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Anisotropy of electron impurity scattering in
dilute Al(Li)

By W. Joss,"*1) W. van der Mark**) and R. Monnier,*)
Laboratorium fur Festkorperphysik, Eidgenossische Technische
Hochschule, CH-8093 Ziirich, Switzerland

L. Cole*t) and W. E. Lawrence,i) Department of Physics,
Dartmouth College, Hanover, New Hampshire 03755, USA

and J. Deutz, Institut fiir Festkorperforschung der Kern-
forschungsanlage Jiilich, D-5170, Germany

(6. 1. 1983)

Abstract. The variation of the conduction electron scattering rate over the third-zone electron
sheet of the Fermi surface of aluminum, due to small concentrations of lithium impurities, has been
determined from de Haas-van Alphen effect studies. Theoretical results for the Dingle temperatures
for orbits on the second-zone hole and third-zone electron sheet of the Fermi surface are reported.
Several improvements to the previous theoretical treatment are discussed; these include nonlocal
exchange and correlation in the impurity-induced potential, the effects of lattice relaxation around the
impurity, and lattice backscattering. For the last point, we exploit the connection between the pseudo-
plane-wave and KKR-Green’s function formalisms. Despite these various improvements, the agree-
ment between experiment and theory is not improved substantially. Possible physical reasons for this
are discussed.

1. Introduction

The system Al(Li) has proven to be an interesting and stubborn testing
ground for a self-consistent treatment of electron-impurity scattering, particularly
as it appears in the anisotropic scattering rates of Bloch electrons on the Fermi
surface in dilute alloys. The de Haas-van Alphen (dHvA) effect has become an
important source of detailed information about these anisotropies [1, 2] and
measures orbital averages of the scattering rates around extremal orbits on the
Fermi surface in the form of Dingle temperatures
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where 77Y(k) is the bare electron-impurity scattering rate, 1+ A(k) accounts for
electron-phonon renormalization, and brackets denote the orbital average

<f(12>>=§dkf(1€)vzl(1€)/§dkuzl(f€), | @

with v, (k) the component of electron velocity perpendicular to the applied
magnetic field. These averages Xp, can in principle vary considerably from orbit to
orbit, and their anisotropy provides a stringent test of the theory, as our case
rather well exemplifies.

As pointed out in our earlier discussion [3], the choice of Al(Li) seems ideal
because the host band structure is well known, lattice relaxation around the
(substitutional) impurity is negligible (as we shall discuss); and as a result we can
focus our attention upon the Li impurity with its strong perturbation on the
conduction electrons. Accordingly, our initial theoretical treatment [3] employed
the multiple-plane-wave (MPW) formalism of Sorbello [4] to account for the
aluminum band structure, but then treated the Li-induced scattering of the
individual plane-wave components self-consistently, through the use of the den-
sity functional formalism of Hohenberg, Kohn and Sham [5], and using the local
density approximation (LDA) for exchange and correlation. That calculation
predicted a large (more than a factor of two) anisotropy for the Dingle tempera-
tures on the third zone of the Fermi surface. In contrast almost no anisotropy is
found in the experimental data.

The paper is arranged as follows. In Section 2 we discuss the preparation and
characterization of the single crystals, describe the equipment and technique for
evaluating the Dingle temperatures, and present the experimental results for three
extremal cross sections of the third-zone Fermi surface. In Section 3 we consider
several improvements to our original theoretical treatment, the most important
one being the inclusion of lattice backscattering, with the result that the calculated
anisotropies in X, are only insignificantly reduced. We also critically analyse the
‘on Fermi sphere’ approximation inherent to the MPW formalism, and find that
its effect is negligibly small. Finally, in Section 4, we draw some conclusions on
the physical origin of the discrepancy between theory and experiment.

2. Experimental

2.1. Sample preparation

Al(Li) forms a solid solution at the low concentrations used in this study. The
high vapour pressure of Li at the melting temperature of Al and the high chemical
reactivity of Li make it difficult to prepare alloys without losing the solute. The
losses were minimized by using graphite coated aluminum oxide molds and
handling the melt in a high-purity helium atmosphere. The gas was drawn from
the liquid of a helium storage dewar and was constantly exchanged. A master
alloy of nominal 4at.% Li was prepared from 99.999% pure Al*) in the
beginning and subsequently diluted.

4)  High-purity aluminum was provided by Alusuisse, Neuhausen, Switzerland
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The single crystal specimens were grown by the Czochralski technique; the
method of pulling crystals directly from the rmelt has been found to give very low
dislocation densities [6, 7]. In order to avoid the tenacious oxide layer on the
melt, a pair of crucibles was used. The inner crucible was filled through a hole in
its bottom with shiny material, from which the crystal was grown with a diameter
kept equal to the specimen size desired (1 mm for the field modulation and 5 mm
for the torque method). The crystals were grown in the [100]-crystallographic
direction several centimeters long and then cut to the correct length of about
5 mm by spark-erosion.

In order to get strain-free single crystals damaged regions on the surface were
removed by etching. Thereafter the specimens were encapsulated in an atmos-
phere of argon in quartz ampoules, annealed for 64 h at a temperature of 650°C
(10°C below the melting point) and slowly cooled to ambient temperature at a
rate of 10°C/h. Before mounting the specimens, the crystal orientation was
determined by back-reflection Laue photographs. After the dHvA experiment the
actual solute concentrations were judged from measurements of the residual
resistivity ratio (RRR) by an eddy current method [8] using the value
0.80 ) cm/at.% for the residual resistivity of Li in Al [9]. Table 1 shows the
impurity concentration measured in this way for all samples used in the dHvA
experiments.

