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Evaluation of transient amplitudes
between Dirac spinors’

By M. Caffo, CERN, 1211 Geneva 23 and

INFN, Sezione di Bologna

E. Remiddi, Département de Physique Théorique,
Université de Geneve, 1211 Geneve 4, Switzerland and
Istituto di Fisica, Universita di Bologna and

INFN, Sezione di Bologna

(2. VIL 1982)

Abstract. We present a simple method for expressing transition amplitudes between fermion
states of definite polarization in terms of momenta and polarization vectors only, rather than
y-matrices and spinors. As an illustration, we work out Coulomb and Bhabha scattering for polarized
particles.

1. A transition amplitude A between two spinor states is written as
A = a()Mu(i), (1.3

where M is a string or a sum of strings of y-matrices and #(j), u(i) are the
appropriate four component Dirac spinors corresponding to the sets of quantum
numbers j, i (momentum, polarization and particle or antiparticle nature of the
state). In textbooks the explicit values of components of free spinors (depending
in particular on the representation used for the y-matrices) are usually given, but
very rarely used for the direct evaluation of equation (1.1). The standard
treatment consists in considering the square

|A[* = a()Mu(i)a(i)ysM* yau () (1.2)
and in evaluating it as

|A|*=Tr [MUG, i)y.M "y, U(j, j)], (1.3)
where one puts

Ui, ) =u@a(i); (1.4)

the explicit expression of U(i, i) is then given. For a fixed polarization or the sum
on the two spin states, it involves only y-matrices in a way which is of course
independent from their representation; it is familiar to everybody and will not be
rewritten in this introduction.

The purpose of this note is rather to give the explicit expression of the

1)y Partially supported by the Swiss National Science Foundation.
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generalized operators
UG, j) = u(@ua(j), [15)

again in terms of y-matrices and of simple rational functions of momenta and
spin-polarization vectors, to be used for rewriting equation (1.1) as

A =Tr[MU(, j)]. (1.6)

After evaluation of the trace, A takes the explicit form of a suitable complex
number, expressed in terms of momenta and polarization vectors, while every-
thing else previously referring to spinors and +y-matrices has of course disap-
peared. Squaring A is then trivial.

The explicit form of equation (1.5) is given in equation (3.5) below. To our
surprise, we could not find it and its use in textbooks, hence the present paper.
Our result can be considered as an handy way of extracting helicity amplitudes;
with respect to other methods for obtaining the same result, we observe that
common helicity projectors apply usually to a given process only and are of no
direct use for different processes, while our formulas do not suffer from that
restriction.

For a simple M, the evaluation of equation (1.6) is as complicated as that of
equation (1.3); yet, equation (1.6) provides another way of looking at equation
(1.1) and one more way of studying its properties. In complicated cases, when M
1s the sum of several different contributions and interference effects are of interest
equation (1.6) might prove to be more convenient than equation (1.3), as those
equations are respectively linear and quadratic in the number of the contributions
to M. We have in mind in particular the high energy e*e™ scattering into various
final channels, where the detailed study of the polarization of the concerned
particles can provide a sensible way of investigating, for instance, parity violating
interference effects and of testing the existing models of electroweak interactions.

The matters of this paper being anyhow simple, we were not afraid from
being sometimes pedagogical: Section 2 contains a derivation of the well known
equation (1.4); it is given for completeness, but also because obtained without any
reference to the explicit values of the involved spinors, in a way which is slightly
different from most textbooks; Section 3 establishes equation (1.5), which is the
main result of this paper; Section 4 applies it explicitly to the very simple case of
Coulomb potential scattering; Section 5 finally deals with the e'e” —e'e”
process in tree approximation; we discuss the different features of the direct and
annihilation channels, giving the explicit values of the transition amplitudes.

The application of the method to more complicated processes will be given
elsewhere.

2. To introduce our notation we write Dirac’s equation as
Ya(ip - ¥ —pova+m)u(p) =0,
u (P)(—ipy —poYat+m)ys =0,
with hermitian y-matrices. If p,=E =+vp>+m?> and p = (p, E), equation (2.1)
becomes
Ya(ip + m)u (p) =0,
ui(p)va(ip+m)=0,

(2.1)

(2.2)
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while if py=E =—vp*+m* and p=(p, E), as in the previous case, one has

(—ip+m)yau_(p)=0,
ur(p)(—ipg+m)y,=0.

