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Approximants de Borel

© Birkhéuser Verlag Basel, 1982

h

par Béat Hirsbrunner, Chaire d’Informatique Théorique,
EPFL—DMA, CH-1015 Ecublens—Lausanne, Suisse

(7. IV. 1982)

Abstract. We review several related methods to compute numerically the Borel sum of a Borel

summable power series through the use of what we call ((Borel approximants)). One of our purposes is
to prepare the ground for a companion paper devoted to a problem in quantum field theory. As an
illustration, we quote our high precision computations of the ground level of the anharmonic oscillator,
and compare them with others obtained by the use of different methods.
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Introduction

Le présent article et son compagnon, Hirsbrunner (1982), ont pour théme
commun la sommabilité selon Borel de séries de puissances divergentes et son
application a certaines séries perturbatives de la physique théorique.

Il arrive fréquemment que les développements perturbatifs en série de
puissance d’un petit parametre z,

2 a.z",

se trouvent diverger pour toute valeur non nulle de 2. Mais souvent ils
représentent asymptotiquement la grandeur physique f(z) qu’ils sont censés
approcher:

f(z)- ZO a,z" =0(zN*Y),

lorsque z tend vers O sous certaines conditions (voir Chap. 1.A). Dans certains
cas, on a pu montrer que la série divergente possede une somme selon Borel
(B*-somme, voir Chap. 2.B), et que cette B*-somme est égale & f(z). Comme
exemples de résultats de ce type, mentionnons le cas des niveaux de ’oscillateur
anharmonique, Graffi-Grecchi-Simon (1970), auquel nous consacrons nos Chap.
3 et 4.C, et le cas de la masse des particules asymptotiques dans le modele
A :¢*:,, Eckmann-Epstein (1979), qui fournit le sujet de notre second article,
Hirsbrunner (1982). Notre Chap. 5 contient des références a d’autres cas ou 'on
démontre que la série de puissances est B*-sommable avec B*-somme égale a f.

Les démonstrations consistent presque toutes dans !’application d’un
intéressant critére que nous exposerons au Chap. 1.C, sous le nom de théoréme
de Watson-Nevanlinna.

Le Chap. 2 montre comment ’évaluation numérique d’une B*-somme peut
se faire par une série convergente Y. b, M, (z) dans I’hypothése ou les conditions
d’applicabilité du théoréme de Watson—Nevanlinna sont remplies. Cette remarque
est ancienne: Watson (1912) prenait pour les M, (z) des ({factorielles inverses)).
Mais, du point de vue numérique, la convergence est alors tres lente. En 1975, J.
J. Loefiel a proposé un nouvel algorithme basé sur un prolongement analytique a
I’aide d’une application conforme, voir Hirsbrunner-Loeffel (1975), Loeffel
(1976) et Le Guillou—-Zinn Justin (1977). Dans beaucoup de cas ). b,.M,.(z)
devient alors une série {((rapidement)) convergente (voir Chap. 2.B).

Comme nous I'avons déja dit, notre Chap. 3 est consacré a l’oscillateur
anharmonique, a titre d’illustration. Nous donnons les résultats de nos calculs
numériques du niveau fondamental de I’oscillateur anharmonique, et nous compa-
rons les méthodes décrites au Chap. 2 a la multitude de celles qu’on trouve sur le
marché et dont certaines sont particulierement bien adaptées a ce cas.

Ces méthodes sont susceptibles de variations qui permettent de tenir compte
de circonstances spéciales et d’atteindre certains buts tels qu’augmenter la rapidité
de la convergence, obtenir une convergence monotone ou plus uniforme. Notre
Chap. 4 donne un apercu de la question, illustré par quelques applications
numeériques. Nous insistons en particulier sur I’attention qu’il faut accorder aux
singularités de la transformée de Borel Y (a,/n!)t" de la série étudiée.
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Le Chap. 5, qui clos cet article de caractére général, contient une breve revue
de quelques autres aspects du sujet.

Notre deuxieme article, Hirsbrunner (1982), est consacré a une délicate
application des méthodes décrites ici dans un contexte de théorie quantique des
champs.

1. Le Théoreme de Watson-Nevanlinna

Ce chapitre contient avant tout des rappels: sur les développements asymp-
totiques en séries de puissances, sur la notion de somme borélienne (B*-somme)
de telles séries, et sur le Théoreme de Watson—Nevanlinna, qui donne un critére
pour l'existence de la B*-somme et pour 1'égalité entre cette B*-somme et la
fonction asymptotique a la série considérée.

1.A. Séries asymptotiques

Soit f une fonction définie dans un ouvert connexe
D<C, 0eD.

Définition (d’aprés Poincaré (1886)). La série formelle ¥ a,z" est appefée
uniformément asymptotique 4 f dans D en z =0 si et seulement si VNeZ" on a:

.- {(f(”‘,go wz) [} =0

lorsque r— 0.
On note alors f(z)~) a,z".

Propriété. Si f(z)~Y a, - z" et f(z)~Y b, - z" alors Vn a, =b,. Cest a dire
toute fonction f posséde au plus une série asymptotique. (Ceci suit du fait que

N N
VN ay—by= lim ( an-z"—an-z“)/zsz.
0 n=0

|z|—0, zeD Fou
Exemple 1. f(z)=exp (—z~ ') posséde la série uniformément asymptotique
- _00-z" dans
D ={z eC/|arg z| <37 — 8}, 6>0, en z=o.
Deux fonctions différentes peuvent donc avoir la méme série asymptotique. -

Exemple 2. Considérons fe C®(R) sur lintervalle D=[0,1]. Alors f
possede la série asymptotique

> (n)7' - F™0) - x™,
n=0

dans D en x =0. De plus le théoréme de Taylor nous assure que
l x|N+1

& 1
f(x)— g,o Pl f(0) - x™ Smoiupl |[fND(q) Vx €[0, 1].
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Une série asymptotique peut donc diverger (p. ex. f € C”, non analytique). Si elle
converge, la somme a,+a,;z+a,z>+--- ne représente pas nécessairement la
fonction f(z) (voir I’exemple 1). La reconstruction de f a partir de sa série
asymptotique n’est donc en général pas possible.