Table 1

Li impurity concentration of Al samples, determined by residual resistivity ratio (RRR) measure-
ments. RRR = p;00x/Pak-

Sample RRR  p; [uQcm] c[at.%]%)

1 128 0.0209 0.0261
2 166 0.0161 0.0201
3 160 0.0167 0.0209
4 357 0.0075 0.0093

%) Using pin, =0.80 nQ cm/at.% from Ref. 9.

2.2. Modulation measurements

The sample magnetization was measured by the standard large-amplitude
low-frequency field-modulation technique [10] in an iron-core electromagnet
(Bruker, Karlsruhe, FRG) capable of generating 2.7 T in a 40 mm air gap with a
homogeneity of better than 1X 107° over a volume of 1 cm’. The magnet current
was regulated by a Hall probe stabilizing circuit and the field was kept stable to 1
part in 10°. An NMR calibration of the field controller allowed the field to be set
with an accuracy of 0.3 mT. The field was swept so that H™' was linear in time. In
this way the dHvA oscillations have constant frequency in time allowing prefilter-
ing of the signal. During the sweep the magnetic field values were determined by
integrating the flux from a pick-up coil.

The modulation field was generated by a pair of Helmholtz coils mounted
around the pole pieces. The modulation amplitude was varied proportional to H?
to maintain a constant Bessel-function argument. Modulation frequencies were
sufficiently low (20-60 Hz) that the effects of finite penetration depth were
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negligible. Signals were detected in a counterwound pair of coaxial pickup coils
around the sample. Phase sensitive second harmonic detection and Bessel-
function discrimination were used. The sample temperature was maintained
within £2 mK with a gas flow cryostat in the range 1.7-4.2 K. The temperature
was measured with an Allen Bradley carbon resistor. The resistor was calibrated
in liquid helium against the vapor pressure temperature scale. More detailed
information about the dHvVA spectrometer may be found in the description of
Wejgaard [11].

2.3. Torque measurements

The torque experiments were carried out in a 10.5 T superconducting sol-
enoid with a homogeneity of 1x107® over a volume of 1 cm>. The homogeneity
was adjusted by two compensating coils and checked over the whole field range
by moving a pickup coil with constant velocity along the solenoid axis. The field
was swept as H™ ! with respect to time. The dHvA torque was measured using a
capacitance technique, with a probe similar to the one described by Griessen et al.
[12]. The sample holder can be rotated about an axis perpendicular to the
magnetic field. The suspension system of the rotatable part of the torquemeter
consisted of two identical crossed spring pairs which guarantees frictionless
rotation. A pair of capacitor plates was glued between the rotatable part and the
housing of the torquemeter. The torque detected as the change of capacitance was
electronically compensated by a feedback system which sent a compensating
current through one of two coils mounted on the torquemeter, thereby cancelling
the dHvA torque with the torque resulting from the action of the magnetic field
on the magnetic moment of this coil. This feedback system yields a sensitivity of
107° Nm with a torque compliance of only 1072 rad/Nm.

The torquemeter was mounted in an evacuable vessel filled with helium
exchange gas for thermal contact. The temperature in the liquid-helium dewar
was varied between 4.2 and 1.4 K by pumping and was controlled to =2 mK using
a vacuum regulator valve. Below the A-point of helium a capacitance thermome-
ter served as a feedback element to a heater for fine regulation of the tempera-
ture. The sample temperature was determined by the vapor pressure of liquid
helium using a Baratron capacitance manometer. A small cell containing about
0.5 cm® liquid helium was attached to the torquemeter which allowed an accurate
determination of the vapour pressure.

2.4. Dingle temperature evaluation

The dHVA effect is the oscillatory variation of the magnetization of a metal
with the magnetic field H. The usual formalism [13] for the interpretation of the
dHvVA signal is based on a formula similar to the one originally derived by Lifshitz
and Kosevich [14]. The component of the oscillatory magnetization parallel to the
field arising from one extremal cross section may be expressed as

M= ) M. sin 2urF/H+B,), (3)
=1

r

where (3, is constant for a given orbit. The magnetization varies periodically in
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H™' with the dHvA frequency F=hA/2me, where A is the extremal cross-
sectional area of the Fermi surface normal to H. The amplitude factor M,
depends on the ratio w of the effective mass to the free electron value, the Dingle
temperature X, (both quantities are renormalized by the electron-phonon interac-
tion) and on field H and temperature T in the following way:

M, = D,T(rH)™ " exp (—r{uXp/H)/sinh (f{uT/H) (4)

where the precise form of D, may be found in the review by Gold [13] and
{=14.69 T/K is a constant. Consequently, w and X can be determined from the
temperature and field dependences of M,.

In dilute alloys the amplitude of the first harmonic (r = 1) is generally dominant
and for metals with a single or with separable oscillations as the alkaline earths or
noble metals the following method usually yields accurate values for w and Xp,.
The effective mass ratio w is obtained approximately from the slope of the graph
of In (M;/T) against T at constant H, and then more precisely by choosing i to
make In [M; sinh ({uT/H)/T] independent of T. Knowing w, the Dingle tempera-
ture is ordinarily determined from the ‘Dingle plot’, the graph of
In [M,H"? sinh ({uT/H)] against H™! at constant T.

In aluminium, however, a simple Dingle plot method is precluded by the
- number of similar frequencies with large amplitudes which are not separable, even
by using the Bessel-function discrimination of the field-modulation technique. In
Fig. 1 we show the five different types of orbits (a, B, v, & ) observed in
aluminum together with the by now classical picture of the second-zone hole sheet
and the third-zone electron monster of the Fermi surface. The multiplicity of the
frequency branches simultaneously arising from the a, 8 and y orbits [15] of the
third-zone monster is displayed in Fig. 2. The approximate position of the centres
of the orbits is taken from Ref. 16. Closely lying frequencies and degenerate
branches which will separate when the magnetic field does not lie in the symmetry
plane are unsuitable for an accurate determination of the Dingle temperature
because of the beating of the oscillations. A rough separation between the a, 8
and <y oscillations is possible by a suitable choice of the magnetic field range. The
v oscillations dominate the a and B oscillations at higher fields (above 1.5 T) on
account of their large amplitudes and higher effective masses, whereas the a and
B are best observed at fields below 1T. Further the large-amplitude field
modulation can be used to suppress one of the remaining vy oscillations. In spite of
these discriminations we get a dHvA signal which simultaneously contains at least
three if not five oscillations.

