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Polymer glasses : defects and plasticity on a molecular scale

B, ESCAIG

Laboratoire des Structures et Propriétés de l'Etat Solide
Université de Lille I et CN.R.S. (L.A. 234)

59655 VILLENEUVE D'ASCQ Cedex - FRANCE

1. INTRODUCTION

Polymeric materials are systems build up as an intricate assembly of long
covalent molecular chains. Because of entropy, chains are highly folded and

neutron experiments, probing a few deuterated chains in the bulk, picture them
1/2rather as coils of radius R^N with N the number of units in the chain.

In order to build up a bulk density independent on molecular weight (M=Nm),

such coils have to be strongly interpenetrated, at least in three dimensions ;

1/3 3-1for, their spacing g goes as M (since g Md with d the density), which
i Ir

leads to an interpénétration parameter q R/g^M increasing with M. Finally,

long chains loop back on themselves forming "physical nodes" or entanglements,

a configuration where two different segments (belonging either to the

same or to different chains as well) can only slip onto each other but cannot

cross over each other. As density is independent on molecular weight, so is
the entanglement spacing ; every N units, an entanglement is found along a

chain. N is a characteristic number of the polymer and is most of the time

as high as a few hundred.

The deformation of such materials occurs by uncoiling covalent links
rather than breaking them ; therefore only van der Waals interactions are

involved, much as the deformation of general organic solids. However, the chain

structure imposes geometrical constraints on these uncoilings. Keeping unchanged

the valence lengths and angles, lets bonds still free to move on their valence

cones. In this way, uncoiling a bond requires moving a number of neighbouring
bonds - at least, ten in a real chain. These collective movements can take

place under stress in fluid phase, like polymer melts above their glass tran-
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sition temperature T i.e. when thermal energy is larger than the weak inter-
molecular (van der Waals) potential. Thus, rubber elasticity account for
deformation from essentially a perfect gas theory taking into account only gauche-

trans transitions in a single chain.
Deformation processes in the solid state are quite different. Intermolecu-

lar barriers are now dominant over kinetic energy and preclude any of those

collective movements to occur, given the small mechanical energy input3-3available at yield conditions, about a e b - 10 eV per unit link with' o o ta.
r

(a E the stress and strain value at yield, and b the monomer volume in
o o

the solid. As a result, perfect covalent parameters cannot be preserved every
where along deforming chains ; instead, distorsions in bonding have to be

strictly confined within cores of defects in the molecular arrangement, the

propagation of which produces a local shear strain. By this means, molecular
rods are left kinked in the wake of the moving front of micro-shear bands which

proceeds by distorting just a few more chains at a time while some others

relax out behind, into the kinked (trans-) shape. Of course, this picture is
nothing else than the mere dislocation picture of plastic shear propagation,
and it helps to understand here how links can be unfolded without entailing
the unrealistic motion of numerous successive units.

A part from the early model of Robertson [1], which deals with a fluidlike

model of deformation and is only relevant near to Tg [2], the proposed

models of non elastic deformation in glassy polymers introduce all this
central idea of local defects in the chain arrangement ; they describe their
yielding as a process basically heterogeneous at the molecular scale, like the

repeated expansion of such defects. Therefore, we give first in the following
a brief survey of the physics about these defects, with predictions about flow
parameters which can be expected. As a matter of fact a great deal can be

learned about defects from the flow kinetics of materials, and specially from

the stress sensitivity of strain-rate, or the activation volume. We show in
particular, that this type of data give a strong support to a localized dislocation

loop mechanism as a realistic model to account for experimental mechanical

behaviours of thermoplastics and thermo-set resins as well. Inversely,
the knowledge of defect physics in polymers can stimulate further understanding

and control of such behaviours. Finally, we report on recent accurate
mechanical data, with a special attention to temperature effects. Thus two

different deformation modes are found in current glassy polymers depending on
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temperature. At lower temperatures, the mode is quite reminiscent of usual

dislocation glide in crystals, while it is the thermal movement of a few

in-chain units above some temperature (near to T„ in the internal friction
notations) which gives rise to another mode, quite akin to the diffusive
plasticity well-known in crystals, and characterized here by an almost complete

relaxation of chain unit orientations.

