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On Bose condensation

By M. Fannes,1) J. V. Pule2) and A. Verbeure, Instituut voor
Theoretische Fysica, Universiteit Leuven, B-3030 Leuven,
Belgium

(1. X. 1982)

Abstract. For infinite Bose systems in equilibrium we derive a generalization of the Bogoliubov
condensate equation and we prove rigorously that Bose-Einstein condensation occurs if and only if
there is spontaneous breaking of the gauge symmetry.

I. Introduction

In this paper we study Bose-Einstein condensation for systems with two-
body interactions. We do not prove the existence of condensation but we assume
to have an infinite system equilibrium state with possible occurrence of condensation.

The type of condensation we consider is into the k 0 mode only. We do
not consider other types of condensation (see e.g. [1]) although they are not
excluded.

In the first part we derive an equation representing the extremality of the free
energy density as a function of the condensation parameters. We call this equation
the condensate equation, since it is a generalization of the condensate equation
introduced by Bogoliubov [2]. It is an important equation in the sense that if only
zero condensate densities satisfy it then condensation is excluded while on the
other hand non-zero solutions show that condensation is present in the equilibrium

state being considered.
In the last part of the paper we give a rigorous and complete proof of the fact

that there is condensation if and only if the gauge symmetry is broken. One
implication being trivial, the other, namely that condensation yields necessarily
the breaking of the gauge symmetry, is less clear, although it is generally believed
to hold [3].

We consider the usual framework of Bose systems on Rv(v> 1). The algebra
of observables is si Ua ^a> where A stands for any open, connected, bounded
region of R", and where s&A is the algebra S8(^(L2(A))) of bounded linear
operators on the Fock space ^(L2(A)) of symmetric functions with support in A.
On each local Fock space we take the Hamiltonian HA which on the n-particle
subspace is given by

H"A=T"A+Vl (1)

') Bevoegdverklaard Navorser, N.F.W.O., Belgium.
2) On leave of absence from University College, Dublin, Ireland.
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where

TA —I£ A. (A Laplacian with Dirichlet boundary conditions)
i X

and VA is the multiplication operator by Xi-a.«,«,. t-Oxj-x,!). The potential v is
supposed to be absolutely intégrable and superstable [4]. The latter condition
ensures the existence of local Gibbs states.

We want to study properties of the equilibrium states corresponding to the
Bose system described by the Hamiltonian (1). Different definitions of an equilibrium

state in the thermodynamic limit are available. In what follows the most
convenient way is to define the state through the correlation inequalities [5]. In
particular a state to of si is an equilibrium state at inverse temperature ß 1 and
chemical potential peR if it satisfies:

limto(X*[HA-pNA,X^to(X*X)ln<^^- (2)
a to(XX

where X is any observable of sé such that Xe3>([HA—pJVA,.]) for A large
enough; NA is the number operator for the volume A and lim A tending to infinity
is always understood in the sense of an increasing sequence of cubes A with
volume |A|.

For any state to satisfying (2) we assume a number of conditions:
(a) The state is space translation invariant
(b) The state is characterized by a family of reduced density matrices, i.e.

there exist twice continuously differentiable complex functions p„m(x;y) on
Rv(n+m) {or all „5 m eN? such that for fh g. g L2(R-):

to(a*(fx) ¦ • ¦ a*(fn)a(gm) ¦ ¦ ¦ a(gl))

\dxx-dxndym-- dyxfx(xx) • - ' /„(x„)gm(ym) • • • gi(yi)

Pn,m(X\-, ¦ ¦ ¦ Xn', Ym) • • • ; yi)

where a(*} are the Fock creation and annihilation operators. Furthermore, we
assume the following bounds:

\Pn.m(x;y)\^ABn+mnlm\

with A and B positive constants.
This condition implies that the state is locally normal and extends to

polynomials in the local fields. In the following we use the same notation for the
Fock fields as well as for their representatives under the state.

(c) From condition (b) it follows that for all polynomials P, Q and .R in the
fields

limto(P[HA-p,NA,Q]R)
a
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exists e.g.

limto(a*(fx) ¦ ¦ ¦ a*(/n)[HA-pNA, a(/)]a(gm) • • • a(gl))
a

j dy dxx ¦ ¦ ¦ dx,. dym ¦ ¦ ¦ dyxfx(xx) • • • /„(x„)/(y)gm(ym) • • • gi(yt)

x [(èAy 4- p)pn,m+i(x1,..., x„ ; y, ym,..., yt)

- J dz v(y - z)pn+x.m+2(xx, ...,xn,z;z,y,ym,..., yJ]

