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ABSTRACT

This paper reviews recent advances in the calculation of electronic
and vibrational states in metallic glasses. It starts with a brief discussion
of the state of the art of structural modelling and the simplifications of the

different modelling algorithms on the electronic and the vibrational properties.

The various techniques for calculating the spectra of elementary excitations

in the absence of translational symmetry (equation of motion method,
recursion technique, multiple scattering cluster calculations, effective medium

approximation) are critically reviewed. Exemplary applications of these methods

to metallic glasses, involving comparisons with recent experiments on electron
and phonon states are presented.
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INTRODUCTION

Elementary excitations such as electrons, phonons, plasmons etc..
have been studied extensively in crystalline materials by both experimental
and theoretical techniques. For amorphous solids the situation has not been

nearly as thoroughly investigated nor as well understood. It is true that the

difficulties start at a disconcertingly elementary level ; in a crystalline
solid the atomic coordinates are uniquely specified by the results of a neutron

or X-ray scattering experiment. Given the atomic structure, we construct
the Hamiltonian and the Bloch theorem teaches us how to diagonalize this
Hamiltonian and to calculate the bands (dispersion relations of the elementary

excitations), densities of state or other quantities that we are interested in.
For an amorphous material, a scattering experiment yields only angular averages

over interatomic distances (pair correlation functions). Thus the first
task will consist in the construction of a structural model (a set of atomic

coordinates) which should reproduce the main characteristics of the random

geometric conditions for the interpretation of the diffraction data and serve as

a starting point for the computation of the electonic, dynamic,magnetic etc...
properties and their relevant spectral implications. The calculation of the

spectra requires the construction of the Hamiltonian (but this can be done in
the same fashion as for crystalline solids) and the choice of an efficient
method for the diagonalization of the large Hamiltonian matrices without the

use of Bloch's theorem. Since individual eigenvalues of the secular matrix have

little significance, it is even preferable develop efficient means for the

direct determination of the spectral functions and densities of state.

STRUCTURE AND FORCES

There are two essentially different ways for constructing amorphous

model structures the cluster relaxation method and the soft sequential
addition technique (1). The cluster relaxation method starts from an idealized
random structure constructed without reference to the interatomic interactions.

The second step consists in the structural relaxation using certain
interatomic potentials. In the soft sequential addition algorithm the interatomic

forces are introduced from the very beginning : starting from a small

irregular seed, atoms are added from random directions, their final sites are
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determined by surface rather than bulk-effects. Hence it is necessary to proceed

to a global relaxation of the cluster after its initial construction.
This and the inherent complexity of a soft sequential addition algorithm have

led to the fact that it is nowadays rarely used for the construction of
models nient to represent specific amorphous substances, but it is still of
fundamental interest. The main problems of the cluster relaxation approach are
the choice of a starting structure and of the interatomic potentials and the

compatibility of the two. There are two different techniques to produce a

starting structure : one of them emphasizes the dense random packing of hard
spheres(DRPHS)of different diameter (2,3), the other the chemical bonding
which produces certain characteristic arrangements of atoms ("fundamental"
or "molecular" unit) of high stability. Those unitsare then linked together
to form a random network (4). Note that the two approaches are not necessarily

radically different : certain chemical constraints (e.g. avoidance of
certain types of nearest neighbours) may be added to the packing algorithms in
the form of supplementary conditions. The next step is the determination of a

set of interatomic potentials : only for simple metal alloys they can be

constructed a-priori using pseudo potential techniques (5,6) (however, note

the-complications arising from the fact that these potentials are density

dependent), for any other material empirical potentials of a Lennard-Jones or

Morse-type must be used. Finally, starting structure must be relaxed under

the action of the selected interatomic potentials by following some energy

minimization algorithm (7,9).For systems with no or only little compositional
ordening this alloys indeed for an occurate reproduction of the diffraction
data by a method which is entirely from first principles (Fig. 1).

