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Polymer glasses : defects and plasticity on a molecular scale

B, ESCAIG

Laboratoire des Structures et Propriétés de 1'Etat Solide
Université de Lille I et C,N.R.S, (L.A. 234)
59655 VILLENEUVE D'ASCQ Cedex - FRANCE

1. INTRODUCTION

Polymeric materials are systems build up as an intricate assembly of long
covalent molecular chains. Because of entropy, chains are highly folded and
neutron experiments, probing a few deuterated chains in the bulk, picture them

rather as coils of radius RﬂJNI/Z

, with N the number of units in the chain.
In order to build up a bulk density independent on molecular weight (M= Nm),
such coils have to be strongly interpenetrated, at least in three dimensions ;

1/3 (since g3 = Md—l, with d the density), which

for, their spacing g goes as M
leads to an interpenetration parameter q = R/gﬁaM1/6 increasing with M. Final-
ly, long chains loop back on themselves forming '"physical nodes" or entangle-
ments, a configuration where two different segments (belonging either to the
same or to different chains as well) can only slip onto each other but cannot
cross over each other. As density is independent on molecular weight, so is
the entanglement spacing ; every Ne units, an entanglement is found along a
chain. Ne is a characteristic number of the polymer and is most of the time
as high as a few hundred.

The deformation of such materials occurs by uncoiling covalent links
rather than breaking them ; therefore only van der Waals interactions are
involved, much as the deformation of genmeral organic solids, However, the chain
structure imposes geometrical constraints on these uncoilings. Keeping unchanged
the valence lengths and angles, lets bonds still free to move on their valence
cones. In this way, uncoiling a bond requires moving a number of neighbouring
bonds - at least, ten in a real chain. These collective movements can take

place under stress in fluid phase, like polymer melts above their glass tran-
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sition temperature Tg’ i.e. when thermal energy is larger than the weak inter-
molecular (van der Waals) potential., Thus, rubber elasticity account for defor-
mation from essentially a perfect gas theory taking into account only gauche-
trans transitions in a single chain,

Deformation processes in the solid state are quite different. Intermolecu-
lar barriers are now dominant over kinetic energy and preclude any of those
collective movements to occur, given the small mechanical energy input
available at yield conditions, about 9 €, b3 = 10—3 eV per unit link with
(Oo, EO) the stress and strain value at yield, and b3, the monomer volume in
the solid. As a result, perfect covalent parameters cannot be preserved every
where along deforming chains ; instead, distorsions in bonding have to be
strictly confined within cores of defects in the molecular arrangement, the
propagation of which produces a local shear strain. By this means, molecular
rods are left kinked in the wake of the moving front of micro-shear bands which
proceeds by distorting just a few more chains at a time while some others
relax out behind, into the kinked (trans-) shape. Of course, this picture is
nothing else than the mere dislocation picture of plastic shear propagation,
and it helps to understand here how links can be unfolded without entailing
the unrealistic motion of numerous successive units.

A part from the early model of Robertson [1], which deals with a fluid-
like model of deformation and is only relevant near to Tg [2], the proposed
models of non elastic deformation in glassy polymers introduce all this
central idea of local defects in the chain arrangement ; they describe their
yielding as a process basically heterogeneous at the molecular scale, like the
repeated expansion of such defects. Therefore, we give first in the following
a brief survey of the physics about these defects, with predictions about flow
parameters which can be expected. As a matter of fact a great deal can be
learned about defects from the flow kinetics of materials, and specially from
the stress sensitivity of strain-rate, or the activation volume. We show in
particular, that this type of data give a strong support to a localized dislo-
cation loop mechanism as a realistic model to account for experimental mecha-
nical behaviours of thermoplastics and thermo-set resins as well. Inversely,
the knowledge of defect physics in polymers can stimulate further understan-
ding and control of such behaviours. Finally, we report on recent accurate
mechanical data, with a special attention to temperature effects, Thus two

different deformation modes are found in current glassy polymers depending on
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temperature. At lower temperatures, the mode is quite reminiscent of usual
dislocation glide in crystals, while it is the thermal movement of a few
in-chain units above some temperature (near to TB in the internal friction
notations) which gives rise to another mode, quite akin to the diffusive plas—
ticity well-known in crystals, and characterized here by an almost complete

relaxation of chain unit orientations.