2. THE DEFECT PHYSICS

According to the basically heterogeneous nature of deformation processes
in solids, plastic shear strains are confined to a small ratio of total volume.

In glassy polymers, they take place either within more or less diffuse shear

bands, visible as surface markings left by the deformation [3,4], or as localized

crazes [5,6] Crazes are crack-like defects with numerous polymer

fibrils wich bridge the gap between crack interfaces, giving an overall density

about half the one of the bulk. Typical of the low surface energy in
polymers, they form from a mechanical instability of the crack front under

a hydrostatic tensile component of the stress field. They have been much

studied in the last ten years, and numerous reviews are now available [7],
i

Shear banding, is more poorly known, and is at present time the interest of a

number of works. We restrict our review to it in the following.

2.1 The Frenkel picture of an elementary shear band

The simplest way to confine strains to a shear band is to allow the same

shear shift everywhere at each monomer site, within a deformation band reduced

simply to two successive layers of chain segments. In this configuration,
featuring one part of the solid shifted relative to the other, strains are

delocalized over the slip interface, while they are localized along its normal;

accordingly, it can be viewed as a one dimensional confinement. Let us assume

that segments have slip past a distance x one above each other at any segment

site, and let 1» be an average species between units, Frenkel produced a simple

argument for estimating the corresponding stress, which has to be zero at
x ~ 0.5 b and x - b, and linear in shear, a=y x/b at x-s-0 (p is the elastic
shear modulus) ; the simplest function fitting these conditions is a sine

curve, 0 (p/2II) sin (2ITx/b) giving a flow stress a=cr =p/'2IT, As pointed out

by Bowden and Raha [8], this argument, first developped for crystals, still
holds for any amorphous solid as well since periodicity is not essential to it;
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actually, extrapolating experiments down to zero Kelvin shows that flow

stresses of order y/2]T are reached in polymeric glasses [2,9,10] This value

represents the theoretical (or maximum) shear resistance of solid polymers,

2.2 Dislocations in glasses : a simple model

At temperatures different from zero Kelvin, yield stresses are much lower

(from y/10 at 150 K down to y/40 at 300 K for polymethylmethacrylate - PMMA -
for example), so that strains have to be more strongly confined. The next step

is to localize molecular misfits only along a line - or a narrow ribbon - of
the slip interface, much like a fold in a carpet, so that a two dimensional

confinement is obtained. Clearly, the line defect introduced here is the

boundary between the part of slip interface which has undergone slip and the

part which has not ; given a constant shift vector equal to the average unit
spacing b, the line is a Volterra dislocation of Burgers vector b, the

simplest model of a micro-shear band front.
Due to the random distribution of molecular sites over the slip interface,

the relative shift of one of its lips relative to the other by a constant

vector b creates unavoidably a number of molecular misfits, i.e. a stacking
fault interface of energy per unit area y is trailed behind the moving
dislocation. Friedel [11] has developped this model in order to account for flow
stresses at lower temperatures in metallic glasses. The energy y is modelled

as the strain energy build up in shifting one lip of a corrugated surface
relative to the other by b ; there, corrugations are assumed to have a height
h - 0.1 b and a repeat period b, featuring the ensued atomic misfits in a

2
volume b per unit area of the interface. Therefore y - 0.5 \ie b with a shear

strain e ^ h/b, i.e. y ^ pb/200. The stress a for trailing the fault,
a - ylb - y/200, is the flow stress in this model. It shows that a/y is tempe-

-2rature independent and of the order 10 which is actually observed for
metallic glasses at lower temperatures ; also, it is at the origin of a back

stress which accounts for the recoverable part of the strain.

