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Sur la tension superficielle de l'hélium liquide
He4 au voisinage du point À

Par M. Robert, Baker Laboratory, Cornell University, Ithaca,
New York 14853, U.S.A.

(8.VII. 1982; rev. 31. VIII. 1982)

Abstract. It is suggested on theoretical grounds that the apparent discontinuity in slope of the
surface tension of liquid helium He4 at the A-point, which was observed experimentally, may not be
real.

Introduction

Depuis les expériences de van Urk, Keesom et Kamerlingh Onnes [1] en
1925, il a été observé que la tension superficielle de l'hélium liquide He4
exhibait, en fonction de la température, un changement qualitatif au point k.
Alors que les premières mesures indiquaient l'apparition d'une courbure dans le
graphe de la tension superficielle tr en fonction de la température T au voisinage
de 2.4°K, les mesures plus détaillées de Allen et Misener [2], en 1938, suggéraient
la possibilité d'une légère discontinuité de la pente en TX~2.17°K. Les
expériences suivantes de Atkins et Narahara [3], en 1964, plus précises que les
précédentes, révélaient une apparente discontinuité de la pente de tr(T) en Tk.
Ces suggestions d'un changement de la pente de tr(T) en Tx ont plus récemment
été confirmées par Magerlein et Sanders [4] dans des mesures faites avec une
grande résolution dans la région Tx-100 mK< T<TK +100 mK.

Du point de vue théorique, des arguments partiellement contradictoires ont été
avancés par Sobyanin [5] et par Hohenberg [6] et récemment Widom [7a] a

remarqué que le problème de l'interface de l'hélium liquide He4 près de TK pouvait
être étudié par une théorie du type van der Waals [8, 9] à deux densités [10], la
tension superficielle étant une tension noncritique près d'un point critique terminal

(en anglais: "critical end point").
.Alors que les premiers résultats numériques obtenus dans le cadre d'une telle

théorie par Ramos-Gómez [7b] suggéraient une discontinuité de dtr/dT en Tx,
conformément aux résultats expérimentaux décrits plus haut, des calculs
numériques très récents, dus à Tavan et Widom [11], indiquent au contraire que
cette discontinuité n'est pas présente.

L'objet de cet article est de présenter une étude analytique du problème de la
variation de la tension superficielle de l'hélium au voisinage du point k dans le
cadre de la théorie de van der Waals-Widom. Il sera démontré que suivant cette
théorie, la tension superficielle de l'hélium liquide admet nécessairement une
dérivée par rapport à la température T qui est continue en Tx.
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Dérivation des résultats

Avant de présenter les détails de la démonstration, il est utile de rappeler la
définition du modèle de Ramos-Gómez et Widom [7].

La fonctionnelle d'énergie libre de Helmholtz F(x, y) a deux densités x et y a
la forme:

F(x,y) Fx(x,y)-F2(x,y)

avec:

Fx(x,y) [x2-y-(x2-yL)T+(y-yL)2 + l(x-x0)2(x2-yL) (1)

et:

F2(x,y) x2 + (y-yG)2;

(±x0, yL) et (o, yG) sont les coordonnées des trois "phases" dans le plan des
densités (x, y).

Pour T>TK, x0 0 et yL <0; x est proportionnel au paramètre d'ordre de la
phase superfluide et y est proportionnel à la densité de la phase normale, yL se
rapportant à la densité de la phase liquide et yG à celle de la phase gazeuse.

La tension superficielle tr est donnée par:

tr min | \P(z) dz (1)
(x, y) J—co

avec:

*(2)=FWz),y(2))+?(!)%?(g)>

où mx et m2 sont des constantes positives et z est l'axe vertical suivant lequel les
densités x et y varient. Les équations de Euler-Lagrange correspondant à ce
problème variationnel s'écrivent:

d2tpj(z) dF
dz2 ~dtpi'nk - 2 =—, i l,l, (3)

où tpi(z) x(z), y(z). La tension superficielle donnée par (2) peut également
s'écrire:

o- 2 f
J—(

F(x(z), y(z)) dz, (4)

où x(z) et y(z) sont maintenant les profils des densités de l'équilibre. L'expression
(4) sera celle qui sera utilisée par la suite.