For amorphous transition metal-metalloid alloys on the other side

the existence of a strong chemical as well as topological short range order

is by now firmily established. It is remarkable that models starting from
rather different points (i.e. DRPHS) (3,10) or random stacking of trigonal
prismatic units (4) achieve essentially the same degree of success, judging from

the agreement with the experimentally determined partial radial distribution
functions (11), see Fig. 2. In a recent study Fujiwara (12) has shown that
the formation of trigonal prismatic clusters during the relaxation of a binary

DRPHS model is due mainly to the difference in the atomic size and the

short range interaction between the metal and the metalloid atoms. Evidently
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Fig. 1 : Composite (neutron

weighted) interference function

S(Q) and pair correlation

function g(R) for the

metallic glass Mg7QZn

Full lines experiment at
T 273 K (Mizoguchi,
unpublished), histogram theory
(based on pseudo potential
derived interatomic forces,
including Deby-Waller
damping resp. thermal broadening

calculated for T 273K,

after ref. 9.)

one of the goals of an electronic structure calculation for these materials
consists in providing a microscopic justification and possibly an improvement
of this type of interatomic potential.
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Fig. 2 : Comparison of the

experimental partial radial
distribution functions for
amorphous Fe-j-B. (dashed

lines,after ref. 11) with
the model structure
(histogram,ref 10)

PHONONS

Given a model structure and a set of interatomic potentials, the
vibrational spectrum may be calculated either by a molecular dynamics simulation

or by the recursion (13) or the equation-of-motion (14) techniques. The

latter computes the vibrational density of states (DOS) projected onto an initial

state *>f in the form of a Fourier integral over the time dependent
displacement displacement correlation fonction, i.e.

T"

Here the u^ (t) are the a components of the time-dependent of the displacement
of the i-th atom from its equilibrium position, the u. (t 0) define the initial

stated, f(t) is a damping function introduced to minimize the effect of
the truncation of the Fourier integral at the finite time .Theu (t) are deter-
mined by integrating the Newtonian equation of motion numerically by a Runge
Kutta or predictor-corrector algorith (15). The recursion method works directly
in the energy representation, the projected DOS is given by the imaginary part
of the diagonal matrix element of the resolvent (üj2 - D + it5)~' i.e.
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¦ (T-^o
where D is the real space dynamical matrix.

The recursion method than proceeds by a transformation to a new

basis in which the dynamical matrix is tridiagonal. The inversion of the tri-
2 -1

diagonal matrix (co - D) finally produces a continued fraction representation

for the spectrum. Note that both the truncation of the infinite continued

fraction and the termination of the Fourier integral (1) introduces a finite
resolution in the spectrum (see Ref. 9,17 for details). The dispersion of

collective excitations may be investigated by means of neutron inelastic
scattering (16). If the initial stated is a plane wave with wave vector q and

polarisation vector e, the calculated spectrum n. Qu represents a spectral
function S R(Q,_o) of the dynamical Hamiltonian. More specifically we calculate

the spectral functions SNN(Q,o)) of number density fluctuations if all the

atoms are displaced initially or, if only the atoms of a particular species A

are displaced, the partial spectral function S .(Q,co). By fixing the orientation

between Q and e, longitudinal as well as transverse excitations may be

investigated (however, only longitudinal excitations may be probed experimentally).

The inelastic neutron scattering law S(Q,_o) may be calculated from

the spectral functions, superposing them with the appropriate weighting factors

(neutron scattering length, partial Debye-Waller factors, masses-see (9)

for details) and multiplying with the thermal occupation factors. In Fig. 3

the neutron scattering law for the metallic glass Ca Mg (for which the in-
teractomic forces may be derived from pseudo potential theory), calculated u-
sing the recursion method (9) is compared with experiment (16).

