defines the energy of 'frozen phonon'.
Clearly, an extreme accuracy is needel because the small differences are of
order 0.01 7 of total energy, but using the LDF the errors in calculated
vibrational frequencies are typically A3%. The method of frozen phonons only
applies to several high-symmetry modes but, as it does not restrict the
amplitude of displacements, it provides a tool for studying anharmonicity.
Using this concept, Griineisen parameters were evaluated and soft-mode phase
transitions in GaAs predicted3. Also, we have shown how the phonon displacement

patterns can be determined, simultaneously with frequencies, in cases where
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the symmetry does not predict them complete1y4.

The frozen phonon approach can be equivalently formulated in terms
of forces; these can be evaluated by applying the Hellmann-Feynman theorem to
self-consistent charge densities used for calculation of total energy.
Physically it is irrelevant whether we proceed via forces or via energies
because both approaches are based on the same expression for total energy
(density functional). Nevertheless, the force approach allows to get out of
the frozen phonon franework and leads to a more general treatment of lattice
dynamics - which, in a sense, means a return to sourcesS: sets of force
constants can be evaluated which determine the entire phonon dispersion along
a selected direction of reciprocal space6’7.

Finally, it has not remained unnoticed that the self-consistent
charge densities - the starting point of either of the above paths - encompass
the complete information about the electrostatics of the electron-ion system.
The self-consistent solutions can thus be employed to determination of the
dielectric response and can supply some macroscopic dielectric properties.

Our work based on the first two concepts was summarized in a recent
reviews; in the present paper,.which intends to be a loose continuation of
Ref. 8, we report the latest applications of the force approach (Section 2)

and elaborate upon the direct treatment of dielectric properties (Section 3).

2. FORCE CONSTANTS

The self-consistent charge densities supply complete information
about forces acting on atoms; giving an atom a displacement and finding the
forces acting on its neighbors suggests the possibility of determination of
force constants.

2.1. Perfect Crystals. As most of the self-consistent calculations are

performed on supercells of limited dimensions, any given atom will perceive
a sum of forces coming from several displaced equivalent sites (see dotted
lines in Fig. 1), so that only the interplanar force constants K(Zk;2'k') are

determined, rather than the interatomic ones @a . The planar force constants

K are well defined sums of the interatomic ones? but a conversion of the
former into latter is not possible in general, because the slow fall-off of
¢'s makes the numerical problem ill-defined. The set of K's determines,
however, the entire phonon dispersion along a selected direction of reciprocal

]

space6 7 For a phonon propagationalong, say [100] direction, all (100) planes
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Fig. 1. Periodic supercell used for Lb". . . < e
determination of [100] interplanar %
force constants in Ge. Entire planes oo ' oo o 0 o0

are given longitudinal or transverse = 3 S .~ o - o e -t o
displacements and any given atom 2 ! :
feels the force pro@uced by ?isplace— ° e » e L e @ !
ments of all at?ms in the shifted N R R el B
plane (dotted lines). K

oo I ) o0 & &

“&"’. L I L N " [ ]
— » [100]

vibrate as rigid units and their vibrations can be assimilated to oscillations-
of a linear chain - problem which leads to a 2 x 2 secular equation, however
far the interactions may extend. Fig. 2 shows a result for Ge obtained9 on the
supercell of Fig. 1. Planar force constants decrease relatively fast with
distance, however, all the forces up to the 5th neighbors had to be included
in Fig. 2 so as to reproduce the flat TA branches; the remaining discrepancy
at TA(X) is believed to be consequent to the choice of Slater's exchange. With
the dispersion of eigenfrequencies one also gets the displacements, the
dispersion of eigenvectors. In case of polar crystal, such as GaAs, the
procedure is somewhat more complicated because the longitudinal displacement
pattern generates a macroscopic electric field whose contribution to forces
has to be separated; this is explained in Ref. 6 and the field itself is
further discussed in Section 3.2. Planar force constants can be related to the

3 3 . . 0
internal strain parameter r and expressions were derlved1 for tetrahedral

semiconductors, giving ¢ in terms —
of K(0,n) for [100] and [lli] 10| :
directions. The rarity of present ¢ o3 LO i

; . . TO
experimental determinations of ¢

(THz)
(o]

T

I

and the often contradictory results
suggest that the measured values of Ge
¢z be checked against those calcula-

ted ab nitzo !