We assume that these matrix elements define operators 8(Q) on a common core
2> containing the polynomials in the fields. We assume that the map Q —» <S(Q)
satisfies

8(PQ) 8(P)Q + P8(Q)
(SP)* -6(P*)
(d) Let

o(Xa) * Q*(Xa)
aA __ and «A ^Xp

where Xa is the characteristic function of the volume A, then we suppose that in
the limit A -» oo these operators converge strongly on 2l to the operators a and
a*, affiliated to the centre of the representation. Moreover we assume that
ordered monomials in aA and a* also converge strongly to the corresponding
monomials in a and a*. Next we impose conditions related to the derivation 8. If
P is any ordered monomial we assume that s-lim 8(P(aA, a*)) exists and defines
the extension of 8 to the polynomials in a, a* and the fields. Finally it is assumed
that

s-lim 8(P(aA, a%))P'(aA, aA)) 8(P(a, a*))P'(a, a*).
A

The conditions (d) are a characterization of the condensation level.

II. The condensate equation

We start with the proof of the main result of this section, namely the
condensate equation, which we derive for the equilibrium states of the infinite
system under fairly general conditions. The equation expresses the extremality of
the free energy as a function of the condensate parameters. In this sense it is a
generalization of the one derived by Ginibre [2].

Theorem II.1. If to is an equilibrium state, satisfying (1) and the conditions
(a)-(d), then for each polynomial P in the fields and in the operators a and a*, and
for each polynomial Q in the a, a* one has

to(P8(Q)) 0 (3)
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Proof. Take AeC and X ÀP*4-Q in the inequality (2). Using

aln — ^a-b for a, 6eR+
b

as Q is affiliated to the center one gets:

|A|2 to(P8(P*) + kto(P8(Q)) + kto(Q* 8(P*)) + (o(Q* 8(Q))
->\k\2to(PP*-P*P)

If we show that to(Q*8(Q)) 0 the theorem follows from the observation that
only the left hand side of this inequality contains a linear term in k. Finally we
prove that the constant terms vanishes. Take À 0, then to(Q* 8(Q))s=0. After
substitution of Q by Q* one finds also that to(Q8(Q*))^0. Furthermore, using
the time invariance of the state to, which is an immediate consequence of (2):

o co(8(Q*Q)) to(8(Q*)Q + to(Q* 8(Q)) to(Q 8(Q*)) + to(Q* 8(Q)).

From the positivity of both terms one gets to(Q* 8(Q)) 0. ¦
As a special case of (3) taking Q a and P a* one gets

to(tx*8(a)) 0 (4)

We rewrite this equation in terms of the reduced density matrices pn m
defined in condition (b)

to(a* 8(a)) MxMy\p.px,x(x;y)-\ dzv(y-z)p2i2(x,z;z,y)\ 0 (5)

where the space means M are well defined due to condition (d).
Remark that equation (4) is obtained from the inequality (2). The latter one

is an upper bound [6] for the change in free energy under semigroups of
completely positive maps. In the case of equation (4) the semigroup is given by

yx=expAr
' lim f

A JA dxT-^{[a(xA+x),. ]a*(xA+x) + a(xA+x)L a*(x.A+x)]

Therefore equation (4) expresses the differentiability of the free energy with
respect to the parameter k, with derivative zero.

In condition (a) we supposed already that the state to is space translation
invariant. Now we suppose further that the state to is space clustering and hence
extremal invariant. In this case the operator a is a multiple of the identity, in
particular

a to(a)\
Let t be the transformation defined by

r(W(h)) W(h) exp {-2i Re (to(a*)h(0))}
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where h is the Fourier transform of a function h, element of L2(A) for some
AcR" and where

W(h) expi[a(h) + a*(h)]
is a Weyl operator.

Denote by p"m the reduced density matrices defining the state to ° r. The
transformation removes the condensate part of the fields in the state to ° r, e.g.
ä(f) a(f)- txf(0) represents the annihilation operator with wave function / of the
excitation from the condensate.

Using the clustering property of to:

MxMyPx,x(x;y) \px,o(0)\2 \a\2

M*p2,2(x, z;z,y) p1>0(0)p1,2(2 ; z, y)

and after expressing the p„_m in terms of the p"m one gets from equation (5):

P |«|2-«j dy p?,2(0; 0, y)u(y)-â2J dy pS>2(0, yMy)

-|a|2[Jdypt1(0;y)t;(y)4Gi3(0)pti(0;0)]-|a|4i;(0) 0 (6)

This equation (6) coincides with the condensate equation of [2] after the
thermodynamic limit is taken. We emphasize that the condensate equation in [2] is
obtained by expressing the extremality of the pressure in the Bogoliubov approximation

for the finite system, while (6) is obtained immediately for the infinite
system without the use of any approximation.