In order to evaluate the Dingle temperatures from such a complicated
spectrum we have to fit the data record to a sum of dHvA signals. Using the
definition of the sinh we rewrite equations (3) and (4) in the form (neglecting
higher dHvVA harmonics)

M=2TH 7 Z D; exp (—m/H)[1—exp (=2¢uw,T/H)] ' sin QaFE/H+B:), (5)

where we sum over the observed extremal orbits and m; = {u,(T+ Xp,) are the
decay constants and D; the experimental amplitude factors of the individual
oscillations. We remain with the problem of evaluating F,, 8;, D; and n; for each
oscillation. The term in brackets can be adequately approximated, since the
exponential is «1 under our experimental conditions. Therefore, the effective
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[to0]

Figure 1.
Second-zone hole sheet and third-zone electron monster of the Fermi surface of aluminum. All orbits
are drawn for the magnetic field in the [100] direction, except for a which merges with 8 for that
orientation of the magnetic field and has therefore been drawn for the [110] orientation of the latter.

mass y; needs not be known to a great precision and can be taken from Larson
and Gordon’s [15] values for w;/F.. They noted that the effective masses of the a,
B and vy orbit vary proportional to the extremal cross-sectional area over a large
range of the magnetic field orientation and that the quotient w;/F. consequently is
approximately constant.

The dHvVA signal was measured using a minicomputer-based data-acquisition
system. The data record was digitized into n data points (256 or 512 points) taken
at equidistant values of H™'. The sampling interval A was carefully chosen so that
either aliasing (folding back of frequency components >1/(2A)) in the Fourier
spectrum of the data record did not occur or the aliased peaks did not overlap
with other peaks. The latter case has the advantage that the low frequencies (e.g.,
a and B oscillations) move higher up in the spectrum. The relative resolution of
the peaks is improved, and closely lying frequencies are easier to separate.

Fourier transforming the data record into frequency space gives us approxi-
mate values for the parameters F, B, D, and n;, of the dHvA oscillations. An
accurate determination of the parameters from the Fourier spectrum is impractic-
able since the data record has a finite length which modifies the line shape. Due to
the window the Fourier transform of an exponentially damped harmonic oscilla-
tions is not a pure Lorentzian line whose half width is determined solely by the
decay constant and the peaks have side lobes which may overlap partially.
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Figure 2.
dHvA frequencies associated with the third-zone of the Fermi surface of aluminum (Ref. 15) as a
function of field orientation, for magnetic fields in the (010) and (110) planes. The labels on the curves
refer to the approximate position of the centers of the relevant orbits in the Brillouin zone as given in
Ref. 16. Branches which will separate when the magnetic field does not lie in the (010) or (110)
symmetry plane are dashed.

To recover small dHvA frequency components which were buried in the side
lobes of much larger components, our data were filtered using an equal-ripple
finite-impulse-response digital filter [17]. The first points of the filtered output
corresponding to the length of the impulse response were discarded (typically 41
of the 256 or 81 of the 512 data points). The cutoff frequency was chosen as far as
possible from the dHvA frequencies of interest.

The approximate values for F,, B, D; and n; gained from the frequency
spectrum serve as good starting values for the non-linear least-squares fit of the
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data record to the theoretical expression (5) of a sum of dHvA oscillations.
Having measured the oscillations at different temperatures and applied our fitting
procedure we finally derive the Dingle temperature X, and the effective mass
ratio w; for each orbit by a linear regression to

n:(T) = {u (T + Xp,) (6)

2.5. Experimental results

Dingle temperatures were measured in four different samples with solute
concentrations up to 260 at.ppm lithium. Samples 1 and 2 listed in Table 1 were
investigated with the field modulation technique and samples 3 and 4 were
studied by carrying out torque experiments. Measurements were done as a
function of field orientation, for magnetic fields in the (010) crystallographic
plane. The a-orbit centered at (—0.04, 1, 0.4) was studied with fields pointing 10°
to 35° from the [100] direction, the B-orbit centered at (0, 1, 0.4) with fields
pointing 15° to 30° from [100], and the y-orbit centered at U(—1/4, 1, 1/4) with
fields pointing 10° to 45° from [100]. Within experimental accuracy, no angular
-dependence of the Dingle temperatures of the a, B and y-orbits was found. Thus
crystalline mosaic structure in our specimens is unimportant, a result which was
already reported for pure aluminum samples [18]. Mosaic structure would lead to
a subgrain phase-smearing and introduce spurious anisotropies of the Dingle
temperatures [19].

Figure 3 shows the data for three typical @, B and +y-orbits. The Dingle
temperatures per at.% Li were then determined from a straight line fit to the
measured Dingle temperatures as a function of the lithium concentration. The

1.5 T T B T T

a a [ 18° FROM [100] IN (0I0)]

_____ o B [fi 18° FROM [100] IN (010]]
oy [01]

(=)

DINGLE TEMPERATURE (K)

o
wn
I
\
\
A -

| | 1 |
100 150 200 250 300
ATOMIC CONCENTRATION OF Li (ppm)

Figure 3.
Dingle temperatures (renormalized by electron-phonon interaction) for three third-zone orbits (a
centered at (—0.04, 1, 0.4), B at (0,1,0.4) and y at U(—1/4,1,1/4)) as a function of the Li
concentration in aluminum. The intercept at zero concentration is due to dislocations and unknown
impurities.
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non-zero Dingle temperatures at zero lithium concentration are due to disloca-
tions and unknown impurities and compare well with the values previously found
in pure samples grown under the same conditions [18]. The scatter of the data
points can be explained by variations of the amount of background scattering
caused by dislocations, if we assume our carefully grown specimens have a
constant small unknown impurity content. According to Wejgaard [11], the
Dingle temperatures in dilute aluminum alloys appear to be very sensitive to
dislocations.