Rappelons que la définition de Poincaré n’exige rien ni sur la fonction f ni sur
la maniére dont le terme (f(z)—Y" a,z")/z" s’approche de zéro. Quelles condi-
tions supplémentaires faut-il imposer pour qu’une reconstruction soit possible?
Celle-ci devrait s’effectuer de telle sorte qu’une série convergente ne représente
que sa somme de Cauchy. Le cas de convergence correspond a: IM, 3A >0,
AC>0 telles que Vze D, YN=M

f(z)— 2_: a,z"
n=0

/1le‘15C AN -2,

La généralisation la plus naturelle est de multiplier le membre de droite par un
facteur pn ou {un}nv—a €St une suite positive croissante. Ceci entraine que
Vn=M: |a,|=C- A" w,.

.
1.B. La B*-somme d’une série de puissances

En suivant la méthode de sommation due a Borel (1899) nous introduisons la
notion de la B*-somme:

Définition. Soit z réel positif, fixe. La série formelle ) a, * z" est appelée
B*-sommable si et seulement si:

1) Jp, >0, Ir>0 tels que a(t)=Y,,_, (a/w,) - t* converge Vi avec |t|<r,

2) a(t) posséde un prolongement analytique g(t) le long de I’axe réel positif,

3) il existe wune fonction positive, décroissante ¢ telle que

Vn:[Gt"-d(t)di=p, et
L &(t) - g(z - t) dt =B, existe.

B, est appelée la B*-somme de Y a,z". La fonction t—>g(t) est appelée la
transformée de Borel de {a,},—,

Dans la suite nous allons nous intéresser au cas ou 3A >0, IC >0 telles que
Vze D, VN:

f2)~ ¥ anz”

=C-N!-AN-|zN, (1.1)

On peut alors prendre w, =n!, r=A"" et ¢(t) =exp (—1).

Exemple 3. La fonction f, définie pour les z réels positifs par fy(z)=
5 exp (—t)/(1+ z - t) dt posséde les propriétés suivantes:

1) f, posséde un prolongement analytique f dans le plan coupé C\(—, 0] et
méme dans le domaine D, ={z €C/|z| >0, |arg z| =a}, Va =0; D, est non
schlicht si = .
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2) La série Y (—1)" - n!- z" est uniformément asymptotique a f(z) dans D,
pour tout a avec a <A <372, A fixe.

(Et il est aisé de vérifier que la condition (1.1) est satisfaite Va <A.
Notons que les constantes A et C dépendent de A; en particulier
nous nous servirons dans la remarque 1 du paragraphe 1.D du
résultat: A=1siAsmet A=1/cos(A—m)si m=A<37/2.)

3) La série Y (—1)"n!-z" est B*-sommable de B*-somme B,=
Gexp(=t)/(1+z-1)dt VzeC\(—=,0). Il est intéressant de noter que

Bz sz(z)-

1.C. Le théoreme WN

Watson a démontré en 1911 que toute fonction f qui possede des propriétés
du type 1) et 2) de I'exemple 3 peut étre reconstruite a partir de sa série
asymptotique. Plus précisément on a le critere suivant dii & Watson (1911) et a
Nevanlinna (1918):

Soient les domaines (voir Figs. 1 a 3):

1

1
Do r ={z €C/|z—3R|<3R}= {z cC/Re ;>§},

DQ,R=I¢'U D avec D =e“Dg g,
=

D, r est non schlicht si a = /2.
To.a ={teC/dist (t,R,)<1/A},

Ta,A=|¢‘U T avec T =e"*T,,,
=

T, A est schlicht Va =0.

Théoreme WN (Watson, Nevanlinna)

Hypotheses:

1) Soient « =0, R>0, « et R fixes.

2) Soit f une fonction continue sur D, g et holomorphe dans D, r (multi-valuée
si a=1/2).

3) Soit Y a, * z" une série formelle telle que A >0,3C>0,

f)- Y ap- 2"

n=0

VzeD, g, VN: =C-N!-AN - |z|N

(donc
1d
n'dz"

Conclusion:

0)=a, et IanlsC-n!~A").

1) ¥ a, - z" est B*-sommable, plus précisément:
a) a(t)=Yr_,(a,/n') - t" converge dans {|t|<1/A}
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\ ]
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Figure 1
Les domaines d’holomorphie ((D)). D, , est le domaine d’holomorphie de la fonction z — f(z) du
Théoreme WN. D, p est non schlicht si @« =@/2. Dy i est le domaine d’holomorphie minimal de f
nécessaire pour la reconstruction de f a partir de sa série asymptotique (aus sens du Théoréme WN).
D’ est le domaine d’holomorphie de f utilisé par Hardy (1949).

4 Imt

FrTrrrvrrrvd

F — Re t
N

Lt Ll ...

A Ty A

- Re t

Figure 2
Les domaines d’holomorphie ((T)) (indiqués dans la figure par leurs frontieres ((3T))). T, 5 est le
domaine d’holomorphie de la transformée de Borel ¢ — g(tr) du Théoréme WN. T_ , est schlicht

Va =0; en particulier T, , =Csia=m. T,

wa estle secteur {teC||arg (t +r,)|=a} si w/2=<a <, avec
r, =1/(A -sin a).
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Imt

a > Ret
-A
oTy
T
) A
Figure 3

Les domaines d’holomorphie ((T)) (indiqués dans la figure par leurs frontieres ({(aT))). T, o, comme
dans la Fig. 2, mais pour 0 <a < /2. T’ est le domaine d’holomorphie de g utilisé par Hardy (1949).
T, est le domaine appliqué dans le cercle unité par la transformation conforme ¢ (des exemples sont
donnés dans les Figs. 4 et 5).

b) a(t) posséde un prolongement analytique g(t) dans T, 5
c) VA'> A, 3C,>0 telles que YteT, 5 :

gD < Cy - exp (|¢|/R)

d) B,=(1/z) - §3 " exp (—t/z) - g(t) dt converge absolument pour tout z €
D(d:), I(bl <a
2)  f(z)=B, pour tout ze D, |¢|=a.

