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Sur la tension superficielle de I’h€lium 11qu1de
He* au V01smage du point A

Par M. Robert, Baker Laboratory, Cornell University, Ithaca,
New York 14853, U.S.A.

(8.VIIL. 1982; rev. 31. VIIL. 1982)

Abstract. It is suggested on theoretical grounds that the apparent discontinuity in slope of the
surface tension of hqmd hehum He* at the )\-pomt which was observed experimentally, may not be
real.

Introduction

Depuis les expériences de van Urk, Keesom et Kamerlingh Onnes [1] en
1925, il a été observé que la tension superficielle de I’hélium liquide He*
exhibait, en fonction de la température, un changement qualitatif au point A.
Alors que les premiéres mesures indiquaient 1’apparition d’une courbure dans le
graphe de la tension superficielle o en fonction de la température T au voisinage
de 2.4°K, les mesures plus détaillées de Allen et Misener [2], en 1938, suggeraient
la possibilit¢é d’une légere discontinuité de la pente en T,~2.17°K. Les
expériences suivantes de Atkins et Narahara [3], en 1964, plus précises que les
précédentes, révélaient une apparente discontinuite de la pente de o(T) en T,.
Ces suggestions d’un changement de la pente de o(T) en T, ont plus récemment
été confirmées par Magerlein et Sanders [4] dans des mesures faites avec une
grande résolution dans la région T,—100 mK<T< T, + 100 mK." :

Du point de vue théorique, des arguments partiellement contradictoires ont été
avancés par Sobyanin [5] et par Hohenberg [6] et récemment Widom [7a] a
remarqué que le probléme de I'interface de I’hélium liquide He* prés de T, pouvait
étre étudié par une théorie du type van der Waals [8, 9] 2 deux densités [10], la
tension superﬁcielle étant une tension noncritique preés d’un point critique termi-
nal (en anglais: “‘critical end point™).

Alors que les premiers résultats numériques obtenus dans le cadre d’une telle
théorie par Ramos-Gémez [7b] suggéraient une discontinuité de do/dT en T,,
conformément aux résultats expérimentaux décrits plus haut, des calculs
numériques tres récents, dus a Tavan et Widom [11], indiquent au contraire que
cette discontinuité n’est pas présente. '

L’objet de cet article est de présenter une étude analytique du probleme de la
variation de la tension superficielle de I’hélium au voisinage du point A dans le
cadre de la théorie de van der Waals-Widom. Il sera demontré que suivant cette
théorie, la tension superficielle de ’hélium liquide admet nécessairement une
dérivée par rapport a la température T qui est continue en T,.
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Dérivation des résultats

Avant de présenter les détails de la démonstration, il est utile de rappeler la
définition du modeéle de Ramos-Gomez et Widom [7].

La fonctionnelle d’énergie libre de Helmholtz F(x, y) a deux densités x ety a
la forme:

F(x,y)=F(x, y) - Fy(x,y)

avec:

Fi(x, y)=[x*—y—(x5—y )P +(y = yr)>+2(x — x0)*(x3— y.) (1)
et:
Fy(x, y)=x*+(y —ys)%

(£x0, yr) et (o0, yg) sont les coordonnées des trois ‘“‘phases” dans le plan des
densités (x, y).

Pour T>T,, x,=0 et y, <0; x est proportionnel au paramétre d’ordre de la
phase superfluide et y est proportionnel a la densité de la phase normale, y; se
rapportant a la densité de la phase liquide et y; a celle de la phase gazeuse.

La tension superficielle o est donnée par:

o =min J+w‘1’(z ) dz | ?
(x,y) J—oo
avec:
_ my (dx\? m, (dy)?
W(Z)“F(lx(Z)a y(Z))+ 2 (dZ) T 2 (dZ)

ou m; et m, sont des constantes positives et z est I’axe vertical suivant lequel les
densités x et y varient. Les équations de Euler-Lagrange correspondant a ce
probléme variationnel s’écrivent:

d’¢i(z) oF
s d22 - a(bi,

i=1,2, (3)

ou ¢ (z)=x(z), y(z). La tension superficiclle donnée par (2) peut également
s’écrire:

+o0
o=2 I F(x(2), y(2)) dz, 4)
ou x(z) et y(z) sont maintenant les profils des densités de I’équilibre. L’expression
(4) sera celle qui sera utilisée par la suite.