The Dingle temperatures per at.% lithium, renormalized by the electron-
phonon interaction, are listed in Table 2. The dominant source of the error in the
final results is believed to arise from random variations of the dislocation density
from sample to sample.

Table 2
Calculated and measured Dingle temperatures X, for several extremal orbits in Al(Li). Present

calculation accounts for lattice backscattering while that of Ref. 3 does not. Electron-phonon
renormalization factors (1+ A(k)) are taken from Ref. 20.

XD (K/at. % Ll)

- Center?) . Calec. Calc.

Orbit[H] (27/a) {1+ A(k)) Ref. 3 Present Expt.
a[100] (0.034, -0.41,1) 1.48 54 55 42 +5%)
B[100] 0,-0.42,1) 1.48 33 38 35+89
v[110] U(1/4,-1/4,1) 1.38 81 76 40+5
£[100] X(1,0,0) 1.44 58 64

y[110] r 1.42 45 52

Y[111] r 1.42 40 50

) Rel. 16,
®)  H 18° from [100] in (001)
9 H 18 from [100] in (001)

3. Theoretical

The largest discrepancy between the measured Dingle temperatures and the
ones computed by Cole et al. [3] is observed for the y [110] orbit. The apparent
over-estimate of X, for this orbit suggests that the s-wave phase shift (Table 3b)
is too big: In general, the Dingle temperatures may be decomposed into sums like

Xp = 2, x; sin’ §,, (7)
1

where 8, are the phase shifts for scattering from the impurity-induced perturba-
tion, and x; are (orbit dependent) coefficients depending only upon the host metal
(the | index refers here to orbital angular momentum, although it will be
generalized later to allow for lattice backscattering). The orbital coefficients x; are
listed in Table 4c, and it is clear that the y[110] orbit weights the s-wave phase
shift heavily. Since this weighting is a property of the aluminum band structure,
the problem apparently lies with the calculation of the phase shifts. Our theoreti-
cal considerations are¢ thus focussed somewhat on the latter aspect of the problem.
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3.1. Corrections to the perturbing potential

Besides lattice backscattering, we have considered in our improved treatment
the effect of lattice relaxation around the impurity and the inclusion of exchange
and correlation effects beyond the LDA, both of which involve changes in the
Li-induced perturbing potential, and may be treated within the conventional
multiple-plane-wave (MPW) formalism by recalculating the phase shifts. We
discuss them briefly first.

The effects of non-local exchange and correlation have been examined by
Cole [22], using the ‘average density’ approximation suggested by Gunnarsson,
Jonson, and Lundqvist [23]. It was found that all the Dingle temperatures are
reduced by a small amount, but the reduction is uniform and the anisotropy is
unchanged.

Lattice relaxation of the host atoms around the Li impurity has been studied
experimentally and theoretically by Solt and Werner [24]. The displacements of
the neighboring shells of Al atoms are all small. The radial displacements in the
(110), (200), and (220) shells are, respectively, —0.0048 A, —0.0057 A, and
—0.0003 A, compared with the lattice constant of about 4 A. The other displace-
ments are considerably smaller than these, and are negligible for our purposes.
We define the applied perturbation to be the spherical average of the change in
Coulomb potential arising from the displacement of these (Z =3) ions. This
applied perturbation is essentially a set of nested square wells, with maximum
depth V,=0.0011 (atomic units) occurring inside the radius of the nearest
neighbors. A potential with this strength, even if it were extended out to the (220)
shell of neighbors, would change the phase shifts by less than 0.01 (for example,
we find that d8,/dV,=1.3 au™'). This implies that the Dingle temperatures are
essentially unaffected by the small amount of lattice relaxation, as we suggested
earlier [3].

3.2. Lattice backscattering

Our self consistent treatment of the phase shifts [3] accounts for repeated
scattering from the same impurity site, but assumes that the intermediate states
are single plane waves (the initial and final states being Bloch waves). ‘Lattice
backscattering’ refers to the fact that the intermediate states should be Bloch
waves. It has been argued [3, 4, 25] that this is inconsequential for free-electron-
like host metals because the intermediate states exist in all directions of k- -space,
and most of these are free-electron-like. However, this assertion has not, to our
knowledge, been tested. Sorbello’s calculation [4] dealt with weak-scattering
impurities for which the Born approximation was used, and so there were no
intermediate states that might have ‘backscattered’.

There are two methods currently in use for calculating electron-impurity
scattering rates — the MPW method (used in [3, 4]) and the KKR Green'’s function
[21, 25-27] introduced by Morgan [25]. Only the latter method properly accounts
for lattice backscattering. A recent self-consistent KKR calculation for Al(Li) by
Deutz [21] has provided the so-called Friedel phase shifts [1], which incorporate
this effect. To show how these may be used in combination with our Fermi surface
coefficients, we begin in the next paragraphs by considering the relationship
between the simple metal pseudowavefunctions and the KKR wavefunctions. We
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then construct the scattering rate, and eventually arrive at an expression like
equation (7) involving the Friedel phase shifts together with appropriately mod-
ified Fermi surface coeflicients x;.

