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On Bose condensation

By M. Fannes,!) J. V. Pulé?) and A. Verbeure, Instituut voor
Theoretische Fysica, Universiteit Leuven, B-3030 Leuven,
Belgium

(1. X. 1982)

Abstract. For infinite Bose systems in equilibrium we derive a generalization of the Bogoliubov
condensate equation and we prove rigorously that Bose-Einstein condensation occurs if and only if
there is spontaneous breaking of the gauge symmetry.

1. Introduction

In this paper we study Bose—Einstein condensation for systems with two-
body interactions. We do not prove the existence of condensation but we assume
to have an infinite system equilibrium state with possible occurrence of condensa-
tion. The type of condensation we consider is into the k =0 mode only. We do
not consider other types of condensation (see e.g. [1]) although they are not
excluded.

In the first part we derive an equation representing the extremality of the free
energy density as a function of the condensation parameters. We call this equation
the condensate equation, since it is a generalization of the condensate equation
introduced by Bogoliubov [2]. It is an important equation in the sense that if only
zero condensate densities satisfy it then condensation is excluded while on the
other hand non-zero solutions show that condensation is present in the equilib-
rium state being considered.

In the last part of the paper we give a rigorous and complete proof of the fact
that there is condensation if and only if the gauge symmetry is broken. One
implication being trivial, the other, namely that condensation yields necessarily
the breaking of the gauge symmetry, is less clear, although it is generally believed
to hold [3].

We consider the usual framework of Bose systems on R”(v=1). The algebra
of observables is o =|J, #,, where A stands for any open, connected, bounded
region of R”, and where &, is the algebra B(F(L*(A))) of bounded linear
operators on the Fock space %(L?*(A)) of symmetric functions with support in A.
- On each local Fock space we take the Hamiltonian H, which on the n-particle
subspace is given by

Hi=Ti+V} (1)

') Bevoegdverklaard Navorser, N.F.W.O., Belgium.
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where

Th =-4 Z A; (A=Laplacian with Dirichlet boundary conditions)
i=1

and V7 is the multiplication operator by Y ;<;<;<. v(|x; —x;|). The potential v is
supposed to be absolutely integrable and superstable [4]. The latter condition
ensures the existence of local Gibbs states.

We want to study properties of the equilibrium states corresponding to the
Bose system described by the Hamiltonian (1). Different definitions of an equilib-
rium state in the thermodynamic limit are available. In what follows the most
convenient way is to define the state through the correlation inequalities [5]. In
particular a state w of & is an equilibrium state at inverse temperature 8 =1 and
chemical potential w €R if it satisfies:

o(X*X)

lim (X *{H,— pNy, X)) = o(X*X) In > (XX

(2)

where X is any observable of of such that Xe @ ([H,— uN,,.]) for A large
enough; N, is the number operator for the volume A and lim A tending to infinity
is always understood in the sense of an increasing sequence of cubes A with
volume |A.

For any state w satisfying (2) we assume a number of conditions:

(a) The state is space translation invariant

(b) The state is characterized by a family of reduced density matrices, i.e.
there exist twice continuously differentiable complex functions p,,.(x;y) on
R*™*™ for all n, meN, such that for f, g;e L%(R"):

w(a*(f) - - - a*(f)a(g.) - -+ a(gy))
= j dx, - dx, dyn, -+ dyifi(x1) -0 fu (%) 8 (Vi) * -+ B1(¥1)

pn,m(xl,'°-:xn;Ym7---9y1)

where a® are the Fock creation and annihilation operators. Furthermore, we
assume the following bounds:

|Pnm (X5 ¥)| < AB™™n! m!

with A and B positive constants.

This condition implies that the state is locally normal and extends to
polynomials in the local fields. In the following we use the same notation for the
Fock fields as well as for their representatives under the state.

(c) From condition (b) it follows that for all polynomials P, Q and R in the
fields

lim w(P[H,— uN,, Q]R)
A
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exists e.g.

liin w(a*(f,)--- a*(f,)[Hx— Ny, a(Hla(gy) - - a(gy)

= [dyde, - drydy, - dyfue) - Fu B+ Bl
X[(%Ay +“’)pn,m+1(x1a L) xn; y: Yms sesy Y1)
- j dz v(y—z)pn+1,m+2(x1’ S ] xm Z; Z: y) yma ey YI)]

We assume that these matrix elements define opérators S(Q) on a common core
@ containing the polynomials in the fields. We assume that the map Q— 8(Q)
satisfies

8(PQ)=8(P)Q +P3(Q)
(8P)* = —8(P¥)

(d) Let

a(x,) W a*(xa)
N and aj= Al

Qp =

where x, is the characteristic function of the volume A, then we suppose that in
the limit A — o these operators converge strongly on & to the operators a and
a*, affiliated to the centre of the representation. Moreover we assume that
ordered monomials in a, and a} also converge strongly to the corresponding
monomials in @ and a*. Next we impose conditions related to the derivation 8. If
P is any ordered monomial we assume that s-lim 8 (P(a,, a})) exists and defines
the extension of 8 to the polynomials in @, «™ and the fields. Finally it is assumed
that

s-lim 8 (P(a,, a))P'(ay, ak)) =8(P(a, a®))P'(a, a™).