To write down explicitly the solutions u, an explicit representation of the
v-matrices has to be chosen. It is however possible to write the bilinear forms,
such as equation (1.4) to which we are interested, without explicit reference to
spinor components. To that purpose we define as usual the projectors A, (p) and

A_(p)

(2.3)

ALp) =55 [E+(m—ip7)v.] = 55 (~ig+m)ys
(2.4)
I
AP =55 B~ (m=ip¥)v.] =5 1 val—i6 —m)

and the polarization vector a =(d, a,) with the properties

(a-p)=0, . (a-a)=1, [ivsd, ip]=0, Y5 = Y1Y2Y3Ya- (2.5)
We are then ready to introduce the 4 operators (A =+1)

P.(p, a, \)=A.(B)z(1+idysd)A (D)
= A+(§)%(1 + i/\'YSd ' '-Y))A+(ﬁ)

=31+ ikyof) 3 (i + m) v

P_(p, a, A) = A_(p)x(1+irysd)A (D)
= A_(B)3(1+irysd - ¥)A_(B)
1
= Ya 5 (i~ m)a(1+ikysd).

For given (p, a), call P,i=1,2,3,4 the four above operators. By using the
appropriate lines of equations (2.6) one immediately verifies that they satisfy the
relations

P=P

F. - P, = §;P,
(2.7)

=1.

(2.6)

B

P.

i
1

I

i

The first equation says that the P,’s are hermitian; the second, that their
eigenvalues are 0 or 1, hence they are projectors; the third that they form a
complete set. One has further

Tr P, =1, i=Luixdh
showing that each of them projects in a single state. It is then possible to write
P.(p,a, A)=u(p, a, Nu™(p, a, L), (2.8)
where A ==1, u(p, a,A) is the eigenstate of P.(p,a,A) to the eigenvalue 1,
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normalized to u"u =1 and satisfying equation (2.2), as immediately seen. Simi-
larly one can write

P*(p? a” A) = W(ﬁ’ a” A')v‘)-‘-(i)’i a? A)? (2'9)

where A =+1, w'w=1 and w, w" satisfy equation (2.3). The more usual v’s can
be defined as

v(p, a, A) = Cw(p™, a*, ) (2.10)

with C"C=1, where a™=(d, —a,), p*=(—p, E) as compared to a =(d, ay), p =
(P, E) and (p-a)=(p*-a*)=0, (a-a)=(a*-a*)=1. |
The known standard formulas, to be used later, are then

u(B, a, \a(B, a, \) :5113: (—if+ m)(1+ikysd),
(2.11)

. i 1 . .
v(B, a, \)5(p, a, A) = 5= (~ip — m)3(1+ikysd),
with the normalization u"u =v"v=1. They follow immediately from equations
(2.9), (2.10) and the last of equations (2.4). Note that the products u#t and v? in

equations (2.11) strictly speaking are not projectors, as they do not satisfy
equations (2.7).

3. We will now work out equation (1.5). For ease of notation, let us write

u(1) = u(p,, ay, Ay), (3.1
with the usual kinematics

p1=(P1, E1), pi=-—-mj, ai=1, (p1°a.)=0, A==1 (3e2)

and

U(1) = w(D)E(1) === (=i + m3(L +iAryshy). (3.3)
2E,
Similarly
u(z) == u(ﬁZs a25 A2)’
U@)= 1)) = 35 (it 1+ krysd), (3.4
2,

p2:(527 EZ): p%:—mga a%:l) (pZ. a2):0: A:il-
The masses m, m, can in general be different, as the concerned spinors are by no
means restricted to refer to a single fermion line. Evidentiating for once spinor
indices

Usas (1, 2) = ue (1) (2) = NT'(1, 2) U, (1) U,4(2), (3.5)
where N;(1,2) is a complex constant given by
Ny(1,2) = a(l)u(2). (3.6)

By using equations (3.3), (3.4) and taking the trace of the second and third term
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in equations (3.5), one obtains
1

2
INl(la 2)| 4E1E2

{Imym,—(pip2) 1+ AgAs(ara2) 1+ A Ax(praz)(paad)}-

(3.7)

For any choice of A,, A,, equation (3.7) determines N,(1, 2) up to an intrinsically
undetermined phase. We find it useful to introduce the projectors

P.(1,2)=11xA),); . (3.8)
as Aq, A, can take the values il, P_.(1, 2) takes only the values 0 or 1. Equation
(3.7) then gives

N7'(1,2)=2vVE,E,

{e7i[(mymy—pip2)(1+asa;) + (plaz)(pzal)]_1’2P+(l, 2) (3.9)
+e i [(mym,— p1p2)(1—a,a,)— (Plaz)(Pzaﬂ]muzp-—(l, 2)}.