2, THE DEFECT PHYSICS

According to the basically heterogeneous nature of deformation processes
in solids, plastic shear strains are confined to a small ratio of total volume,
In glassy polymers, they take place either within more or less diffuse shear
bands, visible as surface markings left by the deformation [3,4], or as loca-
lized crazes [5,6] . Crazes are crack-like defects with numerous polymer
fibrils wich bridge the gap between crack interfaces, giving an overall densi-
ty about half the one of the bulk. Typical of the low surface energy in
polymers, they form from a mechanical instability of the crack front under
a hydrostatic tensile component of the stress field. They have been much
studied inthﬂlast ten years, and numerous reviews are now available [7].

Shear banding. is more poorly known, and is at present time the interest of a

number of works. We restrict our review to it in the following.

2.1 The Frenkel picture of an elementary shear band

The simplest way to confine strains to a shear band is to allow the same
shear shift everywhere at each monomer site, within a deformation band reduced
simply to two successive layers of chain segments. In this configuration,
featuring one part of the solid shifted relative to the other, strains are
delocalized over the slip interface, while they are localized along its normal;
accordingly, it can be viewed as a one dimensional confinement, Let us assume
that segments have slip past a distance x one above each other at any segment
site, and let B be an average species between units, Frenkel produced a simple
argument for estimating the éorresponding stress, which has to be zero at
x = 0.5 b and x ¥ b, and linear in shear, o=u x/b at x>0 (u is the elastic
shear modulus) ; the simplest function fitting these conditions is a sine
curve, o= (u/2II) sin (2IIx/b), giving a flow stress 01=0M==u/2H. As pointed out
by Bowden and Raha [ 8], this argument, first developped for crystals, still

holds for any amorphous solid as well since periodicity is not essential to it;
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actually, extrapolating experiments down to zero Kelvin shows that flow
stresses of order u/2ll are reached in polymeric glasses [2,9,1Q] . This value

represents the theoretical (or maximum) shear resistance of solid polymers.

2.2 Dislocations in glasses : a simple model

At temperatures different from zero Kelvin, yield stresses are much lower
(from u/10 at 150 K down to p/40 at 300 K for polymethylmethacrylate - PMMA -
for example), so that strains have to be more strongly confined. The next step
is to localize molecular misfits only along a line - or a narrow ribbon - of
the slip interface, much like a fold in a carpet, so that a two dimensional
confinement is obtained. Clearly, the line defect introduced here is the
boundary between the part of slip interface which has undergone slip and the
part which has not ; given a constant shift vector equal to the average unit
spacing b, the line is a Volterra dislocation of Burgers vector b, the sim-
plest model of a micro-shear band front.

Due to the random distribution of molecular sites over the slip interface,
the relative shift of one of its lips relative to the other by a constant
vector b creates unavoidably a number of molecular misfits, i.,e. a stacking
fault interface of energy per unit area Yy is trailed behind the moving dislo-
cation. Friedel [11] has developped this model in order to account for flow
stresses at lower temperatures in metallic glasses. The energy Y is modelled
as the strain energy build up in shifting one lip of a corrugated surface
relative to the other by b ; there, corrugations are assumed to have a height
h = 0.1 b and a repeat period b, featuring the ensued atomic misfits in a
volume b per unit area of the interface. Therefore vy = 0.5 uezb with a shear
strain € = h/b, i.e. Y = ub/200. The stress o for trailing the fault,

0 = vy/b = u/200, is the flow stress in this model, It shows that o/p is tempe-
rature independent and of the order 10_2, which is actually observed for
metallic glasses at lower temperatures ; also, it is at the origin of a back

stress which accounts for the recoverable part of the strain.