The conditions (d) are a characterization of the condensation level.

II. The condensate equation

We start with the proof of the main result of this section, namely the
condensate equation, which we derive for the equilibrium states of the infinite
system under fairly general conditions. The equation expresses the extremality of
the free energy as a function of the condensate parameters. In this sense it is a
generalization of the one derived by Ginibre [2]. :

Theorem IL.1. If w is an equilibrium state, satisfying (2) and the condmons
(a)—(d), then for each polynomlal Pi in the fields and in the operators o and a*, and
for each polynomial Q in the a, a™ one has :

w(P8(Q))=0 . (3)
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Proof. Take A €C and X = AP*+ Q in the inequality (2). Using
a
a lngza—b for a,beR*

as Q is affiliated to the center one gets:

IA? (P 8(P*)+ A0 (P 8(Q)) + A (Q* 8(P¥)) + (Q* 8(Q))

=|A|* w(PP*— P*P)
If we show that w(Q* §(Q)) =0 the theorem follows from the observation that
only the left hand side of this inequality contains a linear term in A. Finally we
prove that the constant terms vanishes. Take A =0, then «(Q* §(Q))=0. After

substitution of Q by Q™ one finds also that w(Q 8(Q™))=0. Furthermore, using
the time invariance of the state o, which is an immediate consequence of (2):

0 =w(3(Q*Q)) = w(8(Q*")Q+w(Q* 8(Q)) = w(Q §(Q*)+w(Q* §(Q)).
From the positivity of both terms one gets ©(Q* 8§(Q))=0. W

As a special case of (3) taking Q =a and P =a® one gets
w(a* §(a))=0 4)

We rewrite this equation in terms of the reduced density matrices p,,,
defined in condition (b)

w(a* 8(a)) =Juxmy{up1,1(x; y)—j dz o(y — 2)paa(x, 73 2, y)} 0 5)

where the space means # are well defined due to condition (d).

Remark that equation (4) is obtained from the inequality (2). The latter one
is an upper bound [6] for the change in free energy under semigroups of
completely positive maps. In the case of equation (4) the semigroup is given by

vr =exp Al

I'=lim J dx |—A1—|2 {lalxasx)s - Ja*(xasx) T a(xasx)l. » a*(Xasx)]

A

Therefore equation (4) expresses the differentiability of the free energy with
respect to the parameter A, with derivative zero.

In condition (a) we supposed already that the state w is space translation
invariant. Now we suppose further that the state o is space clustering and hence
extremal invariant. In this case the operator a is a multiple of the identity, in
particular :

a=w(a)l
Let 7 be the transformation defined by
T(W(h)) = W(h) exp {—2i Re (0(a*)h(0))}
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where h is the Fourier transform of a function h, element of L%(A) for some
A cR" and where

W(h)=expi[a(h)+a*(h)]

is a Weyl operator.

Denote by p{,, the reduced density matrices deﬁning the state w o7. The
transformation_removes the condensate part of the fields in the state w ° 7, e.g.
a(f) = a(f)—af(0) represents the annihilation operator with wave function f of the
excitation from the condensate.

Using the clustering property of w:

‘-’“x-/“yp1,1(x§ y)= lPl,o(O)lz = ]a|2
Mep22(x, 25 2, ¥) = p1,0(0)p12(25 2, y)
and after expressing the p,,, in terms of the p&, one gets from equation (5):

wlal®— &I dy p$.(0; 0, y)o(y)— &zj dy p§2(0, y)v(y)

“laf* | [ dy0520; y)v () +5(0)61,(0: 0| ~lal* 60) =0 ©

This equation (6) coincides with the condensate equation of [2] after the ther-
modynamic limit is taken. We emphasize that the condensate equation in [2] is
obtained by expressing the extremality of the pressure in the Bogoliubov approxi-
mation for the finite system, while (6) is obtained immediately for the infinite
system without the use of any approximation.

