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On the turbulence in a magnetized plasma
and its influence on the magnetoacoustic
resonance')

By Ch. P. Ritz, B. A. Hoegger, Y. S. Sayasov, H. Schneider
and B. G. Vaucher, Department of Physics, University of
Fribourg, CH-1700 Fribourg/Switzerland

(13. I, 1982; rev. 10. V. 1982)

Abstract. The electrical conductivity of an inhomogeneous magnetized turbulent plasma for weak
electromagnetic fields has been studied theoretically and experimentally. Our theory predicts a
resistivity for radio frequency fields essentially controlled by the density fluctuations and the aniso-
tropy of the turbulence. In order to determine these parameters the turbulent behaviour and driving
mechanism have been examined. The theory is checked looking at the magnetoacoustic resonance
behaviour which is very sensitive to the conductivity of the plasma.

The plasma was produced by microwave discharges. The plasma parameters are: mean electron
density (n,)=1.510"2cm 3, density gradient scale length L, =0.6 cm, mean electron temperature
(T,)=2.5 eV, magnetic field B, =2 kGauss, neutral gas pressure p,=2.5 107* Torr argon. The mag-
netoacoustic oscillations were excited using a long single turn coil as an antenna. The wave field
profiles and the resonant amplification of the exciting magnetic field were measured. On the basis of
the agreement between theory and experiments it is concluded that the anomalous damping of the
magnetoacoustic oscillations can be explained mainly by the influence of drift-wave tubulence.

1. Introduction

One of the first experiments dealing with density fluctuations and modified
diffusion across the magnetic field was reported by Bohm as early as 1949 [1].
Few years later Budden [2] showed that irregularities in the ionosphere may
modify the refractive index of electromagnetic waves. In particular he gave a hint
to explain the damping of whistlers by small density perturbations.

At the present time we have a considerable knowledge of a broad class of
instabilities which arise by virtue of drifts in an inhomogeneous magnetized
plasma. A comprehensive list of original literature can be found in Refs. [3-5].
Likewise we know that in a strongly unstable regime, drift-wave turbulence may
develop through the non-linear interaction of drift instabilities [6, 7]. In conse-
quence the transport coefficients (conductivity, diffusion coefficients) of the tur-
bulent plasma in strong magnetic fields may differ greatly from those of a
quiescent plasma, even for turbulences having a relatively small noise level.

1) Supported by the Swiss National Science Foundation.
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An easy way to measure the electrical conductivity is to launch an elec-
tromagnetic wave into the plasma and to measure the geometric resonances [8, 9].
The first radial eigenmode can occur when approximately half a wave length
coincides with the plasma diameter, provided the waves are not too strongly
damped. Under such conditions the electromagnetic fields in the plasma can attain
much larger amplitudes than at the boundary [10].

In contrast to experiments performed in fully ionized high density plasmas.
[11, 12], the plasmas of moderate density ((n,)=10"cm™>, (T,)=10-T,=2~
8 eV) show a much poorer resonance behaviour than expected from classical
theory [13-16]. (The brackets { ) denote mean values across the radial profile.)
These latter experiments were characterized by strongly inhomogeneous radial
density profiles. In the density gradient at the plasma edge, strong fluctuations
were observed [15].

Therefore, we study in this article the unstable and turbulent behaviour of a
strongly inhomogeneous plasma cylinder. Furthermore we study the influence of
random density fluctuations on the electrical conductivity of the plasma and
compare these results with our experiments.

In Section II we derive a conductivity tensor for a turbulent magnetoplasma
which applies to electromagnetic r.f.-fields. The crucial aspect besides the radial
profile of the random density fluctuations is the spatial anisotropy of the turbu-
lence. In Section IIT we describe the experimental apparatus and measurement
techniques. The digital spectral analysis, which enables us to explore the turbu-
lence, is given special consideration. In Section IV our experimental observations
are presented. The density gradient driven drift waves are identified and the
development of turbulence is discussed. From a knowledge of the characteristics
of turbulent plasma, the anisotropy and the random fraction of the fluctuation are
estimated. Furthermore the magnetoacoustic resonance is numerically calculated
considering the derived conductivity tensor. The result is compared with the
measured resonance behaviour. Section V presents our conclusion.

II. Theory

1. Assumptions

To study the effect of turbulence on the electrical conductivity we consider
the electrons and ions as two cold fluids. The target plasma is supposed not to be
affected by the applied r.f.-field. In addition the following assumptions and
approximations can be made, based on experimentally determined plasma
parameters:

(1) The electrons are magnetized by the influence of a constant magnetic
field B, in the z-direction: v, € @.. @, is the electron cyclotron fre-
quency and Ve the total collision frequency of the electrons.

(2) The plasma is quasineutral: n, = n, = n.

(3) The mean electron density 7i(r) varies only in a radial direction. (The bar
symbol denoting mean values across macroscopic space elements.)

(4) The mean quadratic density fluctuations are small (n'/f)*(r)< 1. n'(r) is
the random fluctuation around the mean density.
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(5) The displacement current is negligible in the region of the first mag-
netoacoustic resonance frequency.

(6) The frequency of the density fluctuation wy is much smaller than the
frequency w of the r.f.-field: wg < w. This allows the density variations to
be considered as time independent thus requiring only the spacial fluctua-
tions n'(r) to be taken into account.

(7) The criteria 0, € ® € o, and v, € w shall apply to the r.f.-field. v, is the
collision frequency of the ions with neutral particles and o, is the ion
cyclotron frequency.

(8) We consider small scale fluctuations characterized by an effective length
l.s that is small in comparision with field parameters as wavelength,
skin-depth. This allows the fluctuating fields E’ to be considered as being
quasistatic.