Pour la démonstration originale voir Watson (1911) (a >0) et Nevanlinna (1918)
(a=0). On trouve la démonstration également dans Hardy (1949) (a>0) et
Loeffel (1982) (a=0). L’idée de la démonstration est exposée dans Sokal (1979)
(a=0). Notons encore que la borne supérieure de |g(t)] peut étre précisée,
notamment lorsque ¢ s’approche du bord du domaine T, 4: voir Loeffel (1982).

Remarque. Hardy (1949) utilise les domaines D' et T’ (voir figures 1 et 3)
définies par: *

D'={zeC/0<|z|<R, larg z| =< o + 7/2},
T'={teC/|lt|<1/A} U {teC/larg t| < a}.

Notons que D'> D, g, alors que T'c T, 4.
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Corollaire 1. Si les hypothéses du Théoreme WN sont satisfaites pour a =
alors

1) X a,z" est une série convergente dans le disque
D={z éC/|z| <R},
2) VzeD: f(z)=%7_ya,z"

Pour la démonstration voir Loeffel (1982). Si a est suffisamment grand, le
prolongement analytique g posséde la représentation:

Corollaire 2. Soit t — g(t) la fonction définie dans le Théoreme WN et soit
a=/2.

Alors

o(t)=(1/1) - L exp (~s/t) - h(s) ds

Vice R, V¢ avec |dp|l=a—7/2,

ou h est une fonction entiere définie Vs e C par h(s)=Yw_, (a./(n!)?) - s™

En fait nous avons plus: comme Y (a,/n!) - t" représente une fonction t —
g(t) holomorphe dans le disque |t|<1/A, ¥ (a,/n!)t" est B'-sommable de B'-
somme égale a g(t) dans le polygone de Borel Pg, voir Hardy (1949) chap. 8.8 et
Whittaker—-Watson (1927) chap. 7.8. De plus I’holomorphie de g dans T, 4 nous
assure que e’R, < Py pour 0=<|¢|=<a — /2. (Dans le Chap. 4.D, Rem. 5 nous
discuterons les approximants de Borel de la B’-somme de la série } (—z)").

1.D. Remarques

1) Les constantes A et C du Théoréme WN dépendent de a et R.

Il est intéressant de noter que la dépendance de A en « est souvent telle que
r, (voir Fig. 2) est indépendant de a: voir exemple 3. Mais il n’en est pas toujours
ainsi: voir ci-dessous ’Exemple 4.

2) Le corollaire 2 est intéressant dans le sens qu’il nous livre une
représentation explicite des fonctions f et g intervenant dans le Théoreme WN
(pour ze D, 0=|p|=a —=/2).

3) L’inverse du Théoréme WN, connu sous le nom de ‘lemme de Watson’,
est également vrai. Voir Beyer—Heller (1967) et Olver (1974).

4) Le théoréme WN peut se généraliser a

N-—

f(z)— Z a,z"

=C-AY-T(N+B+1)-|z|N, B>-1,
avece

B, =(1/z) - Lm exp (—t/z) - (t/z)® - Z (a,/T(n+B+1))-t"dt)). (1.2)

Ceci permet donc aux coefficients a, de croitre plus rapidement: |a,|=<
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C-A"-T(n+B+1)~A" - n!-nB. Voir par exemple Beyer-Heller (1967). C’est
la version que nous utiliserons dans le Chap. 4.
5) Le théoréme WN peut aussi se généraliser a

f(z)— i a,z"

n=0

=C-AN -T(NJk+1)-|z]N, k>0,

avec

(B, =(1/z") - L exp (—t/2%) - T (aT(nk+1)) - £ de)y (1.3)

Indication; montrer que la fonction h définie par h(y)=f(z), y =z, satisfait le
Théoréme WN. Voir Nevanlinna (1918), Beyer-Heller (1967), Graffi-Grecchi-
Simon (1970).

Exemple 4. Soit la fonction f définie pour z positif par f(z)=
§5 exp (—t) - exp (—z?t*) dt. On a

f)~ Y a.z"=Y b, (z9" avec ay,=b,=(=1)"-(2n)!/n!

et as,+1 =0. Il est aisé de vérifier que:

1) ¥ a,z" satisfait le Théoréme WN pour a <A <mf4 eton a ) (a,/n!) - t" =
exp (—t?) et

B,=(1/z)- j exp (—t/z) - exp (—t?) dt,

0

2) Y b,y" satisfait le Théoréme WN pour a <A < (dans la variable y = z?)
etona) (b/n!)-t"=(1+41t)""* et

o0

B,=(1/Z% - J exp (—t/z5)(1+4t)~"* dt,

0

3) Zanz satisfait le Théoréme WN généralis€é a k=2 (voir remarque 5
ci-dessus) et on a ¥ (a,/(n/2)!) - t"*>=(1+41)"" et B, comme pour 2).

Indication: analogue a I’exemple 3; voir aussi Olver (1974) chap. 14.

Exemple 5. En mécanique quantique la série perturbative ) a,,z" de la
n-iéme valeur propre EI™(z) de I'oscillateur anharmonique p*+q° +zq , m=
2,3... -satisfait le Théoréme WN généralisé pour k=1/(m—1), voir Graffi-

Grecchl—Slmon (1970). Nous continuerons la discussion de cet exemple dans les
Chap. 3 et 4.C.