The pseudowavefunction for Bloch state |k) in our multlplc-plane-wave
treatment of pure Al (normalized over the crystal volume Q) is

3
ll‘is('?) =12 Z an(]'(')ei(kfg,)-i (8)
n=0
where the sum extends over the four reciprocal lattice vectors g, closest to k. A
partial wave expansion of the plane waves gives

PS(F) = IZ Zan(k)hdk | N YE(K—g,) Yy (P). (9)

This is to be compared with the KKR wavefunctions for the pure host: Inside the
muffin tin radius (r <ryry)

i (F) =§ 'ty (R)RIP) Yy (7), (10)

while outside (r=ryr) we may write [27]

i (F) = Y. i' e (K)[cOs 814, (kr) —sin 871y (kr)] Yy (7). (11)
Lm

The 8} are the phase shifts of the host, R}(r) is the radial part of he wavefunction
inside the host muffin tin, and j, and n, are spherical Bessel and Neumann
functions. The wavevector k is proportional to the square root of the energy
measured with respect to the ‘muffin tin zero’ (the constant value of the potential
between the muffin tins) and is usually different from the Fermi wavevector kg,
which measures the occupied bandwidth (here k =0.7892 a.u. at the Fermi level
and kz=0.9273 a.u.).

Outside the atomic core radius (~1a.u. for Al) the pseudowavefunction
should be a good approximation to the true wavefunction. Thus we compare the
pseudowavefunction (equation 9) with the KKR wavefunction in the interstitial
region (equation 11). Their similarity is more apparent if we make the ‘on Fermi
sphere’ approximation (soon to be relaxed) by setting |k — §,| = kr in the Bessel
functions of equatlon (9), which then becomes

\/— T Y iy (K)ji (kgr) Yion (7) (12)
where (as defined by Sorbello [4])
am(K) =Y a,(K)YE(K—8,) (13)

Equating (11) and (12) for r evaluated at the muffin tin radius (and for states on
the Fermi surface), we find

alm(E)=4—\/—gNlclm(E), (14)
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where

= [{cos 67 (kryr) —sin 87 (kry)} iy (Kern) 17 (15)

so that ay,, ~ ¢, for a given l. Moreover, we shall find that the electron-impurity
scattering rates are independent of N,, which eliminates the arbitrariness of the
arguments kpryp and krygr.

We may now in fact relax the ‘on Fermi sphere’ approximation by equating
equation (9) and (11) directly (again for r at the muffin tin radius, say) to get

@y (k) = m T Nibym (K), (16)
where
bim (k) =, a,(K) YE(k — 8)ii (1K — &,| ryeo) /iy (Ketnar) (17)

are the new effective expansion coefficients that must replace the c¢,.(K) in
equation (12). We have evaluated the Dingle temperatures for a considerable
range of ryr values (up to the Wigner-Seitz radius R,) using the lattice backscat-
tering formalism to be described, and we find that they are changed by at most
about 1 K/at.% Li (i.e., 2-3%) from their ‘on Fermi sphere’ values. Henceforth
we feel justified in making the ‘on Fermi sphere’ approximation and using Eq.
(13). The reasons it works so well are the following: First, in the case of the p and
d-waves, the Bessel functions j, and j, are slowly varying for |k —g| near the
Fermi momentum, and so b, and ¢, are approximately equal. The s-wave
situation is more complicated, because kg R, =2.77 is near a zero of j,. According
to our calculations, byo(k) differs from cqo(K) by a factor of -about 1.4 for ryr =R,

Remarkably, this factor is quite insensitive to the position k on the Fermi surface
and as a result, it tends to cancel out when calculating the scattering rates (for the
same reason that the factor N; of Eq. (15) cancels out). That the ratio boo(k)/coo(k)
is nearly independent of k follows from the fact that a similar ratio, namely

L 0B F-g (k2 T au()

is precisely independent of k. Its (constant) value is 1-Y, V(&,)/er =0.8901,
where the sum is over the nonzero reciprocal lattice vectors in our 4-OPW model,
and the parameters are V(l 1,1)=V(1,1,-1)=0.009061, V(2,0,0)=
0.029147, and &z =0.429985 (all in atomic umts) This 1dent1ty is derived in the
Appendlx where we also show that the ratio of byo(K) to coo(K) is ‘expected’ to be
1.44, which is close to the actual ratios computed from equations (13) and (17). In
summary, the ‘on Fermi sphere’ approximation is not exact for s-waves, but it
nevertheless predicts their contribution to the scattering rates to a very good
approximation.

We now consider the scattering of these Bloch wavefunctions from an
impurity-induced perturbation. The spherical harmonic representation of ¢ (7) is
useful only in certain cases (for instance, when it is a good approximation to
assume the T-matrix has full rotational symmetry). In the present case, lattice
backscattering may reduce the symmetry of the T-matrix from spherical to cubic
(even if the impurity-induced perturbation potential is spherically symmetric).
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Such a T-matrix takes a simple form if we reexpress the Bloch wavefunctions (in
equation 12, for example) in terms of cubic harmonics

Y (F) = \/— Z i C[r(k)h(kFr)Y (), (18)

Ty

where I' denotes an irreducible representatlon of the cubic point group, and vy is a

component of T'. '

The unitary transformation from spherical to cubic harmonics is written down

for example by Coleridge et al. [26] for [ <2. For present purposes, we need only

identify the irreducible representations and list their degeneracies. The s and p
waves each correspond to a single irreducible representation of either group

D'—-T,, nl)=1 (19a)
D? - T, n(lys)=3 (19b)
where n(I') is the degeneracy of I'. However, the fivefold degenerate subspace for
d waves is decomposed under the lower cubic symmetry as
D® - T',®T,s, nl)=2
n(ls)=3. (19c¢)
If we go to larger [, then a particular representation I' may contain more than a
single I. As long as we restrict ourselves to | <2, then the MPW and KKR cubic

harmonic expansion coefficients have a proportionality analogous to equation
(14):

al(k)~cy(k), (for fixed 1) (20)

of which we shall make use.