The next objective is to prove the exactness of the Bogoliubov approximation
in the thermodynamic limit as far as the state is concerned. This would complement

the result of Ginibre [2] where it is proved that this approximation is exact
as far as the pressure is concerned. For a given Bose model (i.e. for given
potential v) one should solve the condensate equation and obtain the spectrum of
the operator a and hence of n0 a*a the condensate density. What one should
show is the following. Let a J k dE(k) be the spectral resolution of a, and let k
be an element out of the spectrum of a then one can prove from (2) that the
measure dto(E(k)X) is absolutely continuous with respect to dto(E(k)) so that we
can define

,_- dto(E(k)X)^(X)= dto(E(k))
a-e-mA"

We should prove that the map X —» eox (X) is a state satisfying the equilibrium
condition (2). This would provide us a central decomposition of the state with
respect to a. Unfortunately <ox(X) may not be uniquely defined for À in a set S

with measure to(E(S)) 0 where S may depend on the observable X, and so we
are unable to prove the above property in full, but we have the following partial
result.

Theorem II.2. Let Q be any polynomial in the operators a and a*, define the
state
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where to satisfies (2), then also toQ is an equilibrium state in the sense of inequality
(2).

Proof. Take X QY in the inequality (2) then one gets:

o.(Q*Y*6(QY)>o,(Q*QY*Y)ln^((gtQ^

From Theorem II. 1

to(Q*Y* 8(QY)) to(Q*QY* 8(Y))
and hence the result. ¦

If the operator a is bounded, for any spectral projection -E(A), A a measurable

set in the spectrum of a, there is a sequence of polynomials Qn such that
limn Qn -E(A) and then it follows from the theorem that the state toA
to(E(A) .)/to(E(A)) is an equilibrium state in the sense of (2).

If to is gauge invariant we shall see in the next section that we can realize the
decomposition of the state with respect to the argument of a. If n0 has a discrete
spectrum this yields a full decomposition of the kind discussed before Theorem
II.2.

III. Condensation and gauge symmetry breaking

Now we treat rigorously the connection between condensation and breaking
of the gauge symmetry. It is well known that breaking of gauge symmetry implies
condensation: if to(a)^0 then from Schwartz inequality it follows to(no)^0 and
so n0 7^ 0, i.e. occurence of Bose-Einstein condensation.

The converse statement namely that n0 j= 0 implies to(a) i= 0, i.e. spontaneous
breaking of gauge symmetry, is much less clear, although this property is usually
taken for granted in the physics literature. Roepstorff [3] has provided some
nonrigorous arguments for the inequality a)(n0)^|-ta)(a)|2.

First we prove two lemmas about states on the CCR-algebra sé($C), where 'M
is any Hilbert space. The first one is for regular states to i.e. the map AeR—»
to(W(kh)) is continuous for all he%!; the second one is for analytic states i.e. the
map A eC—> to(W(kh)) is analytic in an open strip around the real axis.

Lemma III.l. Let to be a regular state on the CCR-algebra séffi) and
(rr^, O,^, Sif-J the corresponding GNS-representation. If U is any unitary operator in
the center of the von Neumann algebra rrM(sé)", for any h e W define the self-adjoint
operator tp(h) on %£„ by

Mh) (U*aûl(h)+UaZ(h))*
where aa(h), a*(h) are the annihilation and creation operators for the state to, then:

(i) the map W:%-+&(%„)
W(h) exp it}>(h), heX

is a representation of the canonical commutation relations on "3Î
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(ii) define the functional toe, Oe[0,Irr), on sé(26):

o>e(W(h)) (0« W(e*h)Ùj, heX
then toe is a state.

(iii) if {r^, | tp e [0, 2tt)} is the one-parameter group of gauge transformations
i.e. t+ W(h) W(.e*h) then

to^ toe+4>, 6,<pe [0, Irr)
Proof. As the state to is regular there exist field operators tp(h), tp(ih), heX

and creation and annihilation operators am(h), a*(h) with domain 3l
2>(<p(h))n2)(tP(ih)), such that aJh)* aZ(h), a*(/t)* ató(Ji) (see e.g; [7]
Lemma 5.2.12). As U is a unitary element of the center, the operator U*a(h) +
Ua*(h) is essentially self-adjoint on 2).