The agreement is generally very good, except for the high energy

tail of the experimental spectra which stems for hydrogen impurities in the

sample. The most striking feature of the spectra is the shift of the peak in
3(Q,co) to very low energies for momentum transfers around Q - Q the wave

vector where the static structure factor has its first maximum. The dispersion
law for collective density fluctuations is shown in more detail in Fig. 4.

Analytical calculations have shown that the dispersion minimum

near Q arises from a process which is best described as a "diffuse Umklapp

scattering", the relatively sharp peak of the static structure factor acts

like a smeared out reciprocal lattice vector (18).
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metallic glass Ca7QMg30 :

crosses experiment (Suck
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hu
(meV)

k (A"1)

Fig. 4 : Dispersion law per
propagatingcollective
excitation in glassy Ca QMg

Circles pear positions in
the calculated S(K,u), bars
show the width at half
maximum, crosses - peaks in
the measured spectrum.

For Ca-Mg alloys the mass and force constant differences are relatively

small. Therefore the vibrational bands relevant to the two components
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largely overlap and the two-component nature of the material doesn't show up

in the neutron scattering law. The mass and force constant disorder is much

larger for Mg-Zn glasses. The spectral functions of Mg and Zn vibrations in
amorphous Mg7QZn30 are remarkably different : the Mg states display the
by now familiar dispersion relation, although the large width of S (Q,ou)

for small Q and the shoulder appearing near Q- Qp indicate some degree of
interaction with the Zn vibrations. The Zn vibrations show nearly no dispersion
and are centred at low energies. For both longitudinal and transverse vibrations

the dispersion relations for two distinct modes corresponding to the a-
coustic and optic modes in the crystal can be determined. At very long
wavelength, these modes correspond to collective density and concentration
fluctuations, at short wavelength they can be identified with the incoherent
vibrations of the two atomic species. For longitudinal excitations the predicted

dispersion law can be compared with recent neutron inelastic scattering
experiments and good agreement is found (17).

In summary we find that the vibrational states in the glassy and

in the polycrystalline materials are surprisingly similar. Studies of the

interrelation between the local structural parameters and the local vibrational
DOS (9,19) reveal the origin of the remaining difference and explain the

relaxation effects observed in the vibrational spectrum.

ELECTRONS

The methods for the calculation of the vibrational spectrum sketched

in the last paragraph are equally applicable to a calculation of the e-
lectronic spectrum, replacing the dynamical Hamiltonian by an electronic
Hamiltonian based either on a tight-binding or muffin-tin orbital
approach (20,21). Another possibility is to represent the amorphous material
by a set of small irregular clusters (usually less than twenty atoms). At the

expense of this drastic restriction one gains the possibility of doing realistic

calculations for the atoms retained (22,23). Electronic band structure
calculations on hypothetical crystalline compounds of appropriate composition
have also been useful in the interpretation of electronic spectra of amorphous

alloys (24). The very fact that this is possible already shows that the

topological disorder is relatively unimportant. Very recently, the first application

of the effective medium approximation (EMA) to metallic glasses has



Vol. 56, 1983 Electrons and Phonons in Metallic Glasses 265

been presented (25).
Amorphous transition metal-metalloid alloys have been most widely

investigated (20,21). The results show : (i) The strong s-p hybridization
characteristic of the electronic structure of the pure metalloid (B,Si,P..)
is broken in the binary alloy. The s- electrons of the metalloid form a quite
narrow band situated well below the Fermi-energy., (ii) The p electrons of the
metalloid strongly interact with the d electrons of the transition metal.
This results in a narrowing of the d band as compared to the pure transition
metal and in a large bontiing-antibonding splitting of the metalloid p-states
(Fig. 5). This picture is well confirmed by photo-emission and soft X-ray
measurements : the principal feature of the spectrum is dominated by the
transition metal d-band, the antibonding p- states influence the form of the spectrum

at the Fermi edge, the structures observed at the low energy tail of the
main peak stem from the bonding p-states.