2.3 The case of polymeric glasses : dislocations with fluctuating Burgers

vector
Glassy polymers show flow stresses higher than the above figures almost

by a factor ten. In addition the flow stress is clearly temperature dependent
and can be written [13] :
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0" CT* (T,è) + 0..

where O./y is taken as independent on temperature, in contrast to O /y, which

is termed the thermal component of flow stress. Recent experiments show cr.

-2 -2is of order 10 y (1.3 10 y in P.M.M.A, and 0.8 in polystyrene [ 12] so

that it might well result from the above stacking fault mechanism. However,

the appreciable thermal component cr varying for ex. from y/12 at 150 K down

to y/86 at 300 K in P.M.M.A., is a characteristic feature of polymeric glasses
and must have another origin ; it is typical of the existence of specific
localized obstacles.

Turning back to the above picture of a dislocation in a metallic glass,
the model is visibly oversimplified. The computation of stacking fault energy
does not take into account severe atomic misfits which have yet to be produced

at some places by a constant shift of the random atomic layer, like one atom

sitting just at the top of the atom below. In fact, the computed energy y

corresponds to some subsidiary minima in configuration energy, or maxima in
compactness, in which very bad misfits have already been relaxed out by local
atomic rearrangements. The latter are equivalent to allow for some fluctuations

of Burgers vector along the dislocation line, in order to fit it to the

local atomic structure swept out. In terms of Volterra dislocations - which

must keep a constant Burgers vector along their lines - it means that at point
M where the local structure fits some Burgers vector b(M), a small dislocation
loop of vector b(M) - b 3 merges into the main dislocation line of vector
b ; 3 is much smaller than b, and should be close to the width of the distribution

of atomic spacings. Such loops describe above atomic rearrangements,

making the shift vector varied from place to place through the swept area.

In other words dislocations in glasses have to be of the Somigliana type, as

Li pointed out [14] ; these can be represented by a continuous distribution
of Volterra dislocations of infinitesimal Burgers vectors which we sketch here

by a stacking fault, there where atomic misfits are weaker, plus a collection
of localized loops of vectors 3, there where they are stronger.

In metallic glasses, where units are simply atoms and bonds are not

strongly oriented, these accomodation loops should be a few b in size, with
a vector 3 very small as judged from the glass density, for example, which

achieves about 99 % of the crystal density. Therefore, they should form easily
with the aid of the only thermal energy at all temperatures accessible by
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experiments ; as a result they do not contribute sensibly to the flow stress,
i.e. a « a. and o - o. - ylb. In such materials, flow stresses at lower

temperatures (i.e. in the so-called heterogeneous flow mode) are probably due

essentially to stacking faults, as proposed by Friedel.
In polymeric glasses, covalent chains restrict local molecular movements

to some extent owing to two major structural features : (i) the chain stiffness,

as represented by the statistical chain element b ; and (ii) the

chain entanglements, characterized by their spacing X in the slip interface.
Both factors result into a glass structure more open than for metallic glasses

with a density ratio to crystalline phase of only 0.85 to 0,95 [15]. The

statistical chain element is the step length of the freely jointed chain

(i.e. with all valence angle requirements removed) "equivalent" to the real
chain as for its contour length and its end-to-end distance. Physically, b

means the distance beyond which only, two links of the same chain are completely

random in direction due to successive rotations on valence cones. It
o o

ranges around a few C-C lengths (£ 1.5 A), being about 22 A for polystyrene
(P.S.) and only 11 A for P.M.M.A., as obtained from small angle neutron or

X-ray experiments [16]. This parameter allows us to model chain entanglements

as spherical regions of radius b within which relative movements of units

are strongly restricted to some directions by local steric hindrances« The

spacing of such regions in the slip interface, X, is related to their three

dimension spacii.

the purpose) by

1/2dimension spacing x N a (where a is an elementary length defined for

91, x2 3 3 m3/22b
,_

A =x =a N
st e

2
a can be evaluated experimentally from the ratio a R /M (R is the end-to-
end distance and M is the molecular weight of the chain)and the molecular

2
weight m of monomer unit, a ma, so that :

X (N am)3/4 (2b J_1/2
e st

In spite of some experimental scatter in different parameters, this leads to
o o

figures as X 140 A for P.S., and X - 110 A for P.M.M.A. at room temperature.

