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DYNAMIC CORRELATIONS IN THE ELECTRON GAS.°

* *h
F. Brosens and J.T. Devreese

Physics Department, Universitaire Instelling
Antwerpen, Universiteitsplein 1, B-2610 WILRIJK

Abstract.

For the calculation of many properties of simple
metals, the "jellium" model is widely used as a first‘approxima—
tion. The frequency- and wave vector-dependent dielectric
function of this model not only allows to study its dielectric
response, but also to calculate several other properties, e.g.
the ground state energy, the density-fluctuation excitation
spectrum, the pair correlation function, ...

In the last decade, experimental and theoretical
evidence revealed the need for a frequency-dependent description
of exchange and correlation effects. In the present paper, we
review a method for introducing these effects starting from the
equation of motion for the Wigner distribution function in the
presence of a weak external perturbation. The application of
the Hartree-Fock decoupling in this equation of motion leads to
an integro-differential equation, which is studied with a varia-
tional approach, leading to a frequency dependent "local-field
correction" G(g,w). The dynamical exchange effects substantial-
ly influence the dielectric function. For instance, compared to
RPA, the plasmon frequencies in the particle-hole continuum are
appreciably lowered. This tendency is confirmed experimentally.
Furthermore, in contrast to most other approximations, this
method satisfies a large class of consistency requirements and
sum rules, for which a dynamical treatment of exchange and cor-
relation is required.

Several other approximations to include dynamical
exchange effects in the dielectric function are discussed in the
framework of the Wigner distribution function, which shows their
interrelation in a transparent way. Most of these approaches

are shown to be approximations of the variational result.
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I. Introduction.

The calculation of many properties of simple metals is
based on the "jellium model". 1In this model, one merely studies
the interaction among the electrons themselves, whereas the
lattice of positive metal ions is replaced by a rigid uniform
positive background. The large amount of research on this
hypothetical system is not only due to its conceptual simplicity.
The main reason for the persisting interest is the fact that in
many real metals the conduction electrons can be approximately
treated as having a homogeneous distribution in space. Further-
more, many theories for inhomogeneous systems, use the jellium
model as a starting point for further investigations.

A basic quantity for the study of the jellium model is
the frequency- and wave vector-dependent longitudinal dielectric
function € (g,w), which not only allows the study of the dielec-
tric response, but also the calculation of other properties,
such as e.g. the ground state energy, the dynamic structure fact-
or S(q,w), the pair correlation function g(r), ...

Since the pioneering work [1] of Lindhard, Bohm, Pines,
Noziéres, ..., the dielectric function in the so-called Random
Phase Approximation (RPA) has been the standard reference basis
for further improvements. In this approximation, one calculates
the response of the electrons subjected to an external field,
assuming that each electron moves in the Hartree field of all
the other electrons. In the long-wavelength limit, the RPA
succeeds in explaining basically the dispersion of the energy of
the collective excitations, and simultaneously to combine the
ideas of screening, collective excitations and single-particle
excitations. However, despite its merits, the RPA is less
satisfactory whenever short-range correlations are important.
For instance, energy loss measurements of fast electrons and X-
ray scattering experiments revealed appreciable deviations in
the structure factor from the RPA predictions [2-8]. This fail-
ure of the RPA in the short-range description is also revealed
by the fact that for metallic densities the pair correlation

function becomes negative near the origin [9].
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A large variety of approximations has been proposed to
improve upon the RPA. In these approximations one calculates
the "local field correction" G(gq,») occurring in the dielectric

function, which is usually written in the form:

Qo(q,w)
e(gqw) =1 + (1)
l—G(qu)Qo(q'w)

In this expression, Q (q,w) is the Lindhard function:
p (o}

>
2 N+ (p)
4me 3 q
Qo law) = — Jd P55 (2)
q w - p.q/m

where w+ = w + ie accounts for the adiabatic switching of extern-
al perturbations, and Na(ﬁ) is a geometrical factor, related to
the equilibrium momentum distribution function fo(p) of the

electron gas:
Ny () = & [£2(B+hd/2) - £°(3-hd/2)] (3)

The Lindhard function Qo(q,w) is analytically known [1], and it
determines the RPA dielectric function:

ERPA(quJ) =1 + Qo(q;m) (4)

The function G(q,w) describes the exchange and corre-
lation potential on each electron due to other electrons.
Originally, not much effort was done to include the frequency
dependence in G(g,w), and most studies concentrated on static
approximations G(q) [10-22], which were then often used in the
dynamic dielectric function. The interest in the explicit
frequency dependence of G(g,w) was rather exceptional [23], and
restricted to some limiting cases.

In the last decade however, the dynamics of the ex-

change and correlation hole became an important topic, in view
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of the more accurate measurements of the dynamic structure fact-
or at large wave vector [2-8], and because sum rules and causal-
ity arguments revealed that a static treatment of G(g,w)
necessarily leads to theoretical inconsistencies [24-26].

A variety of different approaches has been wused in
order to derive expressions for G(q,w) (although not many expli-
cit calculations of the full frequency- and wave vector-depend-
ence have been performed). In the present paper, the equation
of motion for the Wigner distribution function will be used,
because of its physical transparency, and because it easily
reveals the close connection between various approximations.