2. Construction des approximants de Borel

Le Théoréme de Watson-Nevanlinna nous assure 1’égalité entre la B*-
somme

B, = Lm exp (—t) - g(zt) dt
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de la série ) a,z" et la fonction f(z) asymptotique a cette série. Dans ce chapitre
nous montrons comment 1’évaluation numérique de cette B*-somme peut se faire
par une série convergente

B,= } b, M,(2),
m=0
et nous montrons que dans beaucoup de cas cette série converge ({rapidement)).

2.A. Les approximants de Borel

La difficulté de I’évaluation numérique de la B*-somme B, est liée au fait que la
transformée de Borel g(t) n’est connue que pour |t|<1/A:

(==}

g(t)= 2 (a/n!)- 1"
n=0
L’idée clef pour surmonter cette difficulté consiste a appliquer, par une
transformation conforme ¢, le domaine d’holomorphie T, , de g(t) dans le disque
|w|< 1. Pour tout te T, 4 on a alors g(t) =g(¢ ‘(W)=Y b, w™ =Y b,.d(t)", dou

@) =(1/z) - j exp (—1/2) - g(t) di

=(1/z)* ). by, - jexp (=t/z) - ()™ dt ))’2)

Plus explicitement, en suivant Loeffel (1976):
—Soient f(z) et ) a,z" satisfaisant les hypothéses du Théoréme WN.
—Soit pour simplifier la discussion z € D, i (voir Fig. 1).
—-Soit ¢: T, — D, ={weC/|w|<1} une transformation conforme avec R*c
Ty <=T,a (voir Fig. 3) et ¢(0)=0, ¢(t)>0 pour tout t >0, ¢(0T,)=0D;.
—Soit ¢! I'application inverse de ¢.
On a alors: comme ¢ — g(t) est holomorphe dans T,, g > ¢~ " est holomorphe dans
D,; on peut donc écrire Vie T, c’est a dire V |w|=|o(t)| < 1:

g() =g W)= Y b - w"
m=0

Or pour |[t{|<A7™" on a g(t)=Y (a,/n!) - t"; d’ou il suit pour tout |t|=|¢p " '(w)|<
A™! (et en se rappelant que par construction de ¢ : ¢ (0)=0):

g W) =ao+ X (a/n)) - (7 (W))"
=ag+ i (a/n!) - ( i Cnn ™ w"‘)

0 m
=ay+ Z ( G g, an/n!) -w'™,
m=1 ‘n=1

%) Pour les séries convergentes il est bien connu que I’on peut obtenir un prolongement analytique
en dehors du cercle de convergence a I’aide d’une transformation conforme, voir par exemple
Dienes (1931) page 311. En physique cette idée a été souvent utilisée, voir par exemple
Weinberg (1964) et Ciulli et al. (1975).
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Les coefficients b,, sont donc définis par:

bO = Ay, (21)

=Y Cun-aJ/n! Vm=1,

ou les C,, sont les coefficients du développement de Taylor de (¢ '(w))" =
ZmZn Cm,n * Wm-
Il vient maintenant pour la fonction f(z):

<O

f2)=(1/2) [ exp(-y2)- (0 dt

0

oo

=(1/z) J exp (—t/z) - lim ( IZV_: b, q')(t)'“) dt,

0 N— \m=0

et comme |g(t)|<C,exp(—|t|/R) pour tout teT, (voir Théoreme WN), le
théoreme de la convergence dominée de Lebesgue nous permet d’interchanger
I’intégrale avec la limite (Loeffel (1982)). D’ou

f(z)= I}}H}o Bn(2) VzeDyx

avec 7 _
Bu(2)= ), by M, (2) (2.2)
m=0
M, (z)=(1/z)- reXp (—t/z) - ()™ dt (2.3)
0

By (z) est appelé le N-eéme approximant de Borel de f(z).

Remarques. La construction de la suite {BN(z)}N est analogue pour z e
exp (ip) - Do g, |b|=a.

2.B. Sur la théorie d’erreur

La rapidité de convergence de la suite {By(z)}y dépend de I’application
conforme ¢. Nous donnons ici les résultats pour deux familles d’applications

conformes ¢ particulierement intéressantes (ces ¢ seront utilisés dans le Chap.
4.0):

1) ¢(t)=1—exp(—B-t), avec B>0 (2.4)
(voir Fig 4).

Advantage. Les intégrales M,,(z) peuvent étre calculées sous forme fermée:

M, (z)=p™- m!/(]l:—[l1 (z7'+j - B)), m=1 (2.5)

(factorielle inverse).
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AImt
m/(2B)

= Re t
/f
-(W'LH-

To

Figure 4
T, est le domaine appliqué dans le cercle unité par 1’application conforme (2.4). On a T, < T, , pour
B=A -n/2 (ou T, 4 estle domaine d’holomorphie de la transformée de Borel g(t) du Théoréme WN,
voir Fig. 2).

Désavantage. [.a convergence de la suit {By(z)}y est trés lente:

|f(z)—Bn_1(2)|=0(N"%) lorsque N —> oo, (2.6)

1 1. 1
Vze Dy, avec CZ=E-(Re~Z———E)>O.

Remarque. Dans ce cas Y b, M,,(z) est une série de factorielles inverses. On
peut trouver une étude détaillée des séries de factorielles inverses dans Norlund
(1926) et Doetsch (1955), Chap. 11. Ces auteurs étudient, en particulier, la
représentation f(z) =} b,.M,,(z) avec ’application conforme (2.4).

2) ¢(t)=(u—-1)/(u+1) (2.7)
avec u=(q-t+1)"; y=3 et q>0 (voir Fig. 5).

Désavantage (secondaire de nos jours). Les intégrales M,,(z) doivent étre
calculées avec 'ordinateur (sauf pour y=1 ou les M, (z) peuvent s’exprimer a
I'aide de fractions continues, voir Chap. 3.C; ceci peut étre utile pour les calculs a
haute précision, voir Chap. 3.D et aussi Hirsbrunner (1976)).