2. The electrical conductivity tensor for turbulent magnetized plasmas

The fact that the plasma exhibits random density fluctuations can lead to a
strong change in the electrical conductivity tensor compared with that of a
quiescent plasma. This effect was investigated by Yoshikawa and Rose [18],
Kadomtsev [19] and by Vedenov [20] for applied electrostatic fields. They
considered a homogeneous magnetized plasma (with constant magnetic field B, in
z-direction) in agreement with our assumptions (1)-(5). In addition they superim-
posed a constant electric field E in the y-direction (Fig. 1) and neglected the ionic
movement for the reasons explained in [19]. In the plasma without collisions the
electrons describe a helical path in the x-direction as a result of the
E X B,-drift. This is the Hall current j,. If the electrons collide with heavy particles
this gives rise to a small current j, parallel to the imposed field E. Should the
electron density also exhibit an additional random portion n' with n(r)=
n(r)+n'(r) then, in addition to the undisturbed field E, this will give rise to a
fluctuating field E'. The presence of the component E’ leads to a drift of electrons
in the y-direction. This turbulent current j; o n’E’ can be appreciably larger than
the current j, in the absence of density fluctuations.

Z
A
Bo
E o
Y
io .t
™ I
/ /E’

X
Figure 1

Schematic representation of the current in a magnetized plasma with and without density fluctuations.
An external electric field E is applied parallel to the y-axis.
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Intuitively it seems clear that this concept may be extended to r.f.-fields
provided that the condition w, < w < w,, is fulfilled. In this case the electrons
describe many loops within one perlod of the r.f.-field while the ions remain
practically at rest. Thus the picture given in Fig. 1 should remain valid.

A detailed derivation of the conductivity tensor for r.f.-fields in turbulent
magnetic plasma will be given now. The basic idea has been formulated in a
simplified form in a previous letter [21].

Maxwell’s equations and current density j are written in cgs-Gaussian units as:

4
rotB="—4j, rtotE=—-—,  j=i.+i. (1)
C

Ohm'’s law becomes for electrons and ions respectively:

: 2
Ok _en(n g

ele W 'e Xh
e 5 e @elo X1 2)
. Bji_ezn(r) _eB
vt = > W, = ’ e>0
at m; ° mgC

where h is the unit vector in the direction of the magnetic field B,. The equations
(1) and (2) may be solved assuming the time dependent terms E,B and j,
(x =e, i) to vary as exp (—iwt). Equation (2) gives

2

(v, = )i, =~ ((r) + n'(NE ~ i xh]
e; (3)
(v, —iw)j; = - (A(r)+n'(r))E.
The values E, B and j, are rep_resented by the sum of the mean values across the

macroscoplc space elements E,B, j, and that_of their ﬂuctuatmg components
E',B and j/, that is E=E+E,B=B+B,j, =i, +i. This gives, from equation

(1) W 4
otE = —]_3 rot]_3=—ﬂi (4)
c e
! < w r ’ 417 . - . ol
rotE' = i B, rotB =i from which divj =0 (5)
where
i=ltin  §=iti (4a), (Sa)

The equations (3) can be split into equations for respective average mag-
nitudes and random parts.

ic=00E+it—x.[fc xh], §i=0oE (6a), (6b)
io=00, € +il—x.[ixh],  §i=0,€ | (78)(7b)
where
2 = ’
Xe=—Xt_ | g =——" | @=E+-E
v, — iw * m,(v, —iw) n
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and

o ' 62 0-02

+i¢tz = . n'E = = nyEr (8)
m, (v, —iw) 7]

e =1

N =

The term j, represents the turbulent current of the electrons. The term ji =
(oo /f)n'E’ representing the turbulent current of the ions is neglected as a result of
assumption (7).

Expanding n' and E’ into Fourier series

n'=) nje™,  E=) El™,
k k

we can find an explicit form for j. and j', following the same procedure as
Yoshikawa and Rose [18], equation (13, 14) of their paper. It follows that

.t _ 90, :
e=— [Z % YD) nilE."Ze‘("‘“‘z)'] 9)
k-

—k,#k,
The first term in the bracket can be identified as the mean turbulent current

70 Y ni*EL (9a)
h

=

since n’y, =n* (n’ is a real value). The second term in the bracket represents the
random component j. and will be neglected, since (k, +k,) - r may be regarded as
being randomly distributed (random phase approximation [22, 23]). This assump-
tion is the basis of the theories of Yoshikawa, Rose [18], Kadomtsev [19] and also
of this paper.

In the next section a relationship between nf and E[ is derived from (7a)
governing the random current component j,. From (7a) it follows with x, > 1
(assumptions (1), (7)) that

j;x:01(€;+0'2@;, j;y:_0'2&;+0'1@;, j;z zgoe@; (10)
where
O-Oe (Toe
01="">%, 0= ———
Xe Xe

We now substitute (10) and (7b) in the equation divj =div (.+§)=0 and
assume that the spacial derivatives of the mean values E, i are much smaller
than those of the fluctuating components E' and n’ (assumption 8). Thus we
assume that rot E'=0)(*) and represent E' by an electrostatic potential ¢'. We

*)  Representing E’ in the form E'=—-V¢'+8E’ and treating 8E’ as a small perturbation, then §E’
becomes negligible if the correlation length [, of the density fluctuations nf is small compared

with the characteristic magnitude of skin depth & and wave length of the E field A: in short if
<8, A.
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obtain the following expression:

on'E, on E;
(0'1+0'0i)( Apth’+——=4 ——)
ox n 0y n
on' E, on' E) ( 3¢’ an'E“z)
+ = —— =)+ (00, + o =2 =,
72 (ax i 9y . (0, +0) 9z> 9z n y (11)

(A, stands for the Laplace operator applied to the coordinates x and y). By

Fourier analysis of n’ and ¢’ qu’ ‘** the relationship between ¢y and ny is
achieved:
1(E k, E k)= sz Ni
(b’k k2 2 T (12)
+X2k n
where
.. . Xe
X1 = ;
og,t+ag, 14 zme v, -uu
m;, v, —ilw
T X2
X2= = - — k3 =kZ+k:.
g+ 0, 1+ 3meve lw
mi vi —lw

In equation (12) and in the following, terms of the order 1/x, are neglected. The

!

turbulent current j, = — *¢y (92) may now be split into the components

j: =a, Z (2’5)2 Xl(kx’%E_'x - k%Ey) - Xkasz_z
= “k \ i+ szg

it = n_',‘)z Xl(k%Ex—kxkvE_:y)_szysz_z 13
= X i+ xak? 1

‘ at sz—x _kxsz— - zE_z
jt. =0, Y. (@) Xk By —kokoBy) — xoko By
kJ. + XZk z
We replace now the sum over the wave vector k with the integral and define k in
spherical coordinates (Fig. 2) using the relationships k,=kcos6, k,=

k sin @ cos ¢, k, =k sin 8 sin ¢ and dk=k? d cos 6 dp dk. We further define the
mean random density fluctuations