This approach essentially excludes a detailed discussion in terms
of the Mori formalism [27]. The latter method is particularly
useful for studying the dynamics of a system with known static
properties, since it guarantees by construction that the relevant
sum rules in the high- and low-frequency limits are satisfied.
The lack of detailed knowledge of the static properties of the
electron liquid however, complicates the interpretation of the
physical significance of the application of the Mori formalism

in this domain [28-30].

II. Decoupling of the equation of motion for the Wigner distri-

bution function.

The Wigner distribution function fc(ﬁ,ﬁ,t) is the
quantum analogue of the classical Boltzmann distribution function
for particles of spin ¢ with momentum 5 to be found in position
R at time t [31]. It is defined as

>
>

N 1 3 -ip.F/h +> r.. > T
fc(p,R,t) = 7;——;§ Jd r e 1P <WG(R - E)Wo(R + 5)>t (5)
Th

where SRR denotes the expectation value of the operators at
; + - . .

time t, and ¥, ¥ are the usual annihilation and creation opera-

tors for fermions. Similar to classical mechanics, the density

and current density are obtained from:
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n(R,t)

]
~1

Jd3p £ (bRt . (6a)

. >
5(R,t) Jd3p Bt (3.E,b) . (6b)

]
~1

In the presence of an external scalar field with
Fourier components epy , the equation of motion for fo(ﬁ,ﬁ,t) can
be derived (using the standard anticommutation relation for
fermions) from the commutator of w:(;')wo{g) with the hamiltonian.
As a result one obtains an expression which contains the two-
particle Wigner distribution function:

> > s>y 3y
f(z)(ﬁ,ﬁ';ﬁ,ﬁ',t) _ 1 : Jd3r Jd3r' e—lp.r/h o-ip'.T /h
oo’ (27h)
O N N 3 ¥
<y (R - Syl (R - Sy (R + )y R+ 3> (7)

One can proceed by deriving the equation of motion for the two-
particle Wigner distribution function and so on. Continuing
this way, one finds the well-known BBGKY hierarchy, in which
distribution functions of higher order enter successively. A
detailed study of the two-particle distribution function has
been made in [25].

The main problem is to find good approximations to
break this hierarchy, in order to be able to calculate the Wigner
distribution function, and subsequently the induced electron
density. In the present paper we adopt the Hartree-Fock de-
coupling, written schematically as:

+
<y W+T Y,> = <w+w ><T+W > - <yty s<yty > (8)
1°'2°3°4 14 2°3 1 3 2°4

One then obtains the equation of motion:

1l -+ Y
- Y N*(P)U+ + X (p,9,w)
fo(ﬁla:m) = 2 d T qw+ . - (9)
w = p.g/m
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where an is the total Hartree field:

2
- 4 e 3 5 > >
Udw = 93wt 2 g Jd p f_(P,/9sw) (10)

and io describes the effects of the exchange interaction:

o B2

X ( 5 [NZBVE (B',d,uw)-Nz(B)E (B,d,u)]

Qa

d,0) = 3 Jd3P ire B
|

(11)

fo(ﬁ,q,w) is the space-time Fourier transform of fc(ﬁ,ﬁ,t) -

+

fg(ﬁ), i.e. the non-equilibrium contribution in the Wigner
distribution function. Solving the integral equation (9-11)
allows to calculate the dielectric function with dynamical ex-

change effects, since the induced electron density

3 o > >
naw = g Jd P fc(p,q,w) . (12)

is related to the external field potential ewam through the

defining equation for the dielectric function:

4 e2 s
ep> + _____'!72_ n, = —a_ {13)
dw g qw E(th)

ITI. Comparison of various approximations.

Obviously, the exchange term (11) forms the complica-
ting factor in solving the equation of motion (9). Indeed, if
one neglects XO, the solution of (9) is easily obtained, leading

to the Lindhard distribution function:

i Nz (P)

L 1
J(B,d,0) = - 5 evz (14)

qw 1+Q_ (q, w) w - B.3d/m

Applying (12) and (13), one readily derives that this corresponds
to the RPA dielectric function (4).



Vol. 56, 1983 Dynamic Correlations in the Electron Gas 229

In an attempt to account for exchange effects, we have
applied a variational technique in [32], which consists in
deriving a functional F[fc(ﬁ,a,m)] with the property that the

equation of motion (9) follows from the extremum condition:

SF[f] =0 (15)
Gf (_f);a.w)
g
Taking as a trial function
trial L
£ 0BG ) = £ (3,80 vy, (16)

with Yaw independent of momentum p, an algebraic equation for
Y& follows from (15). This equation is readily solved. The
result for G(g,w), obtained in [32] is:

2 2,2 N (P) N+ (P*)
C (qw) =4mza 2re‘h Jd3p,jd3p - d

1
X
) 2
var a® Qg (q.w) o' = B.a/m BB

x [ - ] (17)

Although (17) is a rather complicated sixfold integral, it could
be reduced analytically to a double numerically tractable
integral. To the best of our knowledge, (17) has been the first
expression for G(q,w) which was evaluated with respect to both
the wave vector and frequency dependence. Details on the nume-
rical and analytical techniques, figures and tables, and a more
extensive discussion of the physical implications, can be found
in [32-35]. The results are:

1) The continuity equation, and all other sum rules checked
up to now are exactly satisfied.