> Re t

Figure 5
T, est le domaine appliqué dans le cercle unité par I’application conforme (2.7). Si a €(0, m/2), on a
Ty=T, s pour y=7/2a) et q=A; si ac[n/2,w), ona T, T, o pour y=7/(2a) et qu -.sina
(ou T, 4 est le domaine d’holomorphie de la transformée de Borel g(t) du Théoréme WN, voir Figs. 2
et 3).
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Avantage. L’application conforme (2.7) permet de mieux tenir compte du
domaine d’holomorphie de la transformée de Borel g(t). Conséquence: la con-
vergence de la suite {By(z)}n est beaucoup plus rapide:

|f(z)—Bn_1(z)| =0(exp—C, - N®) lorsque N —x, (2.8)
7 v-8 v-8

VzeDyr avec C,= (— -Re 1) — (2 . l) >0,
q z a R

6=1/1+vy)<1.

Indication: estimer

IM,,.(2)| = O(exp (— (% . Re %)‘V'S _ ma))

par la méthode du col; estimer

bl =| 2y §wl=r<1 (267w w " dw| =0(exp (& )

en utilisant |g(t)| < C; - exp (Jt|//R), voir Théoréme WN; et finalement estimer

%, buMo(2)|=[ 16, (2] dm.
m=N N

Pour plus de détail voir Loeffel (1982).

2.C. Remarques

1) Les b,, sont des combinaisons linéaires des a,, n =m; les coefficients de
ces combinaisons (les C,,,) et les intégrales M, (z) (z fixé) ne dépendent que du
choix de I’application conforme .

2) Avec I'application conforme (2.4) la série Y. b,,M,,(z) devient une série de
factorielles inverses. Déja Stirling et Euler ont montré que certaines séries
divergentes du type ) (—=1)" - n!- z" peuvent se ramener a ’étude de séries de
factorielles inverses. Dans le cadre du Théoréme WN, la représentation f(z)=
Y b,.M, (z) avec I'application conforme (2.4) est probablement due a Watson
(1912).

L’idée de Watson est d’écrire f sous la forme
flz)=(1/z2) - L exp (—t/z) - g(t) dt

=(1/z) - j (1=—w)YD 1. h(w) dw

ou g est la transformée de Borel de } a,z",
h(w)=g(¢1'(w)) et d,(t)=1—exp (—1) =w.
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Watson obtient la représentation

f(z)= T buMy(2)+ R(2)

en intégrant N fois par partie l'intégrale [3- - - dw. (Rappelons que dans Ial-
gorithme proposé par Loeffel (1976) I'idée est de développer h(w) en puissances
de w et d’inverser | avec ). Une étude détaillée de la n-eme dérivée h'™(w) dans
le disque |w| <1 permet 2 Watson de montrer que |Ry(z)|<C - N~ avec C, >0,
pour z € D < Dy g. Pour plus de détail voir Watson (1912).

3) La resommation selon Borel n’améliore pas la rapidité de convergence
d’une série ) a,z" convergente. (Ce résultat théorique n’est toutefois valable que
pour N suffisamment grand, voir Chap. 4.D, Rem 5).

En effet pour une série de puissance convergente, le reste

N-—1
f(z)— 2 an.z"
n=0
est borné, pour N suffisamment grand, par

Yor=rN-(1-"t=1-r""exp(—|lnr|- N),

n=N
ou r=C-|z|, C une constante positive. Or |f(z)—By_,(z)| décroit au mieux
comme exp (—C’ - N?) avec C'>0, §<1 (voir Chap. 2.B).

4) Le Chap. 4 est consacré a décrire et a discuter d’autres approximants de
Borel, construits en utilisant des méthodes proches de celle que nous venons de
présenter, dans le but d’améliorer la convergence dans divers sens (rapidité,
monotonie, uniformité, . . .).

3. Le niveau fondamental de Poscillateur anharmonique

Dans I'exemple 5 du Chap. 1.D, nous avons mentionné les résultats de
Graffi—-Grecchi-Simon (1970) concernant 'oscillateur anharmonique d’hamilto-
nien p*+q*+ zq*. En particulier, le niveau fondamental E(z) et sa série perturba-
tive usuelle } a,z" satisfont les conditions du Théoréme de Watson—Nevanlinna.
Nous pouvons donc appliquer les méthodes du Chap. 2 et calculer les approxi-
mants de Borel By(z) de E(z).

Dans la Section A nous discutons le choix de I’application conforme. Dans les
Sections B et C nous mentionnons quelques difficultés liées au calcul numérique
des approximants de Borel By(z). Dans la Section D nous calculons les By(z) et
nous montrons que nos méthodes permettent de reproduire les résultats les plus
précis connus par ailleurs. Et enfin dans la Section E nous comparons nos
méthodes a la multitude de celles qu’on trouve sur le marché et dont certaines
sont particuliecrement bien adaptées a ce cas.

Dans ce chapitre les approximants de Borel By(z), définis par les relations
(2.1) a (2.3), ne seront calculés qu’avec une seule application conforme ¢. Ces
calculs seront repris (notamment avec plusieurs applications conformes
différentes) dans le Chap. 4.C.
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3.A. Le choix de I’application conforme ¢

Simon (1970) a montré que la transformée de Borel de la série perturbative
de E(z) est analytique dans le domaine

T={teC||arg(t+3)|=m—¢€}, &>0. (3.1)
Nous pouvons donc choisir
¢ =(u—-D/u, u=(@p- t+1), (3.2)

avec y=3 et p=g. Notons que ¢(—3)=—1. Ce choix est motivé par la triple
exigence:

1. T, < T (par construction des By(z), voir Chap. 2.A).

2. T, est le domaine le plus grand possible. Car plus T, est grand, plus la
convergence de la suite {By(z)}x est rapide (voir Chap. 2.B; avec (3.2),
Perreur |E(z) — By_,(2)| est voisine de (2.8)).