FREQUENCY

Fig. 2. Phonon dispersion calculated - 4
from planar force constants (solid LA TA, o © o o 9
lines), compared with experiment 2r 2
(circles). Transverse forces up to
the 5th and longitudinal up to the
4th neighbors are accounted for. 0 L 0; L d Y O
(From Ref. 9.) r —— [100] .
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2,2, Defects. Replacing the atoms of the displaced plane by defects (Fip. 3),

one can determine the variation AK(0O,n) of the planar forces caused by substi-
tutional impurities - simply by repeating calculations of the Section 2.1
twice: with impurities and with the original atoms. The AK(0O,n) decrease with
distance considerably faster than the K(0O,n) themselves and the problem of
conversion AK(fk;2'k') — A®P(fx32'k') is no more ill-defined; even when
working in other than planar geometries, it is possible to separate the
contributions from individual atoms and evaluate variations of interatomie
force constants Ad. .

Although the very short range of A% seems to make the problem easier
for defects than for perfect crystals, the essential complication comes from
the lattice relaxation around the defect. Knowing the amount of relaxation is
crucial to understanding any property related to defects and the LDF certainly
could be used to finding the new atomic positions, by minimization of total
energy; the direct determination would only require working on supercells of
considerable size. It was, however, noticed11 that the effect of relaxation
on Ad can be worked out in a simple additional calculation, without even
knowing explicitly the exact amount of relaxation.

The neighbors of the impurities shown in Fig. 3 in their unrelaxed
positions are, in fact, displaced from their new (relaxed) equilibrium posit-
ions; consequently, the force they experience originates 1) from the displaced
defects, and 2) from the displacements of the 'probe'-atom itself. As the
total force resulting from several displacements is additive in harmonic
approximation, the second contribution is readily determined in a separate

self-consistent calculation, on a

= ® o . ® o ® o ® o .
k=) ] T supercell with defects undisplaced
ok ® 0 orﬁ e o )
l and their neighbors unrelaxed, i.e.
® o ‘e o ) e o
it situated at the original sites of
o-%fL———o—cm————o<$ ® o E
& ! perfect crystal. The idea is that
e o ! ® o e O |y ® O
o | from forces caused by displacements
oﬂkr———ano_———44$ e 0 ¥ % ’
or from their variation caused by
® 0 ® o e 0 e o
introduction of impurity, one has to
HAl oGa eAs —= [oa] subtract the force due to 'mon-rela-

o
Fig. 3. Supercell used for Finding xation ; no knowledge of the amount

the variation of force constants of relaxation itself is required.
around a substitutional Al in GaAs.

(From Ref. 11.) This way of accounting for relaxation
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is rigorous - to first order, i.e. as long as the relaxation is small.

The first results given in Ref. 11 for GaAs:Al were obtained in
planar geometry of Fig. 3. They confirmed that, indeed, AK or A% can be
neglected for 3rd neighbords, and determined the variations for first and
second neighbors. For the first neighbors, the A% corresponds to strengthening
of the bonds; the second neighbor variation is weak but perceptible, and it
means strengthening of one component of QGB’ weakening of another. Note that
in planar geometry only a part of the information for second neighbors is
accessible; in fact, the configuration of Fig. 3 is somewhat artificial and
another geometry, more convenient for the defect problem, was suggested in
Ref. 11. However, an estimate of the amount of relaxation can be given if the
planar configuration is used11 - however superfluous its knowledge may be for