In terms of these KKR coefficients, the T-matrix for scattering from state |k)
to |k') is (following the presentation of Coleridge [1])

h? 5 L
T =—=— 2, a7 (K *a7 (k)AL sin Ade2, (21)
2mk o

where we have defined the compound index L = (I, T'), and the difference between
the impurity and host atom phase shifts,

A8 = 8i— 8P (22)

The backscattering renormalization factor A; depends only upon energy (here

e =¢gr) and is diagonal in L for [=<2 [28]. The corresponding rate of scattering

from |k) due to a single impurity is

Q ds’

Yk =2 T, 0 :
(k) Zl kki (ex — &) = 2h hlw

The square of Ty, (equation 21) generates a double summation (L, y; L', ¥') but

the surface integral reduces this to a single sum

. on’® - ds’
-1 - oy 2 Do
T = e L I0LOF AL sin’ a3 [ 270

Because the surface integral is independent of vy, we may express 7~ '(k) in terms

I |Tkk .2 (23)

|at (K", (24)
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of the quantities

F (k)= la (0P (25a)
24
and their Fermi surface averages
ds ds
G J — F, (k j = 25b
For later convenience we also define the average over cyclotron orbits
H; = (FL(E)>9 (25¢)

where brackets are defined in equation (2). Equations (25) depart slightly from
Coleridge’s notation, because we prefer here to work with dimensionless Fermi
surface averages. Nevertheless, we continue to follow his derivation. In terms of
(25a, b), the scattering rate is

wh*QN(eg)
2(mk)> T
where N(eg)=Q2w)>§dS/h|D| is the density of states for a single spin at the

Fermi level, and n; are the degeneracies given by equations (19a—c). On the other
hand, the optical theorem requires that

L2
(k) = =5 Im T = k Z F; (k) Im (A, sin A8e'2%), (27)
F

where equation (21) was used to write the second equality. Writing A; =|A; | e™
and using (26) and (27) to eliminate |A; |, we find

T Y k)= n G F, (k)| A, |? sin® A, (26)

(k) =2n[whN(ee)] ' ). n, GL'Fy (k) sin® (A8, + 6, ), (28)

where the Friedel phase shift
d)L = AS, + GL (29)

appears (their values were calculated by Deutz et al. [21], and appear on Table
3a), and where we have replaced the inverse crystal volume Q! (representing just
a single impurity in the crystal) by the actual density n; of impurities.

Before discussing the nice properties of expression (28), we first obtain a
similar one for the Dingle temperatures, by inserting equation (28) into (1) and
using the definition (25c¢):

Xp = ni[ﬂ-szN(eF)(l au )\(E))]—] Z nLGZIHL sin” &y (30)

Our present treatment hinges upon equations (28) and (30), in which the ratios of
host-metal parameters F; (k), G, and H; appear. Because of this, the proportion-
ality factors in equation (14) cancel, and so the host parameters may be calculated
from either representation of the host band structure. The 4-OPW model de-
scribed by Cole et al. [3] has been used to generate the Fermi surface averages G
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Table 3(a, b)
(a) Friedel phase shifts at the Fermi level for a Li impurity in Al calculated in the KKR treatment
of Ref. 21, corresponding to various representations of the cubic group, and (b) phase shifts calculated
in the MPW treatment of Ref. 3. Retaining §; in the MPW case affects the Dingle temperatures by
much less than a percent; presumably the same would be true in the KKR case.

(a)

L(=I) oI, 1T 3 g ]
b1 -0970 -0.446 —0.093 —0.166
(b)

! 0 1 2 3
8 ~1.214 -0.341 —0.148 —0.033

and several orbital averages H;, and these are shown on Table 4a. Shown on

Table 4b are the ratios, in the form of the host orbital parameters x; in the KKR
version of equation (7), namely

gy = Z xF g s (31)
where according to equation (30),
KKR = n:[”TszN(EF)(l +A (k))] nLGleL (32)

By using the ¢} coefficients in place of the «} in equation (25a), we have
made the ‘on Fermi sphere’ approximation. The calculation was also done without
this approximation, i.e., using the b7 (equation 17) for various matching radii ryy.
A few of the x*® changed by as much as 5 or 6%, but most changed by less than

3% . Within a given representation, the largest changes were generally associated
with the smaller values of x;, and so they are not reflected in the Dingle
temperatures. As mentioned earlier (in the discussion following equation 17) the
Dingle temperatures were all changed by at most about 1 K/at.%.

In a recent phase shift parameterization of the aluminum Fermi surface,
Coleridge [29] has obtained coefficients similar to our x;. The differences between
his coefficients and ours apparently arise from the difference in Fermi surface
fitting procedures and not, as questioned in [29], from the ‘on Fermi sphere’
approximation. The phase shift parameterization fits the Fermi surface dimensions
slightly better than our 4-OPW fit, but the x; -coefficients are not changed enough
to alter our conclusions.

The x; values in Table 4 incorporate the electron-phonon renormalization
factors, which were taken from Meador and Lawrence [20]. These factors appear
correctly in equations (1) and (2) provided that both the (k) and v(k) appearlng
in the orbital averages are interpreted as the unrenormalized values. This is
because gas explained by Poulsen et al. [30]) v(k) is reduced by the factor 1+ )t(k)
while 7(k) is enhanced by the same factor, so that the product (which appears in
the numerator of equation (1)) is unrenormalized.
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Table 4(a—)
(a) Fermi surface and orbital averages G; and H; (equations 25a—c) for the aluminum host, (b) orbital
coefficients x;;- (K/at.%) as defined in Eq. 32 and used with the KKR phase shifts in the present work,
and (c) orbital coefficients x; (K/at.%) as defined in equation 33 and used in the MPW calculation
of Ref. 3.