3. 1l existe un algorithme simple qui permet de calculer les intégrales M,,(z),
définies par (2.3), avec une grande précision (voir Chap. 3.C).

3.B. Le calcul des coefficients b,

A premiere vue, le calcul des coefficients b,,, définis par
b= 2, Crun * @/,
n=0

voir (2.1), ne pose aucun probleme. En effet les coefficients a,, ont été calculés par
Reid (1967) pour n =20, puis par Bender-Wu (1969) pour n=75 (avec 12
chiffres significatifs). Et le calcul des coefficients C,,,,, qui ne dépendent que de
I’application conforme ¢, donc ici de (3.2), est facile. Mais malheureusement on a

lbm| =Dm * max |Cm,n : an/n”:

avec D,, « 1 (il n’est pas treés difficile d’établir cette inégalité a partir de la théorie
d’erreur du Chap. 2.B). A titre d’exemple, nous avons obtenu par simulation
numérique dans le cas qui nous intéresse ici:

D,, =1074"™ avec d(m)=0.6-m.>

En d’autres termes, si les coefficients a,, n=m, sont connus avec N chiffres
significatifs, le coefficient b,, ne pourra étre calculé qu’avec au plus N—0.6 - m
chiffres significatifs. Pour cette raison Gagnebin (1975) a recalculé les coefficients
a,, n =60, avec plus de 100(!) chiffres significatifs.?)

3) Plus généralement, on a la régle heuristique (basée sur les innombrables exemples que nous
avons testés): ((plus m — D, décroit rapidement, plus la suite des approximants de Borel
converge rapidement)).

4 Ces calculs ont été refaits a partir des équations (2.8) et (2.9) de Bender-Wu (1969). Nous
signalons que I'équation (2.9) de Bender-Wu (1969) s’écrit en fait A, =(—1)""'. B, ; et non pas
A, =—-B, ;. Je rémercie Thierry Gagnebin de m’avoir communiqué ses résultats.
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3.C. Le calcul des intégrales M,,(z)

Nous avons testé d’innombrables méthodes d’intégration numérique. Une des
méthodes les plus efficaces, pour le calcul des intégrales M,,(z) définies par (2.3),
est celle dite de Gauss-Legendre.>®) Cette méthode posséde néanmoins un grave
désavantage: il est pratiquement impossible d’évaluer de maniére réaliste erreur
|M,,.(z)—1|, ot I est la valeur approchée de M,,(z) obtenue avec Gauss—Legendre.
Pour cette raison nous avons utilisé la méthode suivante pour le calcul a haute
pécision du Chap. 3.D. Avec I'application conforme (3.2), I'intégrale M, (z) peut
s’exprimer comme une somme d’intégrales du type

F,(z) =L e ' (z-p-t+1)"ds,

0=n=m. Et le calcul précis de ’intégrale F,(z) est trés simple. Eh effet, F, (z)
possede une représentation sous la forme d’une fraction continue, voir Wall (1948)
page 355. Et on a, si A (z) est le k-eme approximant de cette fraction continue:

1. La suite {A,(z)}x converge (rapidement) vers Fy(z).

2. Ao (2)<F,(2) < Aski1(2), voir Wall (1948) page 334.

3. Ai(z)=N /D, ou N, et D, sont définis par une simple relation de
récurrence, voir Wall (1948) page 15.

3.D. Les approximants de Borel

Nous avons calculé la suite des approximants de Borel {By(2)}x de la série
perturbative du niveau fondamental E(z), pour 0=N=60 et 0<z=10. Les
BN (z), définis par les relations (2.1) a (2.3), ont été construits avec I’application
conforme (3.2).

Le Tableau 1 illustre la rapidité de convergence de la suite {By(z)}n. Ce
tableau montre que la convergence est trés rapide pour z suffisamment petit, ici
z=0.1. Toutefois, elle devient de plus en plus lente lorsque z augmente. Ce
comportement est en accord avec nos résultats théoriques du Chap. 2.B.

Nous avons poussé nos calculs assez loin, pour voir s’il était possible de
reproduire les résultats les plus précis connus par ailleurs.”) Dans le Tableau 2
nous donnons nos résultats obtenus en utilisant les coefficients perturbatifs
a,, n =60. Pour z=0.8 nos résultats sont en accord avec ceux de Biswas et al.
(1973). Pour z <0.8 les résultats publiés a ce jour ne sont pas aussi précis; nous
avons comblé cette lacune en recalculant E(z) a l’aide d’une méthode non-
perturbative, plus précisément a ’aide de la relation (I1.11) de Hioe et al. (1975).
Les résultats ainsi obtenus sont en parfait accord avec ceux du Tableau 2.

5)  Vour p. ex. Mineur (1966). Nous avons utilisé le programme de Williams (1969): ce programme
est disponible au Centre de Calcul de 'EPF-Lausanne.

%) Cette méthode de Gauss-Legendre est également bien adaptée au cas des intégrales M, (z) du
Chap. 4. Seule exception: le cas m =0, —1<B'<0, A'#0 doit étre traité avec beaucoup de
prudence. -

7 Les résultats, a 15 décimales, de Biswas et al. (1973) sont les plus précis publiés a ce jour.
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Tableau 1
La rapidit¢ de convergence de la suite des approximants de Borel {By(z)}y du niveau
fondamental E(z) de I'oscillateur anharmonique p?+q%+ zq*. Les By (z), définis par les relations (2.1)
a (2.3), ont été construits avec 'application conforme (3.2).