On denoterà par e la grandeur sans dimension e0 ¦ ((T— T^/T^), où e0 est une
constante positive sans dimension. Pour e=s0, i.e. pour T-^Tk, les solutions de
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(3) ont la forme: [11]

X*(Z)

x0(e)-tanh z>0
24.2(e)

10 z<0

„ <-v. yL(e)+yo(£), yL(g)-yG(e)j z
ye(z) ~ + z tanh (5)

2 2 26(e)
ou:

x0(e) Vf'
yL(e) y, (6)

yG(e) -l + e

et les longueurs de cohérence £1 et <f2 sont données par:

^(s)-2(1-fe)
^(e)- -/=2ë(l -2e)

Les expressions (6) et (7) suivent directement de la forme de la fonctionnelle
d'énergie libre de Helmholtz F de (1).

Pour e <0, les solutions x(z) et y(z) données par (5)-(7) ne sont pas exactes
mais approchent bien les solutions numériques [11]; cependant les comportements

de ces solutions pour |z|—>°° sont exacts et ce sont ces comportements
asymptotiques qui constituent un des ingrédients essentiels de la démonstration
qui suit.

Pour 6>0, la phase superfluide n'est plus présente et xB(z) 0. L'interface
est alors descriptible par une théorie ordinaire à une densité [10]. Dans ce cas
on obtient comme solution exacte de (3) le profil classique y(z):

ye(2) yag)!yG(£) + yL(e):yG(£)tanh: '
26(e)

avec:

yt(e)--J, (8)

yG(e) -H-e,
et:

fi. H«)-2(1-Je);
y est désormais proportionnel à la densité ordinaire p.

La fonctionnelle F de (1) est par construction du type champ moyen, et les
dépendances en e de x0 et de yL dans (6) et (8), qui suivent directement de la
forme de F, sont typiques de la théorie du champ moyen. Par ailleurs il existe une
analogie entre le présent point critique terminal et le point critique ordinaire de
l'équilibre liquide-vapeur [11]. Ici le paramètre d'ordre, x0, a, d'après (6), un
exposant critique égal à 5, qui est la valeur de l'exposant ß du paramètre d'ordre
dans la théorie du champ moyen du point critique de l'équilibre liquide-vapeur.
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De plus, la discontinuité de dyjde en e 0 équivaut à la discontinuité de la
chaleur spécifique à volume constant suivant l'isochore critique qui characterise la
théorie du champ moyen du point critique de l'équilibre liquide-vapeur. Dans
cette analogie, la densité y joue le rôle de la densité d'énergie ou d'entropie à un
tel point critique.

En utilisant les valeurs de x0, yL et yG données par (6), F prend, pour e <0,
la forme:

F(x,y,e)=[(x2-y)2+(y+!)2

En utilisant (4), on a:

[x2 + (y4-l-e)2]. (9)

de de L« Fe(z)dz, (10)

où Fe(z) F(xe(z), ye(z), e) est donné par l'expression (9).
Notre résultat sera établi en démontrant que premièrement dans (10) les

opérations d/de et J dz peuvent être échangées pour tout e j- 0 fixé et
deuxièmement qu'il en est de même des opérations lime_^0et Jdz(d/de). Nous
discutons ici seulement le cas e < 0, le cas e < 0 étant beaucoup plus simple et se
traitant de la même façon.

Nous commençons avec une identité générale [12] qui suit du principe
variational (2) et dont la validité n'est pas limitée à la forme spécifique de la
fonctionnelle F de (1):

±Fe(z)dz=\ U(z)dz, (ID
L«, de J-«

où:

fe(z) f(xB(z),ye(z),e)

avec:

öF
/(x, y, e)=—(x, y, e),

de

Cette identité résulte du fait que les profiles des densités x(z) et y(z) sont ceux de
l'équilibre, et puisque ces derniers minimisent l'intégrale dans (2), cette intégrale
est stationnahe par rapport aux variations des profils x et y autour de leur forme
d'équilibre. Il n'y a donc finalement de contribution à l'intégrale (2) que par la
dépendance explicite de F en e. Cet argument est le' même que celui par lequel
se dérive le théorème de Hellmann-Feynman de la mécanique quantique
moléculaire [12].