Equation (3.9) makes sense, of course, only if the values of the square brackets do
not vanish. We will encounter and discuss in Section 5 a case of vanishing values.
Note in equation (3.9) the presence of arbitrary, as yet unspecified, phases.
Equations (3.5) and (3.9) are the required result.

So far for the particle-particle case. The extension to antiparticle-antiparticle
or particle-antiparticle is straightforward. If

v(i) = v(p; b, A;)
V(i) =v(i)o(i) (3.10)
p: = (B E), P%:_m%, bi=1, (p:b;) =0, A =1,
we obtain correspondingly
V(1,2)=0(1)8(2)=N3'(1,2) V(D V(2),

W(1,2)=v(1)a2)=N3'(1,2)V(HU(2), (3.11)
X(1,2)=u(1)5(2) =N,'(1,2)U(1) V(2),
where
N3'(1,2)=2VE,E,.
{e—w;[(_mlmz —pip2)(1+a,a,) + (p1a2)(p2a1)]_1/2P+(13 2) (3.12)

s e—i‘pg[("ml m,p— Plpz)(l —a,a;)— (Pl az)(Pzal)]_UzP—(la 2)}
and N,(1, 2), N,(1, 2) are identical to N,(1, 2), N5(1, 2) respectively (if allowance
1s made for the arbitrariness of the phases).

4. As a_first application, we consider Coulomb potential scattering of an
electron. If k is the momentum transfer, the amplitude is

Ze?
A= ——’?"2— u(2)y,u(l). (4.1)
According to the discussion of previous sections, we read A as
Z 2
A= -5 Tr[v,UQ, 2)], (4.2)

EZ
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where U(1, 2) is given in equations (3.5). For the explicit calculation, we take the
kinematics as

plz(ﬁla E), p2:(ﬁ2: E)a |51|:|ﬁ2|= "Ez_ 2=BE’

o x g .. 0
p>=p1t+k, Py * P»=p° cos (5)

where 0 is the scattering angle and the vectors a;, i = 1, 2 correspond to longitudi-
nal polarization

o = ( B E B)- 4.3)

One then has

N7Y(1,2)= E cos (g)]—1P+(1, 2)+ [sin (g)]_lPﬁ(l, 2), (4.4)

where A; =<1, P.(1, 2) is given in equation (3.8) and phases have been dropped.
After performing the trace, equation (4.2) reads

Z 2.
A e e Eez [cos (g)mu, 2)+%‘ sin (g)P,(l, 2)]. (4.5)
Obtaining |A|* is straightforward, as the P.(1,2) are projectors:
(Zez)z[ 0 m\2 0
AP = [0 ()24 (B) sin® ()P0, | -
|A| @7 |08 3 P.(1,2)+ =) sin” (3 P_(1,2) (4.6)
The Mott scattering cross section for fully polarized initial and final states is
do 1
— = 2E)?|A[?
40 (411_)2( ) A
T g [ ()P, 2+ (B) s (.2
- = = = _ 4.7
AE7 . 4(0) cos > P.(1,2)+ E sin 5 P (1,2) 4.7)
B~ sin )

When summing on the final polarization (which amounts here to averaging on the
initial), it simplifies to the familiar expression

)

do _(Zoz)2 1
dQ 4E?

A formula equivalent to equation (4.5) can be found in [1], where it is
obtained by using the explicit representation dependent expression of the spinor
components.

5. The t and s channel graphs contributing in lowest order to e*e™ elastic
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Py P Py Ps
P, P, P, P,
(t) (s)
Figure 1

The ¢ and s channel lowest order graphs for e*e™ scattering.

scattering are shown in Fig. 1. The momenta of the in and out electrons are p,, ps,
those of positrons p,, p;. The kinematics in the c.m. system is

p1+p2=p3+p4’ S:_(pl+p2)2:4E29 p:VEz"‘mzzBEa
p1=—p>,=p(0,0,1),  p3=—p,=p(sin O sin ¢, sin 8 cos ¢, cos 0), (5.1)
6

t =—(ps—p.)*=—4p*sin® 5

The corresponding amplitude is

A(t,s)=A,+ A,
2

A= 53)yu()5Q)y,0), (5.2)

2

A= —f’s— 5(2)y,u()a(3)y,0(4).