A 2 N2 r\2
(T") _ (”_) _ j (”") dk = J (ﬁ) k2 dk do d cos 0 (14a)
il fl n fl '
and the angular distribution of the turbulent density fluctuations
e\’ 2
.[ (ﬁ) k dk_Anz(O, @)

S
n

R(6, ¢) =

(14b)
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Figure 2

Definition of the component of the wave vector k in spherical coordinates.

where

™ 2w
J L R(0, ¢)dopdcos 6=1.
0

The factor R(6, ¢) consequently gives the fraction of the component An?(6, ¢)
having the wave vector in the direction (6, ¢) to the total random fluctuation An?
and may be regarded as a measure of the spatial anisotropy of the turbulence.

The angular distribution of the density fluctuation is independent of the sign
of the magnetic field direction B, and is thus symmetric to the surface perpendicu-
lar to B,. Hence R(6, ¢) = R(m/2—0, ¢). This condition leads to the disappear-
ance of the terms containing the factors k,k, and kk,.

We may thus write the equations (13) in a simplified form

A 2 2
j;x=0'0¢(?n) J d cos GJ. doR (6, @)

0 0

y x1(sin ¢ cos ¢E, —cos” ¢E,) sin> 0

1+ x,cos 6
An 2 fm 2
je = o-oe(—_—) j d cos BJ deR (6, ¢) (15)
n 0 0
5 x1(sin® @E, — cos ¢ sin ¢E,) sin” §
1+ x, cos” @
An)2 J’ ™ J' = X2 cos? OE,
fe, =G0 \— dcos 0| doR(6,¢) =
Ie, 00.(ﬁ L Ccos | de ( (p)1+x200528

The term 1/(1+ x, cos” 8) in equation (15) behaves as a §-function peaking at /2
and vanishing outside the angular region A8 =|m/2— 0|« 1/|x,|« 1. If the spatial
anisotropy of the turbulent eddies varies only slightly in the angular region A8, we
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may set R(0, ¢) = R(w/2, ¢). Integrating (15) yields

An 2 2 _
Je.= :tG'o,(*;_t") 'rr(J R(m/2, ¢) sin ¢ cos ¢ deE,

0

2
— 7y 2od E)L
J R(m/2, @) cos” @ do v \/X_z

0

An 2 21 _
Je,=*0y, (;) v(J R(m/2, @) sin® ¢ doE,
o

20
—| R2, d E) X1 16
_[ (7/2, ) sin ¢ cos ¢ de N (16)

0
An\? -
j:ez = _(TOE(‘":_) Ez'
n

It can be shown that for the assumed conditions always the plus sign applies.
Substituting j. (equation (16)) in the equation for the mean current j, (equation

(6a)) and neglecting terms of order (An/fi)? - |Vx,| against |x.| the conductivity

tensor o, is found. (In the following the bar sign indicating mean values will be

omitted.) N

To Ty,
O ~—yy 0 Oy = e Ay Ty ;5 A,
o.=\o, o, 0] with ¢ ¢ (17)
a, 0,
0 0 L0 P Oxy =, g, =0g

Xe

and

An\?
T F Ke ™ (a
A =1+ - J R(—,cp)sin ¢ de
> M, Vv, —iw Jy 2
N[
mi Vl‘_—lw
An
g Xe 2ar .
=1+ J R(E , qo) cos? @ de.

The total current j is as a result of the equations (4a) and (6) given by Ohms law
ji=oE=(o.+0, -1E with o=0,+0y -1 (18)

whereby o, is defined by equation (17) and where 1 represents the unit tensor.
As can be seen from (17), the turbulence substantially increase the current of
electrons perpendicular to By, since oy, oy, < (v, —iw)A,,, with |A|=100 in our
experiment.
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If the fluctuations in k, are isotropic (R(m/2, ¢) =const.), then as a result of
equation (15):

&)
al —
7 Xe
A=A, =1+ Sy (19)
4\/1+X§ m,v, — lw
m; v; — lw

with J =47R(0 = n/2).
If the tubulence is isotropic in all directions, we have J=1.

IIl. Apparatus and methods of measurement

1. Apparatus, plasma production, analog signal processing

The plasma is produced in a glass cylinder with inner radius of 4.6 cm and
120 cm length. A stationary magnetic field of 2 kGauss is produced in a solenoid
consisting of 20 water cooled coils. The inhomogeneity in the field is less than
1% . For the pre-ionization with microwaves (2.45 GHz) the magnetic field on one
side of the cylinder is locally reduced to 880 Gauss to achieve the electron
cyclotron resonance. The main ionization results from two further slow wave
structures (Fig. 3) by nonlinear absorption of the microwave power at about 0.5
w,, [24]. The plasma is produced in pulses with a repetition rate of 50 Hz and
pulse length of 3—4 ms.

°

oo

® @@ | | |
(@ _ ) ®

I
=TT

-

2
| 'mree
®

@

@

Figure 3
Sketch of the experimental apparatus. (1) discharge tube, (2) slow wave structure for preionization, (3)
slow wave structure for plasma production, (4) microwave generator, (5) hybrid ring, (6) grid, (7)
single turn coil, (8) impedance matching circuit, (9) r.f. amplifier and function generator, (10) probes,
(11) 8 mm interferometer.



Vol. 55, 1982 On the turbulence in a magnetized plasma 363

Magnetoacoustic waves are excited in a along single turn coil around the
plasma cylinder (7 in Fig. 3). The coil can be matched to the impedance of the
r.f.-generator within a frequency band of 3-30 MHz with a standing wave ratio
better than 1.2. The pulse length of the r.f. can be varied and triggered at will.
The field distribution of the excited r.f.-field is measured using a magnetic field
probe, which can be displaced in the plasma in both radial and axial direction.
The signals of this magnetic probe (B,-component) can be observed during the
period of plasma production as well as at the beginning of the afterglow. There is
no difference in the amplification. Of course the signal of these waves during
plasma production is somewhat noisy and the determination of the phase shift is
much more reliable in the afterglow. The period of observation (<10 us) is so
short, that the plasma can be regarded as constant in time. Further the r.f.-power
was limited to smaller values than 0.2 watt PEP (peak envelope power) to avoid
nonlinear effects [25].