On denotera par ¢ la grandeur sans dimension g, - ((T— T,)/T,), ou g, est une
constante positive sans dimension. Pour € <0, i.e. pour T=<T,, les solutions de
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(3) ont la forme: [11]

4
Xo(g) - tanh ., z>0
X (Z)z ° 2&2(8)
© 0 g z<0
y(e)+ys(e)  y(e)—ys(e) &
elZ)~ < 3
Ye(2) 3 > tanh 2.(2) (5)
ou
—&
xO(S)_ 2 ’
(o) =", | ©)
vo(e)=—1+¢
et les longueurs de cohérence &; et & sont données par:
1Me)~2(1-3¢
&1 (g) (1—3¢) (7)

&' (e) ~vV—-2e(1—-2¢)
Les expressions (6) et (7) suivent directement de la forme de la fonctionnelle
d’énergie libre de Helmholtz F de (1).

Pour £ <0, les solutions x(z) et y(z) données par (5)-(7) ne sont pas exactes
mais approchent bien les solutions numériques [11]; cependant les comporte-
ments de ces solutions pour |z| — ® sont exacts et ce sont ces comportements
asymptotiques qui constituent un des ingrédients essentiels de la démonstration
qui suit.

Pour £>0, la phase superfluide n’est plus présente et x.(z)=0. L’interface
est alors descriptible par une théorie ordinaire & une densité [10]. Dans ce cas
on obtient comme solution exacte de (3) le profil classique y(z):

_ye(e)+ys(e) | ye(e)—ys(e) F4
Ve (2)= > + 5 tanh _—_251(3)
avec:
nie)=—<, | | ®
Yo(€)=—1+g¢,
et:

&1 (e)~2(1-3e);
y est désormais proportionnel a la densité ordinaire p.

La fonctionnelle F de (1) est par construction du type champ moyen, et les
dépendances en &£ de x, et de y. dans (6) et (8), qui suivent directement de la
forme de F, sont typiques de la théorie du champ moyen. Par ailleurs il existe une
analogie entre le présent point critique terminal et le point critique ordinaire de
I’équilibre liquide-vapeur [11]. Ici le parameétre d’ordre, x,, a, d’aprés (6), un
‘exposant critique égal 4 3, qui est la valeur de ’exposant 8 du paramétre d’ordre
dans la théorie du champ moyen du point critique de 1’équilibre liquide-vapeur.
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De plus, la discontinuité de dy,/de en & =0 équivaut a la discontinuité de la
chaleur spécifique a volume constant suivant I’isochore critique qui charactérise la
théorie du champ moyen du point critique de I’équilibre liquide-vapeur. Dans
cette analogie, la densité y joue le role de la densité d’énergie ou d’entropie a un
tel point critique.

En utilisant les valeurs de x,, y;. et y5 données par (6), F prend, pour £ <0,
la forme:

2
Fes v, )= | 2=+ (y+2) o (v + 107 ©)
En utilisant (4), on a: |

do d (™
de —2£ J._w F,(2) dz, (10)

ou F.(z)=F(x.(z), y.(2), €) est donné par I’expression (9).

Notre résultat sera établi en démontrant que premierement dans (10) les
opérations df/de et [dz peuvent étre échangées pour tout £#0 fixé et
deuxiémement qu’il en est de méme des opérations lim,_,, et | dz(d/de). Nous
discutons ici seulement le cas € <0, le cas € <0 étant beaucoup plus simple et se
traitant de la méme fagon. '

Nous commengons avec une identité générale [12] qui suit du principe varia-
tionnel (2) et dont la validité n’est pas limitée a la forme spécifique de la
fonctionnelle F de (1):

=d I | 11)
L AT L o de, (

~

ou:
f.(2) =f(x.(2), y.(2), &)

avec.
oF
=—1(x, Yy, £).
f(x, y, €) ae( Y, €)