40
a-Fe84.9p15.1

Fe-.lc-

3~30 Fe-4s

2^^20- \ p-3p
i y\.- s \.i

\ i

olO P-3s

-0.5 ef 0 0.5
E(Ryd)

Fig. 5 : Electronic
density of states for
amorphous Fe„..P--. (after

Fujiwara (21)),
full line total DOS,

partial DOS as indicated.

Again the calculations reveal an astonishing similarity between

the spectra of the crystalline and the amorphous phases. Attempts have been

made to study the influence of different models of the atomic structure on

the electronic spectrum, but the possibility of extracting topological
information of any quality seems to be remote.

The electronic spectrum of amorphous alloys between an early (T)
and a late (T element of the transition metal series is characterized by a

large shift of the d band of the T component to larger binding energies whose

magnitude depends on the group number difference. Recursion calculations
(26),the EMA (25),cluster calculations (22,23),and band structure calculations
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for hypothetical compounds with CsCl, CuAu, or Cu Au structures (27) all
emphasize the importance of a hybridization of the d states of the two components.

The cluster calculations in particular demonstrate the predominant
influence of the local chemical order on the electronic structure as opposed to
the small influence of the topological disorder.

CuxZri-x

x 0.65
050
0 35

O20

— 10

05 0.5

Fig. 6 : Calculated electronic

density of states for Cu-

Zr glasses (after Fujiwara

(26)).

E-EF (Ryd)

Only very recently the first results for the electronic structure
of simple metal glasses became available. Low temperature specific heat

measurements (28), the investigation of the Compton profile and of the angular
correlation of the position annihilation radiation (29) all point to a

completely free electron like character of the electronic structure of amorphous

Mg 70Zn0 -.n- Therefore it was very surprising that the UPS and SXS spectra
measured on amorphous Ca-Al alloys of various concentrations seemed to indicate

a strong deviation from the free-electron character (24). Again the spectrum

of the amorphous alloy is characteristically similar to that of the
crystalline intermetallic compound CaAl„(cubic Laves phase) but different from

that of pure Al ((30), see Fig. 7). The SXS spectra of pure Al and of CaAl2

are well explained by a linearily screened pseudo potential. In agreement

with band-structure calculations on hypothetical crystalline Ca-Al(Cu.Au type)
and CaAl (CsCl type) alloys (24) it is found that the dominant effects

are (i) the incipient population of the Ca-d band and (ii) a splitting of the

s-p band,most prononced on the Al-sites, whereas the s- and p states of Ca

contribute equally to both peaks of the valence bands. The reduced hybridization

of the Al s and p states stems from the reduced overlaps from nearest
neighbour like-atoms, the Ca orbitals on the other side are subject to strong
hybridization because of the high coordination number for unlike neighbours
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and the decrease of the Ca-Ca distances on alloying (6;.

CONCLUSIONS

The results obtained up to now emphasize the importance of local
factors in determining the properties of elementary excitations in glasses :

inspite of the absence of long-range translational invariance, diffuse
Umklapp processes characterize the phonon spectrum, and the remaining differences

in the vibrational DOS of the glass and the polycrystal may be traced
back to a wider spectrum of variations of the local structural parameters in
the glass. The electronic spectrum of metallic glasses and of their corresponding

crystalline alloys is characterized by a interaction between the orbitals
of the two constituents : p-d hybridization in transition metal-metalloid
glasses, d-d hybridization in intertransition metal glasses, and s,p - s,p
interaction in simple metal glasses ; the long range order influences only
minor details of the electronic structure. If the aim of the electronic
investigation was to reveal the origin of the stability of metallic glasses, the

result must appear disappointing. On the other hand the systematic investigation

of rapidly quenched alloys has revealed many new and often unexpected
aspects of the electronic structure. Our improved knowledge should yield to
refined models of the interatomic interactions as a first step towards the self
consistent calculation of the atomic and the electronic structure.
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