The mean electron density (n.(r)) is determined using an 8 mm microwave
interferometer. The radial and axial density profiles are obtained from measure-
ments made with cylindrical Langmuir probes and double probes.

The temperature of the electrons is also determined using independent measur-
ing techniques, as well as from Langmuir and double probe signals as from the
sound velocity of the ion acoustic test waves. The diamagnetic probe gives a
slightly higher electron temperature than the other measurements.

A more detailed description of the device as well as of the measurement
technique is given in [15].

Measurement of the density fluctuations. To measure the density fluctuations
we use cylindrical Langmuir probes and double probes which are operated in the
ion saturation current. The probe tips are made of tungsten (2 mm long and
0.1 mm in diameter) and are arranged parallel to the magnetic field. Particular
attention was given to the cleaning of the surface of the probe in order to
minimize the effects of induced fluctuation.

The frequency response of the single probes were checked in a test arrange-
ment identical to that of Roth and Krawczonek [26]. It was found that the
response of the probes can be taken to be constant within the region of interest
(below about 1 MHz). This of course is not true for higher frequencies as was
shown by different authors [26,27]. The resulting spectra, measured in the
plasma, were identical for single probes, double probes and capacitive probes. We
therefore conclude that the results are reliable and we are not misled by the self
induced noise and frequency response.

The signal from the probes are digitized in a transient recorder (Biomation
8100) with two channels each having an N =1024 word memory capacity and 8
bit amplitude resolution. The data are then stored on disc for processing in a
minicomputer (type PDP 11/34). Figure 4 shows the schematic setup.

Particular care must be given to the frequency spectrum of the signal prior to
digitizing: The maximum resolvable frequency (the Nyquist frequency fuy,=
1/(2At)) of the digital time series is determined by the sampling interval At
between two adjacent points of measurement. Frequencies above the Nyquist
frequency gives rise to low frequency components in the spectrum. This effect
known as aliasing [e.g. 28] may be avoided by filtering the signal prior to
digitizing. To do this we use two identical band pass filters of the type Krohn-Hite
3103 (—24 dB/octave).

L]
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Figure 4
Schematic setup for the digital spectral analysis. (1) grid (reference for the single probe measurement),
(2) identical movable probes with electrical circuits (can be replaced by double probes and capacitive
probes), (3) Krohn-Hite band pass filters, (4) c.r.t.-amplifiers, (5) transient recorder, connected by an
interface to the PDP 11/34 and peripherals.

The record length T'= N - At must be long enough to allow a good frequency
resolution Af,.,=1/T (in our experiment <1 kHz). We thus measure during
typically 2 ms and this is only possible during plasma production. But to avoid the
initial-phase transients and to be in a quasi steady-state regime of the fluctuations,
an appropriate time delay was used.

In order to utilize the full dynamic capability of the transient recorder for
resolving the fluctuation, we filter out the low frequency components (<3 kHz)
due to the slowly changing mean density. Figure 5 shows typical digitized signals
obtained from two spacially separated single probes operating in the ion satura-
tion current.

2. Digitial spectral analysis

Once the fluctuations are measured these time series must be analyzed. A
mathematical and statistical method is applied to give the wanted information,
namely the frequency spectra, the dispersion relation of the fluctuation, the
coherence and an eventual anisotropy of the turbulence. Also the coupling of
different spectral components may be investigated by means of spectral analysis.
These methods are well known and can be found in different books and articles
[e.g. 29-32].

In general the evaluation of the space—time relationship of the fluctuation in a
system requires correlation measurements across the entire volume. However, if
the plasma fluctuation can be described by the superposition of an infinite set of
monochromatic plane waves propagating in the direction of the corresponding
wave vector, the problem is simplified essentially. Then the signal ¢x(x, t) from
the probe X at the position x can be written

Bl )= [ (@)@t g, | (20)
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Amplitude Signal X

-

Amplitude Signal Y

1
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Time [m:{l

Figure 5

Typical digitized signals from two single probes X and Y operating in the ion saturation current. The
probes are positioned to maximum density fluctuation and are azimuthally separated by 60 degrees.
The small phase shift of the dominant mode (m =1) due to the wave propagation between the two
probes should be noted.

¢x(w) representing the amplitude function and k =k(w) being determined from
the dispersion relation for linear modes.

The first step in the calculation consists in computing the Fourier transforma-
tion of ¢x(x,t). This gives

Py (x, w)= d’x(w)eik(w)x =Dy (x, w)| %%, (21)

If the fluctuations are measured with two different probes X and Y fixed at
different points separated from one another by Ax=y—x then the cross-power

spectrum Py+(Ax, w)(*) can be estimated from the corresponding Fourier spectra
Dy (x, w) and Dy (y, w)

Py (A%, @) = Jim = E[®¥(x, 0) - Dy (y, )] @2)

E[ ] represents the expected value and the asterisk stands for the complex
conjugate. The cross-power spectrum gives the coherent power between two

*)  Mathematically, the cross-power spectrum corresponds to a Fourier transform of the cross-
correlation function

!
Cxy(Ax, 7) = lim — Elex(x, t) - @y (y, t+7)].
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probes. Since the cross-power spectrum is a complex function, it may be written
(see equation (21))

) 1 ;
Pxv(Ax, ) =|Pxy(AX, w)| '@ @) = lim T E[|®%Dy | g% m)_ex(x’m))]-

T —cc

(23)

For fully incoherent signals the cross-power spectrum disappears, even though the
product of the Fourier spectra from both probes is not equal to null. However
since the phases are random, Pxy(AX, w) will, when estimated over a large
number of spectra, tend to null. The phase spectrum 6xy(AX, @) represents the
mean phase shift of the spectral components @ as the wave propagates the
distance Ax between the probes. Thus the wave vector k(w) is given by

ny(Ax, (9) = k((l)) - AX. (24)

A special case of the cross-power spectrum is the auto-power spectrum
Pyxx(w). Here both probes are considered to be at identical position. So there is
only one probe signal and the auto-power spectrum gives the power as function of
@ at this point.