2.3 The case of polymeric glasses : dislocations with fluctuating Burgers

vector
Glassy polymers show flow stresses higher than the above figures almost
by a factor ten. In addition the flow stress is clearly temperature dependent

and can be written [13] :
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o =o (T,e':) + 0,

where Oi/u is taken as independent on temperature, in contrast to Oxfu, which
is termed the thermal component of flow stress. Recent experiments show a5

is of order 10"2u (1.3 lO—zu in P.M.M.A, and 0.8 in polystyrene [12] ), so
that it might well result from the above stacking fault mechanism. However,
the appreciable thermal component Ox, varying for ex. from p/12 at 150 K down
to /86 at 300 K in P.M.M.A., is a characteristic feature of polymeric glasses
and must have another origin ; it is typical of the existence of specific
localized obstacles.

Turning back to the aﬁove picture of a dislocation in a metallic glass,
the model is visibly oversimplified. The computation of stacking fault energy
does not take into account severe atomic misfits which have yet to be produced
at some places by a constant shift of the random atomic layer, like one atom
sitting just at the top of the atom below. In fact, the computed energy ¥y
corresponds to some subsidiary minima in configuration energy, or maxima in
compactness, in which very bad misfits have already been relaxed out by local
atomic rearrangements. The latter are equivalent to allow for some fluctua-
tions of Burgers vector along the dislocation line, in order to fit it to the
local atomic structure swept out. In terms of Volterra dislocations - which
must keep a constant Burgers vector along their lines - it means that at point
M where the local structure fits some Burgers vector b(M), a small dislocation
loop of vector b(M) - b = B merges into the main dislocation line of vector
b ; B is much smaller than b, and should be close to the width of the distri-
bution of atomic spacings. Such loops describe above atomic rearrangements,
making the shift vector varied from place to place through the swept area.

In other words dislocations in glasses have to be of the Somigliana type, as
Li pointed out [ 14] ; these can be represented by a continuous distribution

of Volterra dislocations of infinitesimal Burgers vectors which we sketch here
by a stacking fault, there where atomic misfits are weaker, plus a collection
of localized loops of vectors B, there where they are stronger.

In metallic glasses, where units are simply atoms and bonds are not
strongly oriented, these accomodation loops should be a few b in size, with
a vector BB very.small as judged from the glass density, for example, which
achieves about 99 7 of the crystal density. Therefore, they should form easily

with the aid of the only thermal energy at all temperatures accessible by
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experiments ; as a result they do not contribute sensibly to the flow stress,
i.e. Ox << g, and g = oy = y/b. In such materials, flow stresses at lower
temperatures (i.e. in the so-called heterogeneous flow mode) are probably due
essentially to stacking faults, as proposed by Friedel.

In polymeric glasses, covalent chains restrict local molecular movements
to some extent owing to two major structural features : (i) the chain stiff-
ness, as represented by the statistical chain element bst ; and (1i) the
chain entanglements, characterized by their spacing A in the slip interface.
Both factors result into a glass structure more open than for metallic glasses
with a density ratio to crystalline phase of only 0.85 to 0.95 [15]. The
statistical chain element is the step length of the freely jointed chain
(i.e. with all valence angle requirements removed) "equivalent" to the real
chain as for its contour length and its end-to—end distance. Physically, bst
means the distance beyond which only, two links of the same chain are comple-
tely random in direction due to successive rotations on valence cones. It
ranges around a few C-C lengths (Ko = 1.5 2), being about 22 E for polystyrene
(P.S.) and only 11 R for P.M.M.A., as obtained from small angle neutron or
X-ray experiments [ 16]. This parameter allows us to model chain entanglements
as spherical regions of radius bSt within which relative movements of units
are strongly restricted to some directions by local steric hindrances. The
spacing of such regions in the slip interface, A, is related to their three