2) G(g,w) is a universal function of q/kF and m/EF for all
densities. This seems to be confirmed by experimental
energy loss spectra of fast electrons in aluminum and
sodium [36], as illustrated in fig. 1.

3) The plasmon energy is substantially lowered compared to
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Fig.l. Fitted values of the real part of the local field cor-
rection for different wave vectors (expressed in units of
the Fermi wave vector, at the frequencies of the experi-
mental maxima [36] in the dynamical structure factor.

The circles and the squares represent the fitted data for

sodium (rS = 3.96) and aluminum (rS = 2.07) respectively.

RPA at large wave vector. In aluminum, this appreciably

improves the agreement with experimental data [6].
We have also used this variational technique in quasi-one-
dimensional systems, and dynamical exchange effects turned out
to allow, at least qualitatively, to explain the anomalous
plasmon dispersion of TTF-TCNQ [37]. For a guantitative analysis
however, more detailed information on the band structure is
required.

By a quite different method, the variational result

(17) was later obtained by Tripathy and Mandal [38]. They
applied the decoupling (8) in the equation of motion for the
double-time-retarded commutator of the charge-density-fluctuation
operators, and imposed conservation of frequency moments to all
orders in the Hartree-Fock approximation for the static proper-

ties. Their method is an extension of an earlier approximation
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by Toigo and Woodruff [39], who imposed only conservation of the
first frequency moment. Unfortunately, the explicit evaluations
of the dielectric function of [38] turned out to be seriously in
error [40-43]. _

The integral equation (2) has also been studied by an
iterative approach to first order in the exchange effects [23],
starting from the Lindhard distribution function (14), and treat-
ing %o as a perturbation. However, no explicit evaluation was
performed. The result obtained to first order is

eit(q,m) =1+ Qo(q,w) [1 + G

var(qrw)Qo(Qrw) ] (18)

Comparing (18) to (1), it is readily observed that the iterative
dielectric function is the first order expansion of the varia-
tional dielectric function.

It is interesting to note that the static limit of
(18) has been evaluated by Geldart and Taylor [18], by consider-
ing the diagrams for the proper polarizability to first order in
the electron-electron interaction. This diagrammatic expansion
has been evaluated dynamically by Holas, Aravind and Singwi [44],
again yielding the iterative dielectric function (18). The main
problem of (18) however is the fact that the imaginary part of
the dielectric function becomes negative for certain values of g
and w.

In this context, a different approach by Brener and
Fry [45] should be mentioned, who iteratively treated a set of
self-consistent equations for the self-energy, polarization and
Green's function [16]. Their dielectric function can be obtain-
ed by the iteration scheme discussed above, but starting from

the Lindhard distribution function (14) including the Hartree-
+

Fock self-energy in the denominator o' - E.a/m. A disadvantage

of this approach is that in each stage of the calculation the
continuity equation is violated.

A rather controversial point in the treatment of
dynamical exchange effects, is the fact that G___(g,w), as given

var
in (17), is logarithmically divergent at the boundaries of the
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particle-hole continuum w = h[qu + q2/2|/m. The physical sign-
ificance of these singularities is not quite clear [33-35, 44].
Recently it has beeh shown that a generalization of the trial
distribution function (16), including momentum corrections to
order pz, eliminates these logarithmic singularities [46], and
leaves Gvar(q,w) essentially unaltered outside the singular
regions. This is possibly an indication that the singularities
might be an artefact of the approximations made, rather than

having to do with the physics of the exchange hole.

IV. Concluding remarks

The variational solution of the decoupled equation of
motion (9-11) for the Wigner distribution might serve as a start-
ing point for further studies of exchange and correlation in the
dielectric function. Its connection to several other approaches
has been examined, showing that many of them are particular
cases or additional approximations to this wvariational approach.
Furthermore, the improvement upon RPA from dynamical exchange
effects, compared to experimental data, and the fact that all
checked sum rules are satisfied, gives confidence in the wvaria-
tional and related approaches, even in studying the equation of
motion for the two-particle distribution function [47].

Up to now, very few conclusions can be drawn on the
dynamic correlations beyond the exchange decoupling. Even in
the static limit, most recent studies make the approximation
that G(g,w) should not depend on frequency, although dynamical
sum rules are implicitly imposed [48]. Also numerical methods
up to now do not include the frequency dependence. For instance,
the recent calculation by Lantto et al. [49] of the dielectric
response using a Jastrow variational many-body wave function
[50], explicitly assumes a static approximation G(g) for G(g,w) .
One of the consequences is that the large vector limit in [49]
is not correctly related to the pair correlation function g(r)
in the origin. Also in the numerical treatments, one can hardly

avoid the unpleasant complication of accepting the frequency
dependence in G(q,w) .
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