The coherence spectrum cohxy (AX, ) can be defined as:

Iny(AX, (1))'
[Pxx(w)Pyy(w)]*

The coherence spectrum gives the ratio of the coherent power to the total power
of the fluctuation between two probes as function of the frequency.

In the absence of any background noise the coherence of an undamped wave
must be unity, independent of the probe separation. If there is a dissipation of
energy, then the wave will be damped and the coherence decreases. The damping
is connected with a frequency broadening as can be seen formally from the
Fourier transformation of a wave with complex frequency w,. As a result the
wave vector k for a definite frequency w is no longer single valued (dispersion
relation broadening).

In a turbulent medium the probe signals are incoherent when the probes are
sufficiently separated from one another. If the probe separation becomes smaller
than the characteristic dimension of the turbulent eddies at the respective
frequency w, then the coherence increases. The dependence of the coherence
spectrum upon the probe separation can as a result be used to find the coherence
length and if this is done in different directions the anisotropy of the turbulence
can be estimated (see also [33] p. 341, p. 451, [27]).

Another question is, whether different spectral components in the plasma
couple together or not. This problem is of general interest since new spectral
components can be generated through nonlinear interaction between the modes.
With the aid of higher-order spectra it is experimentally possible to distinguish
between spontaneously excited modes and coupled modes. One thus obtains a
physical insight into the generation-mechanism of the fluctuation.

For the analysis of three-wave coupling the bispectrum is sufficient [31]. In
this case the frequencies and wave-numbers must satisfy the resonance condition
w,+w,=w; and k,+ k, = k;+ Ak, where Ak is the wavenumber mismatch.

cohxy (AX, @) = (25)
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The bispectrum Bx(wq, ®,)(*) may be defined [34] as
o1
By (@, ) = Tl,l_rﬂo ? E[®Px(x, ®;) - Px(x, ®,) - cb;é(xs 0+ ;)] (26)

The bispectrum allows spontaneously excited waves to be distinguished from
coupled waves by measuring the phase coherence between the modes. Should the
waves of a spectrum of frequency g, w,, w,;+w, be independent then their
Fourier transforms will also show random phase relationships (equation (21)). In
calculating the expected value, the complex vectors average out (similar to
equation (23)) and the bispectrum becomes null. However if the waves
w1, Wy, w1+, are coupled — as a result of nonlinear interaction — then the calcu-
lated Fourier components will exhibit a constant phase relationship

Ab(w1, @) = 0(w,) + 0(w,) — O(w, + w,) (26a)

to one another and the bispectrum will attain a finite value. A6 is called biphase
spectrum [35].

Most important for us is the bicoherence spectrum which may be defined
analog to the coherence spectrum as

. lBX(wla wZ)‘z
im —

b w,, w,) =1 .
RN =y E[l(l)x(x, w;) - Px(x, wz)‘z] : E[|<I)X(x, w1+w2)|2]

(27)

b*(w;, w,) measures the fraction of the power at the frequency w; = w; + w,, which
is connected to the waves of frequency w; and @, by three-wave coupling.

The bispectral analysis gives information about the stimulating mechanism
which leads to the formation of a turbulent spectrum ([6, 35]).

Computing technique. The digitized time series (x, k=1, N) of an analog
signal (x(t),t=1, T) is subsequently processed using the following procedure:
Each time series is passed through a filter to eliminate the linear trend component
(x, =a -k At+b). a and b are estimated from the method of least square
regression. A function known as a Hanning window [36]: xy(t)=
2(1—cos 2@t/ T)) - x(t) is used to reduce leakage caused by the finite record length
of each time series. The Fourier transformation is carried out by FFT-technique.
The desired spectrum is calculated according to the spectral analysis technique
discussed above. The expected value is estimated by averaging across M indepen-
dent data sets. The relative standard error § of the estimate is [31]: coherence
8con=+(1—coh?®)/M bicoherence §&,=+(1—b>?/M. The variance of the ex-
pected value is further reduced according to [37, 30] by frequency averaging (data
smoothing). |

*)  Mathematically the bispectrum corresponds to a two-dimensional Fourier transform of a
second-order correlation function

. 1
Cx(Tp 1’2) = 111_1'1)'1m ? E[‘Px(xa t)- (Px(X, y + 71) ¢ ‘Px(X, t+1'2)]-
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IV. Experimental observations and discussion

In this section initially the plasma parameters are presented. Then we give
the results of density fluctuation measurements which lead to the identification of
the instability. We further examine the turbulence, its driving mechanism and the
anisotropy. Thus all values entering into the conductivity tensor (Section II) are
determined. Finally, the magnetoacoustic resonance, as measured in our experi-
ment, is compared with the predictions of our theory.

The plasma parameters are determined using the experimental techniques
described in Section III. The principal parameters are summarized in Table 1.
Figure 6(a) shows the radial density and temperature profiles. The density is
strongly inhomogeneous. Note the pronounced gradient in the edge zone. We
further observe density fluctuations in our plasma (Fig. 5) which attains a
maximum in the region of the greatest density gradient (Fig. 6(b)). The auto-
power spectrum for this probe position is shown in Fig. 7(a). Two marked peaks
at 6 kHz and 14 kHz appear in the broad band spectrum.

1. Drift instability

The appearance of strong density fluctuations in the density gradient suggest
the idea of drift instabilities. In order to identify the type of instability we must
know the direction of the wave propagation, its wave length and phase velocity.

The directional dependence of the fluctuation is measured with the help of
the cross-power spectrum. Figure 8 represents a typical set of spectra from one
such position whereby an average was made over 25 data sets. For this measure-
ment both probes are positioned at the radius r,,, = 3.5 cm. Here the fluctuations
have their maximum. But azimuthally the probes are separated by A¢ = 60°.

The phase shift 0xy of the cross-power spectrum (equation (23)) for the very
marked first peak at 6 kHz is shown in Fig. 9 for different azimuthal probe

separations A¢. Because the phase shift is equal to the angle between the probes,
the wave length A, at this frequency is equal to 2 - r.,, - . The azimuthal phase
velocity is thus v, = 1.4 10° cm/s.