Therefore tp(h) is self-adjoint and clearly the field cp satisfies the same
commutation relations as the field tp. Hence W is a representation of the
canonical commutation relations on the Hilbert space 26m proving (i). The
properties (ii) and (iii) are then immediate. ¦

Lemma III.2. Let to be an analytic state on the CCR-algebra sé(%€). If U is any
unitary operator in the center of the algebra rr^(sé)", let toe (0e[O, 2-jt)) be as in
Lemma III.l, then

(i) if there exists an alement heX such that to(U*a(h))^0 then for all 6,

tpe[0,lrr) with 0j=tp we have tog^to^,.
(ii) if to is gauge invariant, then

ro)=— I d6to„

Proof. From the definition the states toe (0e[O, Irr)) are analytic if to is

analytic. Therefore it is sufficient to prove the statement of the lemma on
monomials in the field operators [7; p. 39]. To prove (i) one remarks that

toe(a(h)) e-ieto(U*a(h)), heX, 6e[0,lrr)
Therefore

(cüe - to<,)(a(h)) (e'16 - e-^>)to(U*a(h)) + 0

and the result follows.
Furthermore, for all n, m e N and fe%6:

r2iT

-^| d0a,e(a*(/)"aa,(/r)

r2-ir
yi6(n—m) (r rn—m _*/z}- f d0eie(n-mVUn-ma*(/raa)(/)m)

2tt Jo

a,(a*(/)BaM (/)m)

proving (ii). ¦
Theorem III.3. Suppose that to is a gauge invariant equilibrium state in the

sense of the inequality (2) satisfying the conditions (a)-(d). If Bose-Einstein
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condensation occurs (i.e. n0 ^ 0) then there exists states toe (0 e [0, Irr)) not gauge
invariant satisfying:

(i) for all 0,tpe [0, Irr) such that O^tp then toe ^ to^,
(ii) the state to has the decomposition

1 f2"
Irr J0

w=— | d6toa
It

(iii) for each 6 e [0, Irr), the state toe is an equilibrium state.
(iv) for each polynomial Q in the operators a and a* and for each 6 e [0, 2tt):

toe(Q(a, a*)(X)) toe(Q(eien10/2, e^nl'^X); Xesé

Proof. Consider the polar decomposition a Uni12 of the normal operator a
(see condition (d)); U is the unitary extension in the center of rr^sé)" of the
partial isometry defined by the polar decomposition [8, p. 935]. As n0 ^ 0 there
exists some fe\JAL2(A) such that

to(U*a(f))j-0

Indeed suppose that it vanishes for all functions, then, since aAClw tends to afì^,

to(ny2) to(U*ot) =lim co(U*txA) 0
A

which due to the separating character of the state to contradicts n0 ^ 0. Hence the
existence of the states toe (0 e [0,Irr)) with the properties (i) and (ii) follow from
the Lemmas III.l and 2.

To prove (iii) and (iv) we introduce the *-isomorphic map J of the Weyl
algebra into 38(26w) defined by:

J(W(h)) W(h)

where W is defined as in Lemma III.l. Then the states toe (0€[O, Irr)) are given
by

toe to ° J ° r0

As to is analytic, also toe is analytic and the latter extends to the algebra generated
by sé and the polynomial algebra &>(sé) in the creation and annihilation operators.
The map J extends in a similar way. In particular

Ja(f)n U*na(f), fe (j L2(A), neW
A

Therefore from the condition (d) by continuity one has

Jan U*nan

Let ÇP(sé)s be the gauge invariant polynomial subalgebra, then the restriction of /
to ÇP(sé)ri is the identity and therefore J extends trivially to the linear operators
affiliated to the von Neumann algebra ^(sé)"^ First we prove (iii).
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For all XeséCM3}([HA-p,NA,. ]), A large enough, using the gauge invariance
of the Hamiltonian and the inequality (2) for the state to:

limo>e(X*[HA-piVA,X])
A

lim to(JTe(X)[HA- pNA, Jre(X)])

<oe(X*X)ln

to(Jre(X)Jre(X*))

cü„(X*X)
<oe(XX*)

This proves that toe satisfies the inequality (2) for equilibrium states. Finally, as
Ja=Jtx* nl/2:

toe(Q(a,a*)X)
to(Q(eieJa, e-ieJa*)Jre(X))
to(Q(eien10'2,e-ienh'2)Jre(X))

o,e(Q(eienJ/2,c-ienâ/2)X) ¦
States obtained by taking the thermodynamic limit of Gibbs states for Bose

systems with local Hamiltonians HA (1) are always gauge invariant and will always
satisfy the equilibrium inequality (2). The main new result proved in the theorem
is that those limit Gibbs states, for which there is condensation in the ground
state, can be decomposed with respect to the gauge group into distinct equilibrium
states. This is what is meant by spontaneous breaking of the gauge symmetry. The
technical conditions (a)-(d) are reasonably believed to be satisfied for realistic
Bose systems. They can be checked for the exactly solvable models.
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