the present purposes.
3. DIELECTRIC PROPERTIES

Two quantities characterize the ground state in the LDF formalism:
total energy E'°" and electronic charge density n(?). Although the description
offered by n(;) is less detailed than the one provided by the many-particle
wave function, the LDF assumes that the charge density - and equivalently the
potential consistent with it - carries the relevant information about ground
state properties. Through Poisson's equation the distribution of charges
defines the electrostatics of the system, so that with self-consistent
solutions of the LDF equations we possess the information about the (local)
electric field, including its fast variations from atom to atom. 4 fortiori,
we are also in possession of all information about macroscopic fields, defined
as space averages of the local (microscopic) ones. The self-consistent or
Hartree potentials, V°C or vl = v3¢ - v*© thus enable to 'probe' the response
of dielectric to different perturbationms.

3.1. Zero macroscopic field. Displacement pattern shown in Fig. 4a was used
* Sulld which

for calculation of the longituinal effective charges er in GaAs

. . . . e, .
amounts to determination of polarization ?(r) produced by displacement of the

respective atoms. The effective charges, determining the TO(T)-LO(T) splitting,
are needed because the frozen phonon approach cannot handle the LO(T') mode,
distinguished from TO(T') by presence of the macroscopic (i.e. unperiodic)
electric field.

Displacement pattern of Fig. 4a does not produce any field in most

of the volume of the supercell - but it shifts the respective levels of
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potential in the two halves of it. The situation is schematically illustrated
in Fig. 4b which shows the change in electrostatic potential when two planes,
charged with a density ¢ are given a small displacement u: the two dipole
layers created by the displacements will produce a shift of the levels by the
amount 4mwou.

The actual self-consistent potential corresponding to the pattern
Fig., 4a is shown in Fig. 4c. The fast oscillations from atom to atom are
uninteresting for our purposes, on notices, however, the shift of the average
levels in one and another half of the supercell - e.g. by comparing with the

undisplaced situation shown by dotted lines. For getting the potential diffe-

a) rence AV = 4mou, we simply took
o-e - e o~e -0 e —sc —sc "
§ o e o e o o o o V®-(A) - V°°(B) ; from here ¢ = eL/A
N where A is the area per atom. The
o-® - ————— Oro-—--=0 ® 3 p
| ! value we found for GaAs™, |e | =
o e o e o e o e L
| ; 0.158 + 0,005 |e|, positive for Ga,
o-e S O0-0----=0 ® -
negative for As, is 20 Z below the
c e o e o e c e
experiment. Note that the sign,
oo -0 e o-e <0 e
although physically commonsense, has
o Ga o As = [00] never been determined experimentally.
b) T T T T ¥ T T T T
| X0 X
> -
-
« 1
- | AV=4nou
z i
— |
B St
o H
& :
' O
1 1 1 1 1 1 1 A1 1

Fig. 4. Evaluation of effective
charge ef(Ga). (From Ref. 4.)

a) Two planes of Ga shifted in
opposite directions in a quadrupled
unit cell of GaAs.

b) Variation of potential caused by
displacing charged planes in the
pattern (a) - schematic representa-
tion. The two dipole layers produce
a shift of regpective levels of
potential®®»

(Ry)

Vi)

c) Self-consistent potential obtained
for configuration (a) (solid linmes),
compared with the situation w%thout
displacements (dotted lines)l .
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3.2. Nonvanishing macroscopic field. By choosing the displacement pattern

P i 5 E
differently, one can also find the other effective charge e, — and consequently

T
. . *, * y . "
the dielectric constant of polar crystal, € = eT/eL . The situation described
below occured in a study of vibrations in GaAs ; for getting the interplanar

forces,qne chooses exactly the same pattern as in Ge (Fig. 1); in polar crystal,
however, the longitudinal displacement of charged planes produces, in addition
to forces, a macroscopic electric field. The resulting electrostatic potential
is schematically shown in Fig. 5a. A simple way of arriving at this potential
is to represent it as a sum of two contributions (Fig. 5b): potential of a
chain of dipole-layers, reminiscent of Fig. 4b, and a depolarizing field,
constant over the volume of crystal, which compensates the potential difference
at the two ends of the crystal, cancels the surface charges which otherwise
would accumulate at both ends,and brings the average electric field in each
supercell to zero.