Finally, a reasonable estimation of the Burgers vector length b is the

distance of closest approach of two chains. Electronic radial distribution
o o

functions from X-ray data [ 17] give b - 5 A and 3 - 1 A 0,2 b (taken from

the width of corresponding peaks on the r.d.f.) for vinyl chains like P.S.

or P.M.M.A. Note this value for b is consistent with the monomer volume v
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2
allowed by density data, which we can write for cylindrical units v=ITb c,

O g

with c as the unit length along the chain : c - 2 A, hence b - 4.8 A and
o

4.6 A in the case of P.S. and P.M.M.A. respectively.
Above numerical estimates show entanglements might be efficient obstacles

to dislocation motion in glassy polymers (X - 28 b in P.S. and 22 b in
_fc

P.M.M.A.), responsible for the thermal component a specific to their flow

stresses. In order to move forward, dislocations have to cut through such

entangled zones in changing locally their Burgers vector from b into ca.
b î 3 ; this can be done readily in nucleating small loops of vector 3 right
at contact with zones. As a result dislocations can only move when nucleating
ahead small adjacent 3-loops of approximated diameter 2b (9b for P.S., and

4.5 b for P.M.M.A.) and leaving behind in their wake a series of similar
small loops [18]. Given some moving dislocation length, fluctuations in its
Burgers vector entail fluctuations in its (core) energy. From the point of
view of dislocation mechanics, the situation looks quite the same as in those

crystals where intrinsic lattice friction (Peierls forces) is dominant ;

3-loop nucleation finds its analogue there in the well-known double kink
mechanism. Accordingly, flow stresses (or 0 should depend strongly on

temperature, which is reflected in a small activation volume V proportional to
(3T/3a*)- [ 13]

The latter writes here V 3 A, where A is the area swept out by the

dislocation from its equilibrium to its critical activated configuration. For
2

polymers in which X » b A should be some fraction of loop area IT b :J st st
V f ß b2f

a st
with f being in principal stress dependent and in practice in between 1 and

°3 °33. Experiments give V - 900 A and 220 A for P.S. and P.M.M.A. respectively
at lower temperatures [9,10,12,13]. With previous estimates of 3 and b

it gives a reasonable value for f, f - 2.

For strongly cross-linked resins or stiff thermoplastics, it may occur

that X r% b that is to say that steric hindrances exist everywhere so that
sensible Burgers vector fluctuations are needed all along the dislocation
line. This case is still more akin to the Peierls forces picture ; the area A

should then have a width b and a length L (cr) which by analogy decreases with
o rather strongly from about 100 b down to a few b in the activation range.
Typically in the middle of the range, one might expect t - 10 b, so that :
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V 10 b2 3 - b3
a

that is to say activation volume of the order of one monomer volume or less
should be anticipated. Such values have been observed on polyimid resins,
together with a stress dependent activation volume of this type [19], in
agreement with these predictions.

2.4 Other specific models

The above description of dislocation motion in polymeric glasses has

stressed the need to consider local dislocation loops as the type of defect

merely responsible for o i.e. for the largest part of flow stress. Loop

defects have been also invoked about ten years ago in two prominent models we

would briefly review now.