N z=0.1 z=1 z=10
0 1.00 1.00 1.00

1 1.064 95 1.345 1.81

2 1.064 64 1.338 1.78

3 1.065 290 1.386 2.16

4 1.065 272 1.382 2.11

5 1.065 285 28 1.390 3 2.279

6 1.065 285 07 1.390 O 2.268

7 1.065 285 501 1.391 83 2.352
8 1.065 285 489 1.391 70 2.344
9 1.065 285 508 7 1.392 176 2.389
10 1.065 285 508 3 1.392 157 2.386
11 1.065 285 509 485 1.392 297 2.412 4
12 1.065 285 509 459 1.392 290 2.410 7
13 1.065 285 509 538 3 1.392 331 9 2.425 4
14 1.065 285 509 536 5 1.392 330 O 2.424 5
15 1.065 285 509 543 13 1.392 344 3 2.433 8
16 1.065 285 509 543 06 1.392 344 0 2433 5
17 1.065 285 509 543 664 1.392 348 98 2.439 2
18 1.065 285 509 543 652 1.392 348 79 2.438 9
19 1.065 285 509 543 711 0 1.392 350 55 2.442 41
20 1.065 285 509 543 710 1 1.392 350 50 2.442 27

Tableau 2

Le niveau fondamental E(z) calculé avec les approximants de Borel By (z). Ces approximants, définis
par les relations (2.1) a (2.3), ont été construits avec I'application conforme (3.2). Les nombres entre
parenthéses sont les erreurs estimées sur la derniére décimale. Ces erreurs ont été obtenues & partir de
la rapidité de convergence apparente de la suite des approximants de Borel.

z N E(2)

0.01 17  1.007 373 672 081 382 460 533 843 88  (12)
0.1 41  1.065 285 509 543 717 688 857 09 (5)
0.2 55  1.118 292 654 367 039 153 430 8 . (3)
0.3 60  1.164 047 157 353 841 982 74 (5)
0.4 60  1.204 810 327 372 499 431 (3)
0.5 60  1.241 854 059 651 497 32 (8)
0.6 60  1.275 983 566 342 557 0 (8)
0.7 60  1.307 748 651 120 030 (6)
0.8 60  1.337 545 208 148 18 4)
0.9 60  1.365 669 825 784 45 (15)
1.0 60  1.392 351 641 530 3 4

Il est intéressant de remarquer que la somme partielle de la série perturbative
de E(z) permet également de calculer la valeur E(0.01) avec une tres grande
précision, toutefois en utilisant un nombre de coefficients perturbatifs a,, bien plus
élevé. En effet soit

N—

1
Su(@) = (T a2 +Hane™) £ lal 2

n=0
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Comme a, ~—n!(—3)", le reste 2 |an| z" est minimal pour N=2/(3z). On obtient
ainsi:
Se7(0.01)=1.007373672081382460533843905983 - (1+£0.12 - 1072%).

Malheureusement le minimum du reste 3 |ay| z™V croit trés rapidement lorsque z
augmente. Pour z =0.1 p. ex., on obtient

S6(0.1)=1.0653 - (1+0.10 - 107?).

3.E. Comparaison de différentes méthodes

Depuis 1930 d’innombrables méthodes ont été développées pour le calcul de
E(z), voir tableaux 5 a 7 du Chap. 5. La méthode la plus efficace est certainement
la méthode non-perturbative de Banerjee et al. (1978). Malheureusement, parmi
toutes ces méthodes, seules les méthodes perturbatives, c’est a dire basées sur des
développements en séries de puissances de z, sont aisément généralisables au
calcul numérique de certaines fonctions en théorie des champs & d dimensions,
d=2. Pour cette raison, nous ne discutons ici que les différentes méthodes
perturbatives.

Dans le Tableau 3 nous comparons les erreurs relatives

Ry (z) =|Approximanty(z) — E(2)|/E(z),

obtenues par différentes méthodes de resommation de la série perturbative, a
l'ordre N, de E(z). Dans ce tableau nous distinguons trés nettement deux
groupes, caractérisés aussi bien par l'ordre de grandeur de Ry(z) que par la
rapidité de croissance de Ry(2) lorsque z augmente.

Dans le premier groupe nous avons, par ordre croissant de ’erreur relative
Ry (z), les approximants de Borel et Padé—Borel, puis Euler, et enfin Padé. Ces
approximants sont caractérisés par une croissance relativement rapide de Ry(z)
lorsque z augmente. Ce comportement est en accord avec la théorie d’erreur (voir
Chap. 2.B et Gunson—-Ng (1972), section 6). Dans les innombrables exemples que
nous avons testés, nous avons obtenu, dans le cas des approximants de Borel, des
erreurs relatives voisines de celles du Tableau 3. Dans ce sens, la rapidité de
convergence des approximants de Borel de E(z) est représentative d’une large
classe de fonctions.

Tableau 3
Les erreurs relatives Ry (z) =|Approximanty(z)— E(z)|/E(z) obtenues par différentes méthodes de
resommation de la série perturbative, 4 ’ordre N, de E(z). La convergence des approximants précédés
d’une étoile * n’est pas démontrée. Les approximants de Borel de Hirsbrunner-Loeffel (1975) sont
définis comme dans le Tableau 1; les approximants de ((Wick)) ont été calculés avec la relation (70) de
Seznec—Zinn Justin (1979). Pour le calcul des erreurs relatives nous avons utilisé les E(z) de Biswas et
al. (1973); la notation 2E-07 signifie 2 - 1077.