Cette identité résulte du fait que les profiles des densités x(z) et y(z) sont ceux de
I’équilibre, et puisque ces derniers minimisent 'intégrale dans (2), cette intégrale
est stationnaire par rapport aux variations des profils x et y autour de leur forme
d’équilibre. 11 n’y a donc finalement de contribution & l'intégrale (2) que par la
dépendance explicite de F en &. Cet argument est le méme que celui par lequel
se dérive le théoréme de Hellmann-Feynman de la mécanique quantique
moléculaire [12]. '

On obtient a partir de (9):
flx,y,€)=f"xy,&)+fx,y,¢) (12)

-

ou

fiix,y,e)= (y +§)[x2+ (y+1—¢)’]
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et:
2
Le fait que: ‘

lim fi(z)=0, i=1,2,

Z—>k00

suggere la décomposition:

—+o0
J f(2)dz=g +gl"+g2 +g7",

—o0

r O
g =\ fiz2)dz

gt=\| fi(2)dz,

Jo

.0

g2 =\ fiAz)dz (13)

et:
g2t = L 2(z) dz.

Les fonctions fi(z), i=1,2, sont bornées et décroissent exponentiellement 2
I'infini; elles sont donc en particulier intégrables. L’idée est alors de majorer, pour
chaque fi, certains facteurs, en s’assurant que les facteurs restants demeurent
_ intégrables. ' '

En utilisant les formes explicites données par les équations (5)-(7), on
obtient, pour le terme g!™:

y(z)+§<M1_
et:

lim [x%(z)+(y(z)+1-2)*]=0,
ou M'~ < est une constante. Or x(z)=0 pour z <0, et donc:
0 0
j f1(z) dz < M- J' [y(z)+1—eF dz. (14)

—C0

En utilisant (5), intégrand de (14) s’écrit, pour z <0:

1271 _3 z \
321 36)2(1 +tanh El(s)) i
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Lorsque & décroit (en valeur absolue), £ (g) décroit et par suite &,(¢) croit. Pour
e =0, £, =3 Pour tout ¢ fixé on peut ainsi majorer la fonction (y(z)+1—¢)? par
une fonction qui décroit exponentiellement a l’infini et est donc intégrable en z.
De plus, pour tout ¢ il existe une fonction intégrable en z indépendante de &, qui
majore la fonction (y(z)+1—¢)2. Une telle fonction est par exemple la fonction
(ye (Z) +1— 8)2|€=0'

Pour le terme gl*, on a:

et = [ (1@ )@+ tu2)+1- 00 d

Or:

x22)+(y.(2)+1-e)’ <M <
et:

lim (ye(z) +f) =0,

i 2

et donc:
+oo
g1 <n [ |yuer+E] az (15)

Avec (5), I'intégrand de (15) s’écrit:

(%) (- z5)

L’argument se conclut comme pour le cas précédent du terme gl~. Le majorant
intégrable est par exemple la fonction (y.(z)+ €/2)|. —o.
Pour le terme g2~, on a:

g =—2 L, (y.(z)+1- 8)[(x§(2) —y.(2))*+ (ya(z)+-§—) ] dz.
En utilisant:
(D) -y, 2+ (5. (2) +-§) <M* <

et:
lim (y.(z)+1—-¢)=0,

z—>—00

on obtient:
(4]
|g§“]<2M2_j ly.(z2)+1—¢€| dz. (16)

Mais P'intégrand de (16) est la racine carrée de celui de (14), et I’argument pour ce
terme se conclut donc de la méme fagon que pour (14).
Finalement considérons le terme g2*. On a:

2 =2 [ @ +1-0| 2@ v P+ (n@+5) ]z
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Or:
+2 |y (2)+1—¢g|<M?** <
et: ’
2
tim |62 -r. @7+ (12+2) =0,
et donc:

“+eo
g2rl<n |
De plus, on a:

(z)+£=§fm1+(l—§§)tanh o
YT T4 27\, 2¢,()’

et ce terme s’annule lorsque z — +o. Pour le terme x2(z)—y.(z), on obtient:

@22 -y, + (v +2) | dz a7

xA2)—y.(z2)= —= (tanh 2.522(8))2

(2)-6%) g

Ce terme s’annule également lorsque z — +o0. Contrairement aux cas précédents,
le majorant intégrable n’est pas indépendant de £. Nous reviendrons sur ce point
plus loin.