In a next step we determine the component A, of this dominant wave. The

Table 1
Plasma parameters

Argon plasma

electron tempera- collision frequencies: v,,=1.4105s71
ture (T,(r))=2.5eV (v (r)=1.510"s7"!
ion temperature T,=0.3eV v, =1.110%s7!
mean electron plasma length L, =100cm
density (n,(r)=15102cm3 radius R, =4.6cm
density gradient scale excitation coil: length L.=40cm
length (Vn/n)™! L=0.6cm radius R.=5cm
neutral gas
pressure Po=0.25 m Torr
external magnetic
field B, =2 kGauss
cyclotron fre- 0, =3.4101s?

quencies: w,; =4610°s71
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(a) Radial density and temperature profiles. (b) Total density fluctuations (coherent and random parts),
An

1/ 1/2
where =— (I n*(w) dw) , and density gradient determined from the density profile.
7

0

R0 ’

K)
] ANA
A\ "\
_— o

Power Spectrum

0.5 5 50 500
Frequency [kHz]

Figure 7
(a) Auto-power spectrum. The probe is positioned at maximal fluctuation (7,,,,/R,; =0.75). (b) The
random power of the signal. This curve is estimated by subtracting the coherent power from the total

power. The Nyquist-frequency is fy,, =250 kHz.
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A typical set of spectra. Probe position r_, /R, =0.75 and probe separation Ad =60°, Ar=Az =
0.cm. (a) The azimuthal cross-power spectrum for higher frequencies obeys the spectral index n =4.
(b) The coherence spectrum shows a high coherence for the m =1 and m =2 mode. The fluctuations at

the minimum between these modes (=11 kHz) are much more random. The estimate was evaluated
over 25 data sets.

wave was found to be coherent for any probe separation parallel to B, (Fig. 10c)
and presents no phase shift. We thus conclude, that this mode is a standing wave
in axial direction. Measurement of the amplitude of this spectral component as
function of the axial position suggest a wave length A, of about twice the plasma
length.

One type of instability which often occurs is called collisional drift instability,
since it is tied to the diamagnetic drift of the electrons vp, = (cKT,/eB3n) Van X By,
The theories describing collisional drifts for fully as well as for weakly ionized
plasmas are well known (e.g. [3-5, 38, 39]). Drift waves may appear as a result of
the combined effects of density gradient, ion inertia and the electron motion
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parallel to the magnetic field. The driving mechanism for such instabilities results
from the phase difference between the fluctuations of the electrostatic potential
and the density. The phase difference is mainly caused by electron collisions.

We have estimated vp. on the basis of our plasma parameters. Assuming the
maximum value of the density gradient from Fig. 6b we obtain vpe = 3.1 10° cm/s.
The electron diamagnetic velocity is approximately twice as large as the measured
phase velocity. Both velocities have the same direction. This factor of two is as
predicted by the theory of Hendel and Chu [3] for maximal growth rate of
collisional drift waves in highly ionized plasmas. Here we have neglected the
Doppler shift resulting from the E, X B,-rotation of the plasma, because the radial
electric field is estimated to be weak (E, =(KT;/e)(Vn/n), [40]).

The maximal growth rate of the unstable modes is theoretically predicted to
occur at very large parallel wave lengths and is thus influenced by the finite
plasma length. Schlitt and Hendel [39] have shown, that for the condition
L, »L,, the axial wave length is A, =2L, and that the wave behaves as a
standing wave in this direction. L, is the mean free path of the electrons. In our
plasma we find that the experiments are well consistent with A, =2L, for the
axial direction of the dominant wave.

Since the plasma is cylindrical, the azimuthal wave length A, of the unstable
modes is quantized by Ay = 2r,... - w/m, whereby m represents the mode number
of the form exp (im¢). The dominant peak in the spectrum at 6 kHz can thus be
identified as m =1 mode.

Because the phase velocity and direction of wave propagation, as well as the
wave length are consistent with the theoretical predictions, we conclude the wave
at 6 kHz to be the m =1 mode of collisional drift waves.

Should the magnetic field B, be strong enough, then several modes may
simultaneously become unstable. The further marked coherent peaks of the
spectrum (Fig. 8(b)) are identified as harmonic drift waves (m =2, 3 and even 4).
Whether these peaks are self excited or decaying products can not be decided. For
this, simulations based on a non local cylindrical model for arbitrary density
profiles must be performed. Such calculations were made for weakly ionized
plasmas by Ellis and Marden—Marshall [38], but are beyond the scope of the
present work.

2. Investigation of the turbulence and its anisotropy

Beside the coherent drift instability the power spectrum (Fig. 7) shows a
broad band of density fluctuations with decreasing power at higher frequencies.
This fact will be investigated in detail.

The coherence spectrum (Fig. 8b) is characterized by two distinct regions.
The transition between these domains does not depend on the azimuthal probe
separation. The high frequency part, beyond about 40 kHz, always shows a very
low coherence. Below this frequency the spectrum attains remarkably higher
values and is dominated by a few strongly coherent peaks, discussed in IV.1.

The coherence for varying probe separations of a turbulent component and
of the coherent mode m =1 is represented in Fig. 10. The turbulence is measured
at the minimum between the m =1 and m =2 mode, that is according to Fig. 6b
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at 11 kHz. The self-excited wave is coherent throughout the entire region of
strong density fluctuation. The turbulent eddies have on the contrary only a
limited mean elongation in the plane perpendicular to the magnetic field. The
radial coherence length I is smaller than that in the azimuthal direction I,
(,=0.7 cm, l, =3.0 cm). The coherence length in the axial direction [, is of the
order L, and is much longer than perpendicular to B,. Thus the ratio of the
coherence lengths is I,:1,: I, =0.7:3.0:100. A similar result was recently found in
a tokamak experiment by [41].

The dispersion relation k,(w) obtained from the phase spectrum (equation
(24)) is practically linear (Fig. 10). The mean phase velocity w/k, is thus constant
over the frequency range up to 125 kHz and is close to the phase velocity
measured for the m=1 mode of collisional drift waves. This suggests the
interpretation of our observations as drift wave turbulence. In the following we
shall compare these observations with an existing theory.