1/2

dimension spacing x = Ne a (where a is an elementary length defined for

the purpose) by :
2b Xz = x3 = a3 N3/2
st e 9
a can be evaluated experimentally from the ratio o = R"/M (R is the end-to-

end distance and M is the molecular weight of the chain)and the molecular
weight m of monomer unit, a2 = mo, so that

A=y ) A (2bst)"”2

In spite of some experimental scatter in different parameters, this leads to
figures as A = 140 R for P.S., and A = 110 R for P.M.M,A. at room temperature.
Finally, a reasonable estimation of the Burgers vector length b is the
distance of closest approach of two chains. Electronic radial distribution
functions from X-ray data [17] give b = 5 R and B = 1 A = 0.2 b (taken from
the width of corresponding peaks on the r.d.f.) for vinyl chains like P.S.

or P.M.M,A. Note this value for b is consistent with the monomer volume v
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allowed by density data, which we can write for cylindrical units v=11b2c,
with ¢ as the unit length along the chain : ¢ = 2 2, hence b = 4.8 A and
4.6 A in the case of P.S. and P.M.M.A. respectively.

Above numerical estimates show entanglements might be efficient obstacles
to dislocation motion in glassy polymers (A = 28 b in P.,S. and 22 b in
P.M.M.A.), responsible for the thermal component Qx specific to their flow
stresses. In order to move forward, dislocations have to cut through'such
entangled zones in changing locally their Burgers vector from b into ca.

b £ B ; this can be done readily in nucleating small loops of vector B right
at contact with zones. As a result dislocations can only move when nucleating

ahead small adjacent B-loops of approximated diameter 2b_ (9b for P.S., and

t
4.5 b for P.M.M.A.) and leaving behind in their wake a series of similar
small loops [ 18]. Given some moving dislocation length, fluctuations in its
Burgers vector entail fluctuations in its (core) energy, From the point of
view of dislocation mechanics, the situation looks quite the same as in those
crystals where intrinsic lattice friction (Peierls forces) is dominant ;
B-loop nucleation finds its analogue there in the well-known double kink
mechanism. Accordingly, flow stresses (or Ox) should depend strongly on tempe-
rature, which is reflected in a small activation volume Va, proportional to
(31/30™); [13] .

The latter writes here Va = B A, where A is the area swept out by the

dislocation from its equilibrium to its critical activated configuration. For

: ¢ 2
A should be some fraction of loop area II bS =

polymers in which A >> b £

st?

N 2
Va =~ f 8 bst

with f being in principal stress dependent and in practice in between 1 and
3. Experiments give Va = 900 R3 and 220 33 for P.S. and P.M.M.A. respectively
at lower temperatures [9,10,12,13]. With previous estimates of B and bst’
it gives a reasonable value for f, f = 2,

For strongly cross—-linked resins or stiff thermoplastics, it may occur

that A £ b that is to say that steric hindrances exist everywhere so that

’
sensible Bzigers vector fluctuations are needed all along the dislocation
line. This case is still more akin to the Peierls forces picture ; the area A
should then have a width b and a length KC(O) which by analogy decreases with
o rather strongly from about 100 b down to a few b in the activation range.

Typically in the middle of the range, one might expect £ = 10 b, so that :
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that is to say activation volume of the order of one momnomer volume or less
should be anticipated. Such values have been observed on polyimid resins,
together with a stress dependent activation volume of this type [19], in

agreement with these predictions.

2.4 Other specific models

The above description of dislocation motion in polymeric glasses has
stressed the need to consider local dislocation loops as the type of defect
merely responsible for Ot, i.e. for the largest part of flow stress., Loop
defects have been also invoked about ten years ago in two prominent models we
would briefly review now.