The next objective is to prove the exactness of the Bogoliubov approximation
in the thermodynamic limit as far as the state is concerned. This would comple-
ment the result of Ginibre [2] where it is proved that this approximation is exact
as far as the pressure is concerned. For a given Bose model (i.e. for given
potential v) one should solve the condensate equation and obtain the spectrum of
the operator a and hence of n,=a™a the condensate density. What one should
show is the following. Let a = A dE(A) be the spectral resolution of «, and let A
be an element out of the spectrum of a then one can prove from (2) that the
measure dw(E(A)X) is absolutely continuous with respect to dw (E(A)) so that we
can define

dw(E(A)X) .
w, (X) do(EOV) a.e. in A.
We should prove that the map X — w,(X) is a state satisfying the equilibrium
condition (2). This would provide us a central decomposition of the state with
respect to «. Unfortunately w, (X) may not be uniquely defined for A in a set S
with measure w(E(S)) =0 where S may depend on the observable X, and so we
are unable to prove the above property in full, but we have the following partial
- result.

Theorem IL2. Let Q be any polynomial in the operators o and a®, define the

State
»(Q*QY)

wo(M=" grq) " Y
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where o satisfies (2), then also wq is an equilibrium state in the sense of inequality

(2).

Proof. Take X = QY in the inequality (2) then one gets:
»(Q*QY™*Y)
0(Q*QYY™)

o(Q*Y* 8(QY)=w(Q*QY*Y)In

From Theorem II.1
o(Q*Y* 8(QY)) = 0(Q*QY* §(Y))
and hence the result. W

If the operator « is bounded, for any spectral projection E(A), A a measur-
able set in the spectrum of a, there is a sequence of polynomials Q, such that
lim, Q, =E(A) and then it follows from the theorem that the state w,=
w(E(A) .)/w(E(A)) is an equilibrium state in the sense of (2).

If w is gauge invariant we shall see in the next section that we can realize the
decomposition of the state with respect to the argument of a. If ny has a discrete

spectrum this yields a full decomposition of the kind discussed before Theorem
I1.2.

IIl. Condensation and gauge symmetry breaking

Now we treat rigorously the connection between condensation and breaking
of the gauge symmetry. It is well known that breaking of gauge symmetry implies
condensation: if w(a)# 0 then from Schwartz inequality it follows w(ngy)# 0 and
so ny,# 0, i.e. occurence of Bose—Einstein condensation.

The converse statement namely that n,# 0 implies w(a) # 0, i.e. spontaneous
breaking of gauge symmetry, is much less clear, although this property is usually
taken for granted in the physics literature. Roepstorff [3] has provided some
nonrigorous arguments for the inequality w(ny)<|w(a)|*.

First we prove two lemmas about states on the CCR-algebra &f(3), where #
is any Hilbert space. The first one is for regular states @ i.e. the map AeR—
o (W(Ah)) is continuous for all h € ¥; the second one is for analytic states i.e. the
map A € C— w(W(Ah)) is analytic in an open strip around the real axis.

Lemma IIL.1. Let @ be a regular state on the CCR-algebra (#) and
(174, Qo #K,,) the corresponding GNS-representation. If U is any unitary operator in
the center of the von Neumann algebra T, (&ﬂ ", for any h € ¥ define the self-adjoint
operator $(h) on ¥, by

$(h)=(U*a,(h)+ Uak(h))*
where a_(h), aX(h) are the annihilation and creation operators for the state w, then:
(i) the map W:% — B(¥.,)
W(h)=exp idp(h), he¥

is a representation of the canonical commutation relations on ¥
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- (ii) define the functional w,, 0 €0, 27), on A(HK):
we(W(h)) = (Q,, W(e®h)Q,), hedk

then w, is a state.
(i) if {4 |  €[0,27)} is the one-parameter group of gauge transformations
i.e. T, W(h)= W(e'*h) then

wﬂTd) = Wg 14> 6’ (b € [09 277)

Proof. As the state o is regular there exist field operators ¢(h), ¢(ih), he ¥
and creation and annihilation operators a,(h), a’(h) with domain 2=
D(p(h)ND(P(ih)), such that a,(W)*=aX(h), ak(h)*=a,(h) (see e.g; [7]
Lemma 5.2.12). As U is a unitary element of the center, the operator U*a(h)+
Ua*(h) is essentially self-adjoint on 2. 3

Therefore ¢(h) is self-adjoint and clearly the field ¢ satisfies the same
commutation relations as the field ¢. Hence W is a representation of the
canonical commutation relations on the Hilbert space %, proving (i). The
properties (ii) and (iii) are then immediate. W