Comparision with theory. A theory dealing with the nonlinear behaviour and
the turbulence spectrum of drift waves was developed by Hasegawa et al. [42, 17].
Although this theory is made for collisionless plasmas, the mechanism of the
decay of the drift waves is not essentially different and it seems, that the theory is
also applicable for our range of parameters [43].

These authors use a two dimensional model of the plasma (k, =0), i.e. the
fluctuations in the z-direction are supposed to be infinitely extended. This
assumption is consistent with our observation of constant coherence along the
magnetic field lines. The decay is shown by these authors to occur as a result of
three wave coupling, k, +k, +k; =0, w; + w,+ w3 = Aw, where Aw is the frequency
mismatch. As pump wave they considered a drift wave of given amplitude and
they have simulated the decay of this mode numerically. The result is a power
spectrum which exhibits two regions. The transition between these domains can
be estimated from a characteristic wave number k. whereby k. is defined
according to [44, equation (21)]. For our plasma it follows that k_ - p, =1, where
ps represents the effective Larmor radius: p, =r,; - (T,/T;)">. The wave number k,
is thus for our parameters k.=1/ps =2 cm '. From the dispersion relation (Fig.
11) the corresponding frequency is given as f.(k.)=50kHz. This frequency is
about the same as found in our experiment for the transition between the two
regions observed in the coherence spectrum (Fig. 8b).

For the domain of large wave numbers k, > k. each mode is predicted by
Hasegawa et al. to decay into a wave of longer and a wave of shorter wavelength
whereby Aw can admit values other than nought. The distribution of the power
spectrum can be described by the spectral index n, whereby P(k)x k™ ". The
power spectrum, according to [17], decrease both in the radial and azimuthal
direction with n =4. As a result, the turbulence is isotropic in k,.

The measured weak coherence in this high frequency part of the spectrum
may thus be explained by the fact, that the waves at a given frequency can couple
with many different modes due to the allowed frequency mismatch. The contribu-
tion of each coupling product to the power is small and consequently also the
coherence.

Since k, is a linear function of w (Fig. 10) the fall off of the turbulent
spectrum P « k" predicted by the theory may be compared with the measured
relationship P « w™". The slope of the azimuthal cross-power spectrum is in good
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agreement with the predicted spectral index n =4 (Fig. 8a). The small discrepancy
around the ion cyclotron frequency shall not be discussed here.

For small wave numbers k, <k, the theoretical model predicts the resonant
three wave interaction with Aw =0 to be dominant. In the azimuthal direction the
spectrum cascades to smaller wave numbers until k, =0. In the radial direction
the power spectrum reaches its maximum when k, =k, and rapidly decreases for
smaller wave numbers. The fluctuations are consequently anisotropic in this
region of larger wave length in k.

In our experiment in fact this anisotropy has been found: At 11 kHz the ratio
of the coherence length in radial direction to that in azimuthal direction is
L:ly=0.7cm:3.0 cm. This ratio is close to the expected anisotropy 1/k,: 1/ky =
0.5 cm:2.0 cm. Here we assume that the power in r-direction condenses at k, and
thus that k, at lower frequencies remains constant (1/k, = 1/k, = p, = 0.5 cm). ky is
found with the help of the measured dispersion relation.

Our observations are thus in agreement with the mentioned theory. However
this comparision should not be extended to more details, because the theory
works with one pump wave, whereas in our experiment we have evidently
different unstable waves, acting as pump waves.

Bispectral analysis. With the help of the bispectrum it may be experimentally
confirmed that the turbulent spectrum is generated by the unstable drift waves.
Since the bispectrum has definite symmetrical properties [31] and the digital
technique being limited by the Nyquist frequency, we may compute and plot the
bicoherence spectrum (equation (27)) in the triangular region of the f,f,-plane,
defined by: 0<f,<fnyqg f1<f2 f1 +f2=fnyq-

Such a bicoherence spectrum is shown in Fig. 12. The dominant peak in this
perspective view (a) indicates a relatively high phase coherence between f, =
fm=1=6kHz, f,=f,,_»=14kHz and f;=(f,._1, fn—2). We can conclude that the
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dominant instabilities interreact resonantly and generate a wave at their sum
frequency f; =f,-1+f.-2=20kHz. The decaying portion indeed appears in the
coherence spectrum (Fig. 8b) as a peak somewhat below the frequency of the
m =3 mode. An eventual decay to lower frequencies was not found because the
high-pass filter limits the experiment below 3 kHz. The interaction between f,,_;
and f,._s (f,.—4 resp.) is much weaker (Fig. 12(b), (c)). Beside the coupling of the
strongly coherent and discrete modes, the bicoherences b(f,, f,) of the m=1
mode with the broad band spectrum f, and coupling components (f;, f,) are also
noticeably enhanced compared to the remaining components (Fig. 12(e)).

Consequently we may conclude that there is a step-by-step development of
the turbulent spectrum due to the interaction of the decaying portions, domi-
nantly with the m =1 and m =2 modes. Except for the coupling with the coherent
drift waves, the bicoherence spectrum remains small, as expected for components
of a turbulent medium [6, p. 207] and as predicted by the theory for large wave
numbers.

The random density fluctuations can thus be identified as turbulent drift
waves, excited by mode coupling of unstable drift waves.

3. Magnetoacoustic resonance

As mentioned in the introduction, the investigation of the geometric reso-
nances of a magnetized plasma cylinder presents a useful method to measure the
electrical conductivity perpendicular to the magnetic field.

Since we use these experiments as a diagnostic tool, we concentrate on the
first radial mode. We regard the cylinder as infinitely long. Experimentally it can
be shown that in our case this is reasonable.

The magnetoacoustic resonance has been studied by many authors and is
described theoretically as well as experimentally in detail in the literature (see for
instance [8-14]). The theory will not be repeated here, but we must remember
that the amplification in the resonance is described by the B, field on the axis
normalized to the B,-component outside the plasma cylinder: By = B(0)/B(R,;).
Also the radial profie By(r) = B(r)/B(R,;) can be calculated and measured. The
amplification depends essentially on the electrical conductivity perpendicular to
the magnetic field.

Many experiments, where the magnetoacoustic resonance has been measured
in low density plasmas, show an amplification which can not be fitted by the
theory, if a classical conductivity tensor is used [13-16, 45]. In these cases the
plasma was not homogeneous and the amplification was much smaller than
predicted by classical theory.