On obtient à partir de (9):

ou

/(x, y, e) r1(x, y, e) + /2(x, y, e) (12)

f1(x,y,e)=(y+^[x2 + (y + l-e)2]



Vol. 55 1982 Sur la tension superficielle de l'hélium liquide He4 385

et:

/2(x,y,e) -2(y + l-e)[(x2-y)2+(y+|)2

Le fait que:

lim fE(z) 0, i-l,2,
suggère la décomposition:

/¦+00

/E(z)dz=g^-4-gr+g2-+gf,
J—co

ou:

g;-=f fl(z)dz,
J—oo

gî+=| /Ì(Z)«Ì2,

g2-=\° fl(z)dz, (13)

et:
/•+00

gî+ [ fl(z)dz.

Les fonctions /é(z), i 1, 2, sont bornées et décroissent exponentiellement à

l'infini; elles sont donc en particulier intégrables. L'idée est alors de majorer, pour
chaque f\, certains facteurs, en s'assurant que les facteurs restants demeurent
intégrables.

En utilisant les formes explicites données par les équations (5)-(7), on
obtient, pour le terme g\~:

y(z)+|<M1"

et:

lim [x2(z) + (y(z) + l-e)2] 0,
2—r—OO

où M1-<c° est une constante. Or x(z) 0 pour z<0, et donc:

f fl(z)dz<M1~ f [y(z) + l-e]2dz. (14)
J—OO J—00

En utilisant (5), l'intégrand de (14) s'écrit, pour z<0:

(i)2d-!e)2(l+tanh-f-Y.
v li(e)/
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Lorsque e décroît (en valeur absolue), fi^e) décroît et par suite fi(e) croît. Pour
e 0, li 2. Pour tout e fixé on peut ainsi majorer la fonction (y (z) 4-1 - e)2 par
une fonction qui décroît exponentiellement à l'infini et est donc intégrable en z.
De plus, pour tout e il existe une fonction intégrable en z indépendante de e, qui
majore la fonction (y(z)4-l-e)2. Une telle fonction est par exemple la fonction
(yE(z)+l-e)2Uo-

Pour le terme gE+, on a:

gl+ ^~(yAz) + ^)[x2(z) + (ys(z) + l-e)2-\dz.

Or:

x2(z) + (ye(z)+l-£)2<M1+<oo
et:

hm^ye(z) + |) 0,
Z—»+CO

et donc:

y.(z)+? <fe. (15)ol 2.\

Avec (5), l'intégrand de (15) s'écrit:

(HX1-^^)-
L'argument se conclut comme pour le cas précédent du terme g\~. Le majorant
intégrable est par exemple la fonction (ye(z)4-e/2)|E=0.

Pour le terme g2-, on a:

g2- -2_[ (ye(z) + l-e)[(xf(z)-yB(z))24-(ye(z)+|)2]dz.

En utilisant:

(xf(z)-ye(z))2+(yE(z)+!)2<M2-<c

et:

lim (yE(z) + l-e) 0,
Z—>—co

on obtient:

|g21<2M2- f |yE(z)+l-e|dz.
J—oo

(16)

Mais l'intégrand de (16) est la racine carrée de celui de (14), et l'argument pour ce
terme se conclut donc de la même façon que pour (14).

Finalement considérons le terme g2+. On a:

g2+ -2|)+(yE(z) + l-e)[(x2(z)-yE(z))24G(yE(z)+|)2]dz.
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Or:

4-2|yE(z)4-l-e|<M2+<°o
et:

Hm [(xf(z)-ye(z))2+(yE(z)+!)2] 0,

et donc:

|g2+|<M2+ J^+0O|(x2(z)-yE(z))2+(yE(z)+|)2| dz. (17)

De plus, on a:

ta e 3e 1 /1 3e\ z
y^+rj-ì+k--4ÌtanhìixVy

et ce terme s'annule lorsque z—»4-°o. Pour le terme x2(z)-yE(z), on obtient:

*2(2)-ye(z)=-f(tanh--y2
2è2(e)J

z
("«)'-{rl)-{rT>tmhW(

Ce terme s'annule également lorsque z —> -H». Contrairement aux cas précédents,
le majorant intégrable n'est pas indépendant de e. Nous reviendrons sur ce point
plus loin.