Lemma IIL.2. Let w be an analytic state on the CCR-algebra (). If U is any
unitary operator in the center of the algebra m, ()", let wy (0€[0,27)) be as in
Lemma II1.1, then

(i) if there exists an alement he ¥ such that o(U*a(h))#0 then for all 6,
¢ €[0, 27) with 6# ¢ we have wy# wg.
(i) if w is gauge invariant, then
1 297
w o dOw,

Proof. From the definition the states w, (0€[0,27)) are analytic if @ is
analytic. Therefore it is sufficient to prove the statement of the lemma on
monomials in the field operators [7; p. 39]. To prove (i) one remarks that

we(a(h))=e Pw(U*a(h)), he#, 0<[0,2m)
Therefore
(we —wy)(a(h) = (e —e™)w(U*a(h))#0

and the result follows.
Furthermore, for all n,meN and fe %:

o= [ doontazpran

1 (% .
_ j deelﬁ{n—m)w(Un—ma:(f)naw (f)m)

- 2’?1' 0
= o(ad(f)"a,(H)™)
proving (ii). W

Theorem IIL.3. Suppose that w is a gauge invariant equilibrium state in the
sense of the inequality (2) satisfying the conditions (a)-(d). If Bose-Einstein
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condensation occurs (i.e. ny# 0) then there exists states wy (0 €[0, 27)) not gauge
invariant satisfying:

(i) for all 6, ¢ €[0, 27) such that 0# ¢ then wy# w,

(ii) the state w has the decomposition

1 21r
® = J; dbw,

(iii) for each 0 [0, 2), the state wg is an equilibrium state.
(iv) for each polynomial Q in the operators a and o™® and for each 6 €[0, 2):

o (Q(a, a®) (X)) = wy (Q(e®nd?, e ni?)X); Xed

Proof. Consider the polar decomposition « = Ung’? of the normal operator a

(see condition (d)); U is the unitary extension in the center of m, ()" of the
partial isometry defined by the polar decomposition [8, p. 935]. As ny,# 0 there
exists some fe|J, L*(A) such that

o(U*a(f))#0

Indeed suppose that it vanishes for all functions, then, since a,{},, tends to a{},,

o(ny® =w(U*a)=lim o(U*a,)=0
A

which due to the separating character of the state w contradicts ny # 0. Hence the
existence of the states w, (8 €[0, 27r)) with the properties (i) and (ii) follow from
the Lemmas III.1 and 2.

To prove (iii) and (iv) we introduce the *-isomorphic map J of the Weyl
algebra into B(%,,) defined by:

J(W(h)) = W(h)

where W is defined as in Lemma III.1. Then the states wy (0€[0, 27)) are given
by

wy=woJoq,

As o is analytic, also w, is analytic and the latter extends to the algebra generated
by & and the polynomial algebra ?(«f) in the creation and annihilation operators.
The map J extends in a similar way. In particular

Ja(f)*=U*"a(f), feUL*A), neN

Therefore from the condition (d) by continuity one has
Ian — U*n an

Let (), be the gauge invariant polynomial subalgebra, then the restriction of J
to P(of), is the identity and therefore J extends trivially to the linear operators
affiliated to the von Neumann algebra P (). First we prove (iii).
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For all Xe AND([H,— uN,, . ]), A large enough, using the gauge invariance
of the Hamiltonian and the inequality (2) for the state w:

lim we (X*[H, — uN,, X])
A

= 1i11\n @ (Jro (X)[Hp— Ny, J16(X)])

@ (J7o (X *)J76 (X))
o (J7o (X)J7e(X )
wp (X*X)
we (XXF)

This proves that w, satisfies the inequality (2) for equilibrium states. Finally, as
Jo =Ji*=nt"

wy (Q(a, a®)X)

= w(Q(e®Ja, e *Ta*)Jry (X))
= w(Q(e*ng”?, e °ng?)Jre (X))
= wp(Q(e®nl2, e *nl?)X) W

= w(J1y(X*)J7e (X)) In

= we(X*X) In

States obtained by taking the thermodynamic limit of Gibbs states for Bose
systems with local Hamiltonians H, (1) are always gauge invariant and will always
satisfy the equilibrium inequality (2). The main new result proved in the theorem
is that those limit Gibbs states, for which there is condensation in the ground
state, can be decomposed with respect to the gauge group into distinct equilibrium
states. This is what is meant by spontaneous breaking of the gauge symmetry. The
technical conditions (a)—(d) are reasonably believed to be satisfied for realistic
Bose systems. They can be checked for the exactly solvable models.
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