We notice that inside each supercell a net macroscopic field appeared
- although the supercell average of this field is zero, as dictated by periodic
boundary conditions. Returning to the actual self-consistent potential Vsc(x),
with atom-to-atom oscillations, the slope of the underlaying 'saw' can be
found as a space average of the 5V /o x over major part of the supercell
volume - we simply took the 'inclination' of the central part of the plot

V°¢(x) (see Ref. 6). This slope determines 1) the 'elevation' 4mou of the

Fig. 5a. Variation of potential L e e
created by longitudinal displace- i
ment of Fig. 1 in a polar crystal
(GaAs) - schematic representation.
Periodic repetition of dipole layers AT L L
produced a maeroscopic Eield in large POSITION x

part of each supercell1 . The super-

cell periodicity is respected and the

(supercell-)averaged electric field

is zero.

POTENTIAL V

Fig. 5b. Potential of Fig. 5a can be

graphically represented as a sum of

two contributions: 1) Potential , Y™ PN I I i
produced by each dipole-layer § "
considered separately, like in Fig.4b : \\\‘\\\u

- which, however, does not obey the : ‘e
periodic boundary conditionms. !

2) Depolarizing field, constant over
crystal, which compensates the net ik o N
potential ?;fference at the two ends P S S S S A S S S R S S ST W W ST O Y
of crystal'’. POSITION x

v

supercell

POTENTIAL

| +q

—— |

/1T
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L v i . s .
'saw' - from here eL is found, like in Section 3.1; 2) the intensity Emacro

perceived in the 'central' elementary cells of each supercell. Contribution of
the macroscopic field to the force 'felt' by an atom is F(xk) = e;(K) grARER
and, as our experience on GaAs shows, this is the only force felt by the atoms
distant >5a/4 from the displacement, i.e. at the 'central' sites in each super-
cell. (The atoms close to the displacement perceive, in addition, the short-
-range distortion of electronic distribution, i.e. the force which was our main
concern in Section 2.1.) Applying the Hellmann-Feynman theorem to the self-
consistent charge density, we obtain the force on central atom and find e;.

The results |ej| = 0.163 + 0.002 |e|, |ex| = 1.87 + 0.14 |e| and e = eg/e; =
11.4 + 1.6 compare with the experimental values 0.198, 2.16, 10.9 respective-
ly, and with le: |= 0.158 + 0.005 determined in Section 3.1. Note that all
these results arose out of determination of phonon dispersion in GaAs, from
merely understanding the behavior of fields, and did not require any additional

self-consistent calculation.

3.3. External macroscopic field. The dielectric constant was determined in

previous Section indirectly, by comparing two different responses (? and f) to
a displacement. Obviously, this approach only applies to polar crystals and,
for finding e.g. € of Ge, one has to be able to deal directly with a macrosco-
pic field imposed from outside. There is no reason not to put external
potentials into the basic equations of LDF - except for the potential of a
field at k = 0: as it is constant in space, the potential of such field is a
monotonic function and its addition destroys lattice periodicity. This
difficulty is general and has been encountered in different branches of solid
state physicss.

The issue we have proposed in Ref. 13 is shown in Fig. 6a: on a
sufficiently large supercell repeaﬁing the elementary cell a number of times,
we impose a saw-like potential which is periodic on supercell and yet it
represents a constant field in large regions of space. We can imagine that we
had incorporated into the crystal'plates of capacitor, a periodic sequence
charged alternately + and -. For all practical purposes, we smooth out the
cusps, as shown by dotted lines, which physically corresponds to spreading the
charge slightly around the 'plates' and which allows us to deal with shorter
than infinite Fourier expansions.