Par conséquent, pour tout £* <0 fixé, on peut majorer en module I'intégrand
de (17) par une fonction intégrable indépendante de £ pour £ <e*<0, et donc
échanger d/de et | dz.

Nous considérons maintenant 'échange de la limite ¢ — 0 et de I'intégration
par rapport a z:

+00 +o0
lim J f(z)dz = I lim f,(z) dz.
£—0 J_o —0 €—0
Cet échange des processus de limite et d’intégration est 1égitime si la fonction
lim,_,, f.(z) existe et si 'intégrand f_(z) est majorable en module par une fonction
h(z) dans L'(R), indépendamment de .

L’analyse précédente montre que lim,_,, f.(z) existe, et que le seul cas ou la
fonction h n’existe pas est celui du premier terme de ’'intégrand de (17). Cepen-
dant un calcul explicite va montrer que cette difficulté n’est qu’apparente. On a:

xﬁ(z) —vy.(2)= (tanh 252(8))2
(D) G-2) s

Pour z grand, qui est le régime a contrdler, on a:

tanh x =1—2e™%,
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et donc:
x2(z)= — (1~ 2 )

€

= _.2_ (1 _4e~21£2(t-:))
et:
e 1 /(1 38)
=———adt |- s —Z/EI(E)
Ye(2) 13 (2 A (1-2e )
€ 3¢
— ——_ 1__) —z/€,(e),
2 ( g j¢ 7
par suite:
x2Az) =y, (z)=2ge "5+ (1 —%‘E)e—z’gl“). (19)

Contrairement au second terme de (19), le premier n’est pas majorable en module
par une fonction intégrable, indépendamment de &, au voisinage de £ = 0. Mais on
a: )
o () 1 o
lim {s j gaNe)iz dz} = lim {—e[ . 'e“Efi(e)'z] }
e U o0 v—2e(1-2¢) o
=0,
- ol on a utilisé ’expression explicite (7) pour &;'(e). Donc le terme génant ne
contribue pas a do/de dans la limite € — 0.
Nous avons donc vérifié que les conditions permettant I’échange de la limite
€ — 0 et de l'intégration par rapport a z sont satisfaites pour tout &£ <0.
On vérifie enfin que les quantités:

p +oo

lim f,(z) dz
o —co 8—>0+

et:
P oo

lim f,(z) dz

J_x =0

sont égales.

Cette démonstration permet de conclure que, dans le cadre de la théorie de
van der Waals-Widom classique, la fonction do/de est continue en £ =0, en
d’autres termes que la fonction do/dT est continue en T,.

Discussion

Les calculs précédents utilisent les profils des densités x_(z) et y.(z) donnés
par la théorie de van der Waals-Widom classique. La question se pose tout
d’abord de savoir si un résultat semblable a celui obtenu ici reste valable dans une
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formulation non classique [13] de cette théorie et ensuite si le méme résultat peut
étre étendu a un nombre arbitraire [14] de densités [10]. Des calculs préliminaires
[15] suggerent qu’un résultat identique a celui établi ici conserve sa validité dans
ces cas plus généraux.

Enfin on peut mentionner que des oscillations, d’origine quantique, du profil
de densité de la surface de I’hélium liquide He* dans son état fondamental, ont
été prédites par Regge [16] et trouvées dans des calculs variationels numériques
par Liu, Kalos et Chester [17]; de telles oscillations, si elles existent réellement,
ne subsistent probablement pas jusqu’au point critique [18]. Si la théorie utilisée
ici ne prédit pas de telles oscillations, nous pensons que leur présence n’in-
validerait pas la démonstration et le résultat donnés plus haut.

Des mesures expérimentales plus précises que celles qui ont été faites
jusqu’ici seront nécessaires pour confirmer ou contredire ces prédictions
théoriques.
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