Par conséquent, pour tout e*<0 fixé, on peut majorer en module l'intégrand
de (17) par une fonction intégrable indépendante de e pour e<e*<0, et donc
échanger d/de et J dz.

Nous considérons maintenant l'échange de la limite e —» 0 et de l'intégration
par rapport à z:

r +00 <• -(-oo

lim fe(z)dz=\ lim fe(z) dz.
£—*0 J—oo J—oo e—»0

Cet échange des processus de limite et d'intégration est légitime si la fonction
limE^o/e(z) existe et si l'intégrand fe(z) est majorable en module par une fonction
h(z) dans L^IR), indépendamment de e.

L'analyse précédente montre que limE_^0/..(z) existe, et que le seul cas où la
fonction h n'existe pas est celui du premier terme de l'intégrand de (17). Cependant

un calcul explicite va montrer que cette difficulté n'est qu'apparente. On a:

x2(z)-ye(z)=-|(tanh—^-r)
2 \ 2£2(e)/

-(H)-(I-t)-^-
Pour z grand, qui est le régime à contrôler, on a:

tanhxsl-2e"2x,
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et donc:

x2(z)^-|(l-2e-z/^>)2

s-|(l-4e-2/«e))
et:

y.b)-f-ì+(ì-^)(l-2e-«.<-.

..-i-(.-f>-'"'•';
par suite:

x2(z) - yE (z) s 2ee~z/^^ + (i-?ï\e-^\ (19)

Contrairement au second terme de (19), le premier n'est pas majorable en module
par une fonction intégrable, indépendamment de e, au voisinage de e — 0. Mais on
a:

0,

où on a utilisé l'expression explicite (7) pour £2x(e). Donc le terme gênant ne
contribue pas à dtr/de dans la limite e -* 0.

Nous avons donc vérifié que les conditions permettant l'échange de la limite
e —» 0 et de l'intégration par rapport à z sont satisfaites pour tout e =s 0.

On vérifie enfin que les quantités:
r +00

lim fs(z)dz
J-oo e^0+

et:

i
+00

lim fE(z)dz
-oo e—*0

sont égales.
Cette démonstration permet de conclure que, dans le cadre de la théorie de

van der Waals-Widom classique, la fonction dtr/de est continue en e 0, en
d'autres termes que la fonction dtr/dT est continue en Tx.

Discussion

Les calculs précédents utilisent les profils des densités xB(z) et yE(z) donnés
par la théorie de van der Waals-Widom classique. La question se pose tout
d'abord de savoir si un résultat semblable à celui obtenu ici reste valable dans une



Vol. 55 1982 Sur la tension superficielle de l'hélium liquide He4 389

formulation non classique [13] de cette théorie et ensuite si le même résultat peut
être étendu à un nombre arbitraire [14] de densités [10]. Des calculs préliminaires
[15] suggèrent qu'un résultat identique à celui établi ici conserve sa validité dans
ces cas plus généraux.

Enfin on peut mentionner que des oscillations, d'origine quantique, du profil
de densité de la surface de l'hélium liquide He4 dans son état fondamental, ont
été prédites par Regge [16] et trouvées dans des calculs variationeis numériques
par Liu, Kalos et Chester [17]; de telles oscillations, si elles existent réellement,
ne subsistent probablement pas jusqu'au point critique [18]. Si la théorie utilisée
ici ne prédit pas de telles oscillations, nous pensons que leur présence
n'invaliderait pas la démonstration et le résultat donnés plus haut.

Des mesures expérimentales plus précises que celles qui ont été faites
jusqu'ici seront nécessaires pour confirmer ou contredire ces prédictions
théoriques.
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