The self-consistency makes the electrons to addapt to pe and an

example of the resulting self-consistent potential is plotted in Fig. 6b.
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We find the usual oscillations, the new feature, the underlying saw-like shape,
results from the perturbation ve*t . 5o as to visualize the sereened maecroscopie
field we remove the fast oscillations in Fig. 6b by subtracting the self-
consistent potential of the unperturbed case; their difference (Fig. 6c) is the
screened VeXt of Fig. 6a. Comparison of the average slopes in Figs. 6a, 6¢c
yields the dielectric constant, from its definition; our present resultslB,
19.1 for Ge and 13.6 for GaAs, are 20 % above the experiment.

Unlike VEXt, the screened potential Fig. 6¢c is not represented by
perfectly straight lines; the bumps, barely visible in Ge but clearly apparent
in GaAs, are not computational noise and they reflect a well defined physical

effect: microscopic variation of a)

local fields. By treating in the
same way n(r) instead of v e @),
one obtains the analogous local

variation of electronic charge

density (not shown here); it

reflects the off-diagonal elements

Fig. 6. Treatment of external macro-

3 . ] supercell
scopic electric fields. (From Ref.13.)

cell
e e

EXTERNAL POTENTIAL V(x)

a) Saw-like potential, periodic on
supercell, used for producing the N
constant electric field in at least el Ll X
one elementary cell. The potential b)
can be imagined by incorporating into - Ge n
the system a seaquence of capacitor 0.04 ﬂ
plates, charged alternately + and -. ﬁ
o LU

By allowing the charge to spread out
edges get rounded and_Fourier U

| I N T T TN NN SN N (O N N TR Y TR N A |

{ Hartree )

of the plates slightly, the sharp
expansions shortened!’,

8% ()

b) The actual self-consistent
potential calculated for Ge in thg
external field shown in Fig. 6a I8,

-0.04 U | | | N

I N T S T N T T T
POSITION X

c) Screened saw-like potential of
Fig. 6a, obtained when the fast c)

0-02 B Ge
atom-to—atom oscillations are removed b [ ,,f”/f\\\*sxas
from Fig. 6b by subtracting the | “‘\\\»/,”’,

unperturbed self-consistent potential. &, ”/////\\\§::f47
™

The ratio of slopes between a) and c)
0 ~

(H)

determines the dielectric constant of
the material. Small deviations from
straight-line shape reflect the m%gro— [N TN U T S T T T A T T A W T B
scopic variatioms of local fields'~. POSITION x

-0.02

A[VEC(x)-V*C(x)]
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of the dielectric matrix and is in excellent agreement with calculations on

perfect infinite crystals, with macroscopic field treated as perturbation

within linear response theory14

4, CONCLUSION

The apparent novelty of the direct methods consists in dealing with

phonons and related quantities in direct space. The approach became feasible

since Local Density Functional provided a sufficiently accurate scheme for

evaluation of total energy of an arbitrary configuration of atoms; in return,

numerous successful applications confirmed the validity of the LDF itself.

Originally directed to phonon energies, the direct methods then turned to

dealing with forces and presently they are extending to fields which have

seemed to be a preserve of the response-function approach: to direct treatment

of some dielectric properties. On the other hand, predictions of quantities

inaccessible to experimental determination became possible.

15,
16.
17.
18

19.
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Local pseudopotential used in the calculation is the average of those for
Ga and As; exchange and correlation of Slater, other details like in Ref.6
The sharp edges are rounded (dotted lines) if the charge is not strictly
confined at each plane.

Note that the potential V felt by electron is plotted, which has the
opgoiite sign than the electrostatic potential ¢.

VS©(Y) was averaged over y- and z- coordinates, i.e. in the planes
parallel with (100).

Note that the Hartree potential, rather than the self-consistent one,

is used for comparison of slopes.
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