To demonstrate this we have measured the resonance in the experimental
setup described in Section III. In Fig. 13 we see, that the classical theory gives an
amplification of 20 (curve c¢), whereas the experiment shows an amplification of
only 1.8. In Table 2 the frequencies, the amplification and the phase shift are
given. The discrepancy between the experiment and the classical theory is evident.

To explain this descrepancy, some authors [45,15,16] have introduced
‘effective collisions’. But these effective collisions are introduced ad hoc and there
must be a physical interpretation. This interpretation is possible in terms of
turbulence and we can use the conductivity tensor derived in Section II to
describe our experiments. As we see from the results of the theory in Section II,
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Figure 13
Radial dependence of By at the first magnetoacoustic resonance. (a) Experiment, (b) theory assuming
the measured fluctuations, (c) theory excluding turbulence, (d) region of dominant turbulence.

we need for our calculation the amount of random density fluctuations (An/fi)*(r)
and the anisotropy.

The total fluctuations (An/i1)* can be found by integrating the power spec-
trum over all frequencies. A result is shown in Fig. 6b. This value contains all
fluctuations, the coherent self-excited drift waves and the stochastic turbulence.
Since only the random fluctuation count for the damping an additional cross-power
spectrum with large azimuthal probe separation (As =9 cm = A¢ = 120°) gives us
the amount contributed by the self-excited drift waves. For this we suppose the
eddy size of the turbulence to be smaller than the probe separation. The radial

Table 2
 Magnetoacoustic resonance, comparision between experiment and theory.
Ag =¢(0)
f 1] B N = - (p (Rpl)
[MHz]  B(0)/B(R,) [xw]
argon
experiment 4, 2. 0.2
theory without fluctuations 4, 20. 0.5
Theory with |An/f|.,=11% and J=30 3 1.9 0.25
helium
experiment 12.5 2.8 0.4
theory with fluctuations 11.5 24. 0.5
Theory with |An/it|_,,=11% and J=30 9. 3.3 0.4
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profile of the random fluctuations estimated in this way looks similar to Fig. 6.b,
but the maximal fluctuations are reduced to |An/ft|=11%.

The anisotropy factor R(6, ¢) of the turbulence, as defined by equation
(14b), can not be measured directly, because we have not measured the k-
spectrum of the eddies. In our experiment the anisotropy is measured in terms of
coherence length in different directions I,: [,: 1, =0.7:3:100 and in this case there
is a possibility to estimate the anisotropy factor. Since the anisotropy perpendicu-
lar to B, is small compared to that parallel to B, we assume no ¢-dependence of
the anisotropy factor. With this assumption, equation (19) leads to J=
4-7-R(O=7/2)=L]/1,=30.

With this value for (An/@)*(r) and the anisotropy factor J we are able to find
A, of equation (17) and thus we can specify the conductivity tensor completely.
This conductivity is considerably different to that one used in the classical theory
for magnetoacoustic resonance. Here we have applied the numerical code written
by E. Riauchle [46].

The results are plotted in Fig. 13 and 14. In Fig. 13 we see that the new
conductivity tensor brings the amplification well into agreement with the experi-
ment. The shaded area (d) marks the domain of dominant turbulence. We see that
here the deviation with respect to the classical theory is most pronounced,
because A,, in equation (17) becomes very large. But this is in excellent
agreement with the experimental observation. This strongly supports the idea that
the turbulence is responsible for the damping of our resonance.

In Fig. 14 the amplification By and the phase shift Ap near the resonance are
plotted. The theory shows the resonance at 3 MHz. The amplification is very near
to that found in the experiment. At higher frequencies the agreement is not
complete. The small peak at 10 MHz - the second magnetoacoustic resonance —
appears in our experiment something more pronounced than in the theory. The

1 1 i

1 3 5 7 9 1 1
Frequency [MHz] Frequency [MH{]

Figure 14

Normalized amplitude B, and phase shift as function of the frequency in the region of the first
) theoretical

magnetoacoustic resonance. Broken line: (——o--) experimental result; solid line (
values.
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small discrepancy in the resonance frequencies of experiment and theory may be
due to the finite plasma length.

The same calculations were carried out for a helium plasma, published by
Schneider et al. [15], and a hydrogen plasma, published by Kriamer [13]. Both
these plasmas have strong density gradients near the edge and all important
parameters are given. So we can apply the criterion described by Timofeev and
Shvilkin (Fig. 3 in [5]) and we find, that in both cases collisional drift instabilities
must be expected similar to those described here. The results of the calculation
for the helium plasma is given in Table 2. As we see the theory satisfactorily
describes the amplification found in the experiment. For the case of hydrogen
plasma [13] it seems that under similar assumptions about the density fluctuations it
is possible to fit the data.

V. Summary and conclusion

We have presented in this paper the results of theoretical and experimental
studies of the conductivity of a turbulent magnetoplasma for weak electromagne-
tic fields. The aim of this investigation is to find the influence of the turbulence on
the electrical conductivity.

In a first step the dominant marked coherent instabilities appearing in the
steep density gradient are identified as collisional drift waves (m =1, 2, 3). The
measured dispersion relation and distribution of the power spectrum leads us to
identify the random density fluctuations as turbulent drift waves. The bicoherence
spectrum shows that the turbulence is excited by mode coupling of the unstable
drift waves.

The theoretical work is focused on a conductivity tensor including turbulent
density fluctuations. The density variations are considered as time independent
because of the much higher frequency of the r.f.-field. Further the target plasma is
supposed not to be affected by the weak electromagnetic field. The theory shows
that there is a substantially increased net electron current perpendicular to the
static magnetic field. This current is controlled essentially by the random density
fluctuations (An/f)*(r) and by the anisotropy of the turbulence.

The random density fluctuations and the anisotropy are measured.

The amplification of the magnetoacoustic resonance, which is very sensitive
to the electrical conductivity of the plasma, is measured and compared with the
results of the theory. The damping and radial wave field distribution of the
resonance observed, in this article and by different authors, can be described by
this theory in a straightforward manner provided the turbulence is known.

We conclude that the anomalous damping of the magnetoacoustic oscillations
can be explained mainly by the influence of drift wave turbulence.
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