Ir
Orbit [H]) 0T, Tl M . g
(@) Gy 0.0705 0217  0.188 0.293
H;  «[100] 0.0936  0.174  0.291 0.199
B[100] 0.0330 0222  0.440  0.165
v[110] 0.1621 0.087 0.285 0.138
£[100] 0.0998 0213  0.022  0.363
$[110] 0.0601 0232 0.151 0.335
W[111] 0.0438  0.272 0.028  0.429
(b) xKKR  o[100] 51.1 92.6 119 78.6
B[100] 18.0 118 180 65.1
v[110] 94.8 49.7 125 58.4
£[100] 56.0 117 9.3 147
$[110] 34.2 129 64.4 138
P[111] 24.9 151 12.1 176
(© xMPW  a[100] 42.7 81.4 303
B[100] 15.1 104 372
y[110] 79.3 43.7 280
£[100] 46.8 102 249
¢[110] 28.6 113 316
Y[111] 20.8 133 300

1) For the centers of the orbits see Table 2.

Finally, to make contact once again with the MPW formalism, we note [3, 4]
that the scattering rates there depend upon the product of H and G, rather than
on the ratio. For the sake of comparison, we write the MPW orbital factors that
are used in equation (7):

XMV = 16mN(ep)[ksN%(e )21+ A(K)H] ' Y. nL G Hy, (33)

where N°(eg) = (mkg/27*h?) is the free electron density of states per spin at &g,
and the sum is over irreducible representations I" belonging to I. The values are
listed on Table 4c. A striking feature of parts (b) and (c) of this table is that the
relative weights given to s, p, and d-waves for the various orbits are similar in the
two methods; this is particularly noteworthy for the s-wave coefficients of the a,f,
and vy orbits. We may conclude immediately that a theoretical approach using
either the MPW or KKR formalism must produce a small (modulo =) s-wave
(Friedel) phase shift, in order to find isotropic Dingle temperatures on the third
zone arms of the Fermi surface. Both calculations discussed here [3,21] have
produced large s-wave phase shifts, and thus predicted large anisotropy in the
third-zone scattering rates, which is at variance with experiment (Table 2). The
slightly reduced anisotropy predicted by the KKR calculation indeed stems from
the difference in phase shifts, not from the difference in x-coefficients.
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4. Conclusions

We have developed techniques which enable us to extract Dingle tempera-
tures from complicated dHvA spectra. Using these techniques we have deter-
mined the Dingle temperatures in dilute Al(Li) for three typical extremal orbits
(a, B, and y) on the third-zone Fermi surface. We have found them to be
isotropic to within about 20%, at variance with theoretical calculations based on
both the multiple-plane-wave (MPW) and KKR formalisms which produce a
factor of two anisotropy. The large predicted anisotropies stem in both cases from
the large s-wave phase shifts, which are weighted most heavily on the y-orbit, and
least heavily on the B-orbit.

An advantage of the KKR formalism is that it incorporates lattice backscatter-
ing, and we believe that this is why the calculation based on it produces less
anisotropy (if only slightly less) than the MPW calculation. It is tempting to
conclude from a comparison of the theoretical results on Table 2 that lattice
backscattering, while changing things in the right direction, is not a big enough
effect to warrant further consideration. We think that such a conclusion is
premature, however, because the two theoretical treatments differ not only in
their account of lattice backscattering, but also in the models used for the
impurity-induced potential. The KKR treatment [21, 27] includes lattice backscat-
tering, but confines the (self-consistent) perturbing potential to the Li muffin-well.
The MPW treatment ignores lattice backscattering, but allows for the redistribu-
tion of electron density and self-consistent potential beyond the Li Wigner—Seitz
cell. A more realistic assessment of lattice backscattering effects might be made as
follows: Recalculate the Dingle temperatures using the KKR phase shifts Ag, (i.e.,
neglecting the backscattering contributions 6, ), together with the MPW orbital
coefficients (equation 33). Using the values obtained in [21], namely Ad,=
—1.297, A8, =—0.596, and Ad, =—0.101, we find Dingle temperatures that are all
about 13-14 K/at.% larger than the KKR values listed on Table 2, so that
backscattering appears to be quite significant after all.

The above considerations suggest that one might attempt to combine the
advantages of both of the theoretical treatments presented here; for example, to
include lattice backscattering by using the KKR formalism, but to allow for a
self-consistent perturbation potential extending out to the neighboring muffin-
wells.

We have discussed other refinements to the theoretical treatment that we feel
can be safely ruled out. According to Solt and Werner [24] and our earlier
discussion, lattice relaxation has a negligible effect. According to Cole [22], the
effects of nonlocal exchange and correlation are small, and not such as to reduce
the anisotropy.
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Appendix

We argue here that the ratio of boo(lz) (equation 13) to COO(E) (equation 9) is
only weakly dependent on k, and arrive at an estimate of its value. The argument
is based on the fact that the ratio

=1

R=3 a®F-gP (k2 L a(F) (A1)

is mdependent of the posmon k on the Fermi surface. To show this, we note first
that since a, (k) =(k—g, | {y.) is the inner product of the 4-OPW Bloch state [y )
with the single-OPW state |k —g,), it follows that the summand in the numerator
is proportional to a kinetic energy matrix element, ie. a, (k) |k—g.> =
(k—g, |(=V®| ). We can replace the kinetic energy operator by H—V, or
simply by eg-V, since |f4) has the Fermi energy. Since (by definition) ki=
2meg/h?, we have

-1
R=1-T (- 2VIo)(ex L an(B)) (A2)
The matrix elements may be expanded to rewrite the numerator as
2 LAk =g IVIK =g, )an (k). (A3)