Bowden and Raha [8] have proposed to describe the yield behaviour of

glassy polymers by the repeated nucleation of platelet-shaped sheared zones

which can be modelled readily by standard dislocation loops of constant

Burgers vector b. Once a nucleus is formed by thermal activation over some

small critical size (which is stress dependent and in practice not larger
than a few b), the loop expands to some extent under applied stresses. For the

essential, this kind of model already worked out in dislocation physics is
known to give relatively large activation volumes - i.e, critical sizes - as

soon as (ol\i) is of order of the low values observed in experiments, that is
to say, is hardly thermally activated. Although (cr/y) for polymers is rela-

-2tively large ca. a few 10 the model still suffers from this limitation ;

in order to account for the steep experimental O vs. T plots, authors fit
these plots with T dependent b values and with a one Herz elastic modulus

y(T) - which varies sensibly with T at this frequency - without justifications.

Eventhough, activation volumes which can be calculated from the fits
o

are about ten times larger than experimental ones (e.g. b 3.5 A, critical
2 3

loop radius R 5b, hence V IS b ^ 75 b for P.M.M.A. instead of a
_ c a c

few b in experiments).

Argon has given a theory of yielding of glassy polymers by modelling
deformation as a kinking of a micro-bundle of a few parallel molecular rods

(1 to 3 or 4) [20] Elastic counteraction of neighboring chains against

kinking is evaluated in an elegant way, by describing the kinking of molecular

rods as resulting from the stress fields of two equal and opposite, closely
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spaced wedge diaclination loops extending over the bundle cross-section at

points of kinking. Parameters of the model are the kink angle, the rod radius

and the bulk site density. Although parameter fitting can reproduce a vs T

plots (with y taken apparently once again at 1 Hz), activation volumes are

only weakly stress dependent (as a and still too large : in P.S., around
°3 83

1750 A (experiment gives 900) and in P.M.M.A,, around 1500 A (experiment

gives 220).
To sum up, all the models are based on some very local defects, nucleated

repeatedly. In comparing with experiments, crucial points are (i) the choice

of the measurement frequency of the used shear modulus and (ii) the agreement

with experimental activation volumes [13]. Although being still developped

in a semi-quantitative form, the model of dislocations with fluctuating
Burgers vector seems to be the one which is able both to cope with experimental

values of V and to describe analogies and differences with metallic
a e

glasses on a structural basis,

3. THE EFFECT OF TEMPERATURE ON DEFORMATION MODES OF GLASSY POLYMERS

A precise thermodynamical analysis of activated deformation (yielding)
can be performed in glassy polymers, following recent techniques of physical
metallurgy [13]. The aim is to achieve defect parameters of concern in flow

processes, the kinetics of which is of Arrhenius type :

e è (a,0.,T) exp - AG (a,o.,T)/kT

where e is the strain rate and AG the Gibbs activation energy. From this
analysis, a number of defect features can be learned like their mobile density
(from e their nucleation rate per unit stress (3N/3a)' [see in ref 13],

o e
and characteristics of the obstacles which impede their motion. In particular
two parameters are relevant for theoretical defect dynamics, the (Gibbs)

activation energy AG for flow processes and the activation volume V which
a a

we identified above as 3 A, with A the critical area swept out, and which can

be shown to be the stress derivative of AG V -(SAG /3a)
a a axHowever direct experimental quantities are not the wanted ones. Experiment

yields only the stress or temperature sensitivity of strain rate, i.e.
kT(3 In ê/3a)-„ V* and kT (3 £n È/3T) AH the latter being the activationi a a
enthalpy. Like metallurgical studies in the fifties or sixties, most of the

polymer work in the last ten years fails to take these differences into
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account. Thus V may stem merely from the stress dependence of £ and in this
case has nothing to do with A, or AH AG + TAS may be quite larger than