As in previous sections, we restrict ourselves to longitudinal polarizations. We put

U@, 3)=u(D)a3)=N{'(1,3) UM UQ3),

V(4,2)=0v(4)5(2) = N5 (4, 2) V(4) V(2), (5-3)
so obtaining
N7, 3)={a(Du3)}!
0\ 11 . -1
= [g cos (5)] P.(1,3)+ e_"‘l“’[sin (g)] P_(1,3),
N3'(4,2)={t(4)v(2)}" _ (5.4)

— Az[Em cos (g)]_1P+(4, 2)+ ei"z“’[sin (3)]_11’_(4, 2),

where U(1, 3), N(1, 3) etc. are as in previous sections, a part the trivial change of
notation; the otherwise arbitrary phases of the coefficients of the various projec-
tors P.(1,2) have been specified here for convenience of later use. Equations
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(5.2) then become

A== Tr[y,U(1L,3)] Tr[y,V(4,2)]

2
1
=& S NP2+ ko1 —cos 6)+ E2(1+cos 0)IP. (1, 3)P. (4, 2)
+ Ay M®mE sin 6P_(1, 3)P.(4,2) (5.5)
— A, e™*mE sin OP.(1, 3)P_(4, 2)

—e Mee™*m2(1—cos 0)P_(1, 3)P_(4, 2)},
2
e
A = — Tr[v, U1, 3)y,V(4, 2)]

2
1
= ——% TE {IE%(1+cos 8)(1 —AA))—m?cos 8(1+ A A,)]P.(1,3)P.(4,2)
— e ™2mE sin OP_(1, 3)P, (4, 2) (5.6)
+A,e™*2mE sin 0P, (1, 3)P_(4, 2)
+[e " ™M®e™*E2(1—cos 0)(1—A;A,)
—m?cos 0(1+A;1,)]P_(1, 3)P_(4, 2)}.

Note that A, is a product of traces, while A, consists of a unique trace; but
one could also introduce the operators

W(4, 3) = v(@)i(3) = N3 (4, 3) V(O U®3),

X(1,2) = u(D)(2) = N3'(1, U VD), 3.7)
so that the amplitudes can be evaluated as
2
A, == Tr[y,X(1,2)v, W4, 3)],
t
2 (5.8)

A= f; Tr [v,X(1, 2)]- Tr [y, W(4, 3)].

The last way of writing A, is surely the natural one for studying processes like
e"e” — uu”, in which the in and out particles are different. A minor technical
problem arises however if we restrict ourselves, as previously, to longitudinal
polarizations; one has in fact

N,(1,2)=BP,(1,2). (5.9)

The coefficient of P_(1, 2) being equal to zero, equation (5.9) cannot be inverted
for its use in equation (5.7); similarly for N5(4, 3). To overcome this point, it is
sufficient to give to the polarization vectors a small transversal component, for
instance

1 1
@ =—"F7—— (— p; +meri, BEi): (5.10)
mv1+e? \B
with

-

ncp=0, e« 1.
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One then obtains

INJ(1, 2)]> = B?P.(1,2) +(eB)*P(1, 2) (3-11)
and

N;'(1,2)=B7'P(1,2)—i(eB) 'P(1,2); (5.12)
similarly

N3'4,3)=B7'P.(4,3)—ie ™ (gB) 'P_(4, 3) (5.13)

(the choice of the phases will be commented in a moment).
After carrying out explicitly the traces and some straightforward algebra, the
result reads

e
i 2E2
+ A,e™*mE sin 6P_(1, 2)P.(4, 3)
+ A e ™*mE sin 6P, (1, 2)P_(4, 3)
—[E*(1+cos 0)(1+ A7) —e™*e **m>(A,A,+cos 8)P_(1, 2)P_(4,3)T},
2
1
A, = —% =3 {-m?cos 6P.(1,2)P.(4,3)
—A,e™*mE sin OP_(1, 2)P.(4, 3) (5.14)
— Ae"2*mE sin 6P.(1, 2)P (4, 3)
+ e?2®e ™ E2(1+ \,A, cos 6)P_(1, 2)P_(4, 3)}.

A, {[2p*(1+A3A,) +m>(AyA, +cos 0)]P.(1, 2)P, (4, 3)

They look different from equations (5.5), (5.6), but they are in fact identical,
thanks to the particular phases choosen in equations (5.4), (5.12) and (5.13), when
expressed in terms of the same set of projectors P.(1, 3), P.(4, 2) used there. A
different choice of phases in equations (5.12), (5.13) would give equality up to
phases, not identity between the two expressions. To obtain the cross section is
now trivial: one adds the amplitudes as given in equations (5.5), (5.6) or in
equations (5.14), squares them recalling that different projectors do not interfere
and, when needed, sums or averages over polarizations, which amounts to replace
by 1 or 3 the concerned projectors.
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