The n-summation is independent of m, and for the four-OPW model, it is easily
evaluated to give

R=1-(2V(111)+ V(200))/er = 0.8901, (A4)

where the values of the four-OPW parameters are given in the text following
equation (17).
We may use (A4) to estimate the value of the ratio boo(k)/cm(k) This is done
by ﬁttmg the Bessel function jo(|k — &,| rar) to a polynomial of the form a +b |k —
g.|%, in the neighbourhood of kgryr; explicitely:

IO(IE_gnl rMT) 1 (IE_gnP )alnIO(z)
ol _ AS
ioleer)  Lronwrke () (A3)
Combining this with equation (A4), we find
k 2 +V(©2
boolk) _,_@VAID+VQROO) o k1] (A6)
Coo(k) 2ef

For rnyr = R,, the predicted value is 1.44. The actual computed ratio bOO(E)/coo(E)
varies from about 1.3 to 1.5, and the ratio of orbital averages varies by less than
this.

The important ratios involved in the Dingle temperatures are H; /G; (equations
25 and 30). These orbital averages are changed by at most 6% when the
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b-coefficients are used in place of the c¢’s. In the case of the s-waves, this depends
upon the constancy of (Al). In the case of the p and d-waves, it depends upon the
fact that the Bessel functions (appearing in equation (17) for b, (k)) are slowly-

varying.

REFERENCES

[1] P. T. CoLERIDGE in: Electrons at the Fermi surface, ed. M. Springford, Cambridge University
Press, Cambridge, 1980, pp. 321-61.

[2] M. SPRINGFORD in: Electrons at the Fermi surface, ed. M. Springford, Cambridge University Press,
Cambridge, 1980, pp. 362-92.

[3] LeeE CoLE, W. E. LAWRENCE, R. MONNIER, W. JOss, W. VAN DER MARK and M. MANNINEN, Phys.
Rev. Lett. 42 (1979) 1174-8.

[4] R. S. SOrRBELLO, J. Phys. F: Metal Phys. 4 (1974) 1665-83.

[5] P. HOHENBERG and W. KOHN, Phys. Rev. 136 (1964) B864-71; W. Kohn and L. J. Sham, Phys.
Rev. 140 (1965) A1133-8.

[6] S. Howe and C. ELBAUM, Phil. Mag. 6 (1961) 1227-40.

[7]1 R. A. ParLLIPS and A. V. GoLD, Phys. Rev. 178 (1969) 932-52.

[8] W. WEIGAARD and V. S. TOMAR, J. Phys. E: Sci. Instr. 7 (1974) 395-9.

[9] S. CERESARA, A. GIARDA and A. SANCHEZ, Phil. Mag. 35 (1977) 97-110.

[10] A. GOLDSTEIN, S. J. WILLIAMSON and S. FONER, Rev. Sci. Instr. 36 (1965) 1356-65.

[11] W. WEIGAARD, Doctoral dissertation Eidgenossische Technische Hochschule, Zirich (1975).

[12] R. GRIESSEN, M. J. G. LEE and D. J. STANLEY, Phys. Rev. B16 (1977) 4385-99.

[13] A. V. GoLD in: Solid State Physics, Vol. 1, Electron in Metals, ed. J. F. Cochran and R. R.
Haering, Gordon and Breach, New York, 1968, pp. 39-126.

[14] I. M. LirsHrrz and A. M. KosevicH, Zh. Eksp. Teor. Fiz. 29 (1955) 730; Sov. Phys.—JETP
(English Transl.) 2 (1956) 636—45.

[15] C. O. LarsoN and W. L. Gorpon, Phys. Rev. 156 (1967) 703-15.

[16] W. Joss and R. MONNIER, J. Phys. F: Metal Phys. 10 (1980) 9-31.

[17] L. R. RABINER and B. GoLD, Theory and Application of Digital Signal Processing, Prentice Hall,
Englewood Cliffs, New Jersey, 1975, pp. 75-204.

[18] W. vaN DER MARK and W. WEIGAARD, Helv. Phys. Acta 48 (1975) 431-4.

[19] K. M. MILLER, R. G. POULSEN and M. SPRINGFORD, J. Low Temp. Phys. 6 (1972) 411-23.

[20] A. B. MEADOR and W. E. LAWRENCE, Phys. Rev. B15 (1977) 1850-8.

[21] J. DEUTZ, unpublished.

[22] Lee A. CoLg, Ph.D. Thesis, Dartmouth College (1979), available from University Microfilms,
Ann Arbor, Mich.; Bull. Am. Phys. Soc. 25 (1980) 276; and Technical Report CO0O-2315-14,
Dartmouth College (1981).

[23] O. GunnARssON, M. Jonson and B. I. LUNDOVIST, Phys. Lett 59A (1976) 177-9; and Solid State
Commun. 24 (1977) 765-8.

[24] G. SoLT and K. WERNER, Phys. Rev. B24 (1981) 817-34.

[25] G. J. MORGAN, Proc. Phys. Soc. 89 (1966) 365-71.

[26] P. T. CoLERIDGE, N. A, W. HoLzwARTH and M. J. G. LEE, Phys. Rev. B10 (1974) 1213-29.

[27] R. PobLoucky, R. ZELLER and P. H. DEDERICHS, Phys. Rev. B22 (1980) 5777-90.

[28] J. W. BLAKER and R. HARRIS, J. Phys. C: Solid State Phys. 4 (1971) 569-76.

[29] P. T. COLERIDGE, J. Phys. F: Metal Phys. 12 (1982) 2563-78.

[30] R. G. PouLsen, D. L. RANDLES and M. SPRINGFORD, J. Phys. F: Metal Phys. 4 (1974) 981-98.



	Anisotropy of electron impurity scattering in dilute Al(Li)