Bowden and Raha [ 8] have proposed to describe the yield behaviour of
glassy polymers by the repeated nucleation of platelet-shaped sheared zones
which can be modelled readily by standard dislocation loops of constant
Burgers vector b. Once a nucleus is formed by thermal activation over some
small critical size (which is stress dependent and in practice not larger
than a few b), the loop expands to some extent under applied stresses. For the
essential, this kind of model already worked out in dislocation physics is
known to give relatively large activation volumes - i.,e., critical sizes - as
soon as (0/u) is of order of the low values observed in experiments, that is
to say, is hardly thermally activated. Although (o/u) for polymers is rela-
tively large ca. a few 10—2, the model still suffers from this limitation ;
in order to account for the steep experimental ¢ vs, T plots, authors fit
these plots with T dependent b values and with a one Herz elastic modulus
u(T) - which varies sensibly with T at this frequency - without justifica-
tions. Eventhough, activation volumes which can be calculated from the fits
are about ten times larger than experimental ones (e.g. b = 3.5 R, critical
loop radius RC = 5b, hence Va = I Ri b =75 b3 for P.M.M,A. instead of a
few b in experiments).

Argon has given a theory of yielding of glassy polymers by modelling
deformation as a kinking of a micro-bundle of a few parallel molecular rods
(1 to 3 or 4) [20] . Elastic counteraction of neighboring chains against
kinking is evaluated in an elegant way, by describing the kinking of molecular

rods as resulting from the stress fields of two equal and opposite, closely
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spaced wedge disclination loops extending over the bundle cross-section at
points of kinking, Parameters of the model are the kink angle, the rod radius
and the bulk site density. Although parameter fitting can reproduce 0 vs T
plots (with u taken apparently once again at 1 Hz), activation volumes are

1/

only weakly stress dependent (as o 6) and still too large : in P.S., around
1750 33 (experiment gives 900) and in P.M.,M.A., around 1500 33 (experiment
gives 220).

To sum up, all the models are based on some very local defects, nucleated
repeatedly. In comparing with experiments, crucial points are (i) the choice
of the measurement frequency of the used shear modulus and (ii) the agreement
with experimental activation volumes [ 13]. Although being still developped
in a semi~quantitative form, the model of dislocations with fluctuating
Burgers vector seems to be the one which is able both to cope with experimen-—
tal values of V_ and to describe analogies and differences with metallic

glasses on a structural basis,

3. THE EFFECT OF TEMPERATURE ON DEFORMATIQN MODES OF GLASSY POLYMERS

A precise thermodynamical analysis of activated deformation (yielding)
can be performed in glassy polymers, following recent techniques of physical
metallurgy [ 13]. The aim is to achieve defect parameters of concern in flow
processes, the kinetics of which is of Arrhenius type :

€ =€ (0,0’i,T) exp - AGa (o*,o'i,T)/kT

where € is the strain rate and AGa the Gibbs activation energy. From this
analysis, a number of defect features can be learned like their mobile density
(from éo), their nucleation rate per unit stress (BN/BO)é [ see in ref 13],
and characteristics of the obstacles which impede their motion. In particular
two parameters are relevant for theoretical defect dynamics, the (Gibbs)
activation energy AGa for flow processes and the activation volume Va which
we identified above as B A, with A the critical area swept out, and which can
be shown to be the stress derivative of AG_, V_ = —(BAGa/BG)T-

However direct experimental quantities are not the wanted ones. Experiment
yields only the stress or temperature sensitivity of strain rate, i.e,
kT(3 £n é/BO)T = v* and sz(a £n E/BT)G = AHa, the latter being the activation
enthalpy. Like metallurgical studies in the fifties or sixties, most of the

polymer work 1in the last ten years failsto take these differences into
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account. Thus Vx may stem merely from the stress dependence of éo, and in this
case has nothing to do with A, or AHa = AGa+-TASa may be quite larger than
AGa due to noticeable entropy contributions, i.e. temperature dependence of
AGa : ASa = —(BAGa/BT)CF . The latter is of special interest in polymers since
AGa is likely to be proportional to shear modulus |y, which turns to be here
appreciably temperature dependent because of several possible molecular rela-
xations. Thus, it has been shown that room temperature AHa values may be more
than three times AGa for P.S. or P,M.M.A. [9,10,12].