AG due to noticeable entropy contributions, i.e. temperature dependence of
AG : AS -(3AG /3T) The latter is of special interest in polymers since
AG is likely to be proportional to shear modulus y, which turns to be here

appreciably temperature dependent because of several possible molecular
relaxations. Thus, it has been shown that room temperature AH values may be more

than three times AG for P.S. or P.M.M.A. [9,10,12].
Accurate analysis of this type has been done so far only for a few cases

in constant strain rate compression tests, e.g. P.S. or P.M.M.A, [9,10,12],
P.V.C. [21], polyimid resins [19], At least for the studied thermoplastics,
it shows conclusively the existence of two different deformation modes on

both sides of a "critical" temperature T Below T it has been demonstrated
* c c

that V - V 3 A is small and moderately variable - of order of a few

monomer volume in the solid : 5.5 v for P.S. and only 1.5 v for P.M.M.A, -y
furthermore AG is proportional to T, as Arrhenius equation predicts when E

is a constant, and £ not a sensible function of stress. Hence the strain rate
o

is exponential with stress for the essential, and corresponds to a barrier
energy AG AG + (o-cr.)V - 0.65 eV both for P.S. and P.M.M.A. Above T

o a 1 a c
in contrast, a lower energy process takes place. AG vs T levels up to a

a
plateau at 0.4 eV in P.M.M.A. and 0.5 eV in P.S., while E becomes very sensi-

o
tive to stress. Correspondingly the experimental volume V* does not reflect

*
anymore the activated area A, but only the stress dependence of £ ; it rises
steeply as yield stress decreases and is consistent with a law of the type
• 2
£ ^ (0-0.) All these findings are reminiscent of a "diffusional" plasticity
by opposition to the low temperature mode, rather akin to a "glide" plasticity
as referred to crystal terminology. Note that such values of energies allow
us to rule out any breaking reforming of covalent bonds as deformation

process.
T values increase roughly logarithmically with £n e and at usual labo-

C -4 -5 -1
ratory rates (10 to 10 s fall generally below room temperature : 160 K

for P.V.C., 230 K for P.M.M.A., 280 K for P.S. so that room temperature
deformation belongs to the high temperature diffusional mode. In particular
the relatively large values of V quoted in the literature as "Eyring
volumes" are not true activation volumes as often concluded misleadingly.
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This two mode scheme has been successfully confirmed recently by neutron

structural investigations [22], The shape of polymer coils in a shear band

has been observed by small angle neutron scattering, in atactic polystyrene
deformed by compression at a constant strain rate. When straining below that
temperature T coils are seen deformed into an oblate spheroidal shape which

can be deduced from the initial sphere by simple shear ; the shear strain
observed at coil scale is then equal to the one carried by the macroscopic

shear band itself, as measured from the offset of a surface groove - i.e. about

unity at yield. This observation demonstrates clearly that as micro-shear
bands extend through the bulk, they leave in their wake chain segments oriented

along the shear band direction, which is confirmed by the rising of a

strong and homogeneous birefringence in the whole band. For the essentials,
this process is akin to dislocation glide in solids.

On the contrary, it is quite surprising to find polymer coils in their
unperturbed shape, and still as unchanged spheres, after deformation above T

This is found to hold not only at the overall coil scale (i.e. in the Guinier

range) but also at a scale ten times smaller (i.e. in the intermediate range);

only at the scale of two or three links some change is observed as compared

with a blank specimen. This means that a large part of chain orientations in
the band has relaxed out, probably as 3_loops can now climb in addition to
glide resulting in a more extensive molecular rearrangement. Yet some remanent

shear-strain, of order 0.6 to 0,7, is retained in the band - now much more

diffuse in character and with a birefringence oscillating from place to place.
-2While internal stresses of order 10 y are still present, being likely

produced by the created stacking fault as explained above, the thermal component

of flow stress decreases exponentially with temperature like in crystalline
climb deformation. Although it is clear that T and the constant value

obtained for AG are related to the so-called 3-secondary relaxation (i.e.
the motion of a small number of monomer units about the chain backbone) [13],
and that this relaxation in turn is involved in free volume transport at short
to moderate range in solid polymers, it has to be said that no detailed model

is at present available for the defect behaviour and the origin of thermal

component CT above T This should be.with the unresolved important problem of
defect nucleation, one of the main challenge left for future work in this
field.
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