Accurate analysis of this type has been done so far only for a few cases
in constant strain rate compression tests, e.g. P.S. or P.M.M.A, [9,10,12],
P.V.C. [21], polyimid resins [19]. At least for the studied thermoplastics,
it shows conclusively the existence of two different deformation modes on
both sides of a "critical temperature T.. Below T_, it has been demonstrated
that V™ = ¥, ® B A is small and moderately variable - of order of a few
monomer volume in the solid : 5.5 v for P,S. and only 1.5 v for P.M.M.A, -3
furthermore AGa is proportional to T, as Arrhenius equation predicts when
is a constant, and €5 not a sensible function of stress., Hence the strain rate
is exponential with stress for the essential, and corresponds to a barrier
energy AGO = AGa + (c-oi)Va =~ 0.65 eV both for P.S. and P.M.M.A. Above TC
in contrast, a lower energy process takes place. AGa vs T levels up to a
plateau at 0.4 eV in P.M.M.A. and 0.5 eV in P.S., while €, becomes very sensi-
tive to stress. Correspondingly the experimental volume VX does not reflect
anymore the activated area A, but only the stress dependence of éo ; it rises
steeply as yield stress decreases and is consistent with a law of the type
éo N (O—Oi)z. All these findings are reminiscent of a "diffusional" plasticity
by opposition to the low temperature mode, rather akin to a "glide" plasticity
as referred to crystal terminology. Note that such values of energies allow
us to rule out any breaking reforming of covalent bonds as deformation
process.

TC values inczease rg;ghly logarithmically with fn € and at usual labo-

to 10

for P.V.C., 230 K for P.M.M.A., 280 K for P.S. so that room temperature

ratory rates (10~ s—l) fall generally below room temperature : 160 K

deformation belongs to the high temperature diffusional mode. In particular
the relatively large values of v* quoted in the literature as "Eyring

volumes" are not true activation volumes as often concluded misleadingly.
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This two mode scheme has been successfully confirmed recently by neutron
structural investigations [ 22]., The shape of polymer coils in a shear band
has been observed by small angle neutron scattering, in atactic polystyrene
deformed by compression at a constant strain rate. When straining below that
'temperature Tc, coils are seen deformed into an oﬁlate spheroidal shape which
can be deduced from the initial sphere 6y simple shear ; the shear strain
observed at coil scale is then equal to the one carried by the macroscopic
shear band itself, as measured from the offset of a surface groove - i.e. about
unity at yield. This observation demonstrates clearly that as micro-shear
bands extend through the bulk, they leave in their wake chain segments orien-
ted along the shear band direction, which is confirmed by the rising of a
strong and homogeneous birefringence in the whole band, For the essentials,
this process is akin to dislocation glide in solids. |

On the contrary, it is quite surprising to find polymer coils in their
unperturbed shape, and still as unchanged spheres, after deformation above Tc.
This is found to hold not only at the overall coil scale (i.e. in the Guinier
range) but also at a scale ten times smaller (i.e., in the intermediate range);
only at the scale of two or three links some change is observed as compared
with a blank specimen. This means that a large part of chain orientations in
the band has relaxed out, probably as B-loeps can now climb in addition to
glide resulting in a more extensive molecular rearrangement. Yet some remanent
shear-strain, of order 0.6 to 0,7, is retained in the band - now much more
diffuse in character and with a birefringence oscillating from place to place.
While internal stresses of order 10—2u are still present, being likely pro-
duced by the created stacking fault as explained above, the thermal component
of flow stress decreases exponentially with temperature like in crystalline
climb deformation. Although it is clear that T, and the constant value
obtained for AGa are related to the so-called B~secondary relaxation (i,e.
the motion of a small number of monomer units about the chain backbone) [ 13],
and that this relaxation in turn is involved in free volume transport at short
to moderate range in solid polymers, it has to be said that no detailed model
is at present availahle for the defect behaviour and the origin of thermal
component o above Tc' This should be,with the unresolved important problem of

defect nucleation, one of the main challenge left for future work in this
field.
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