Auteurs Approximants N R, (0.2) RL(0.8) R, (2)
Simon (1970) Padé 40 9E-12 3E-06 3E-04
Graffi-Grecchi-Simon (1970)  *Padé-Borel 20 8E-12 2E-07 2E-05
Gunson-Ng (1972) Euler 32 3E-11 8E-07

Hirsbrunner-Loeffel (1975) Borel 20 8E-12 2E-07 2E-05
Caswell (1979) Borel-Wick 25 3E-13
Caswell (1979) *Wick’ 20 3E-14 8E-11

Seznec-Zinn Justin (1979) *{Wick)) 5 2E-07 1E-06 1E-06
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Dans certains cas, il est possible d’augmenter sensiblement la précision des
résultats en utilisant certaines propriétés supplémentaires. Dans le cas du niveau
fondamental E(z), un raffinement trés efficace consiste a ramener, par un change-
ment d’échelle, la variable z <o 3 une variable bornée g <constante (voir Caswell
(1979), section II). Ceci a été mise en oeuvre par Caswell (1979), section II, et
dans une version généralisée par Caswell (1979), sections III-V, et Seznec—Zinn
Justin (1979). Les résultats ainsi obtenus sont spectaculaires, voir Tableau 3. Ce
raffinement permet aussi d’obtenir d’excellents résultats pour le k-€me niveau de
'oscillateur anharmonique p*+q*+ zq®™, pour m =2 et 3 (voir Caswell (1979),
Tableaux 3 et 6). Dans le cas de certaines fonctions en théorie des champs ¢3, ce
raffinement ne permet par contre pas d’améliorer les résultats obtenus par la
méthode des approximants de Borel (voir Seznec—Zinn Justin (1979), section 5).

Notre conclusion est que la méthode de la sommation selon Borel, combinée
avec des raffinements dans les cas ou cela est possible, se révele étre parmi les
méthodes perturbatives les plus efficaces.

Dans le prochain chapitre nous allons montrer comment il est possible de
raffiner la construction des approximants de Borel, afin d’atteindre certains buts
tels qu’augmenter la rapidité de convergence ou obtenir une convergence
monotone ou plus uniforme. Contrairement a la discussion ci-dessus, nous porte-
rons notre attention sur le comportement des approximants de Borel By(z) pour
N petit, disons 0<N=10. Nous continuerons la discussion de I’exemple du
niveau fondamental E(z) dans le Chap. 4.C.

4. Raffinements

La construction des approximants de Borel donnée au Chap. 2 contient un
élément de souplesse dans le choix de ’application conforme ¢. Nous avons dit au
Chap. 2.B comment on peut augmenter la rapidité de la convergence des séries
Y b,.M,.(z) en faisant un choix judicieux de ¢.

-Dans ce chapitre, nous poursuivons cette discussion, et nous I’élargissons. Il
est en effet possible de varier d’autres facons encore la construction des approxi-
mants de Borel, dans le but d’améliorer leur convergence. Aprés avior évoqué
quelques propriétés générales des séries de puissances, nous passons €n revue
quelques-uns de ces raffinements.

Ces efforts pour affiner la construction des approximants de Borel ne sont pas
sans importance. En physique, les coefficients a, des séries perturbatives ) a,z"
ne sont souvent connus de maniére précise que pour n <N, N étant de I'ordre de
quelques unités. Il est alors essentiel de tirer le meilleur parti possible des
quelques coefficients connus en utilisant de maniére judicieuse les libertés que
nous avons dans la construction des approximants de Borel. Ces méthodes

améliorées nous seront d’un grand secours dans les calculs que nous présentons
dans Hirsbrunner (1982).

4.A. Quelques théoremes sur le comportement des coefficients d’une série de
puissances

L’idée clef des différents raffinements est de tenir compte de la position et de
la nature des singularités de la transformée de Borel, c’est-a-dire des fonctions

t—g() et w—gld '(w)).
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Les différentes méthodes de raffinement sont basées sur les trois propositions bien
connues suivantes, voir Titchmarsh (1939) chap. 7.:

Le rayon de convergence d’une série de puissance est déterminée par la
position des singularités de la fonction représentée, mais aussi par le comporte-
ment asymptotique des modules des coefficients de la série:

Proposition 1. La série de puissance ) C,z" posséde le rayon de convergence
r =1/lim sup |C,|"/".

Exemple ‘1. Si r=1 et si les seules singularités sur le cercle unité sont des
péles isolés d’ordre p alors
|C.|=0(n").

La position exacte des singularités est plus difficile & déterminer. Mais on a
par exemple:

Proposition 2. Soit h(z)=Y C,z" avec Yn C, =|C,| - exp (in a), a fixé. Si la
série posséde un rayon de convergence r alors z =r - exp (—ia) est un point singulier
de h.

Exemple 2. 1/(1+z)=> (-1)" - z"

Le comportement asymptotique des coefficients C,, n — o, est reli¢ au com-
portement asymptotique de h(z)=}) C,z" lorsque z s’approche du cercle de
convergence le long d’un rayon:

Proposition 3. Soient h,(z)=) C,z" et hy(z)=).d, - z", ou C, =0, d,=0 et
les séries convergent pour |z|<1 et divergent pour z =1. Soit C une constante. Si

C,~C-d, lorsque n-— = alors
hi(z)~C - hy(z) lorsque z /1.

Exemple 3. Soit h,(t)=) C, - t" avec
C.=(FA)"-I'(n+B+1)/T(n+B'+1))- C-(1+0(1/n))

ou A>0. Soit h,(t)=(1+At)*-(In(1+At))® avec a=B'—B—1 et =1 si
aeZ”, B=0 sinon. Alors
hi(t)~C' - hy(t) lorsque tNN—A""

(Indication: suit de la proposition 3 avec z =—A - t).

4.B. Cinqg méthodes de raffinements

Soient f(z) et ) a,z" satisfaisant le Théoréme WN (voir Chap. 1.C); mais
nous utiliserons désormais la représentation généralisée

= =]

f2) =) | exp—y2)- (127 50 @.1)

0
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avec
B'>-1

et

o0

g®)=Y (a/T(n+B'+1))- " (4.2)

n=0

pour |t|<1/A. (Le Théoréme WN correspond au cas B’ =0). Et nous écrivons le
N-eme approximant de Borel By(z) de f(z) =1lim By(z) sous la forme généralisée

Bn(z)= ). b, - M, (2), (4.3)
m=0
ou
M (2)=(1/2)- [ exp(a1z) - (42)" - (180 - (0" dt, 4.4)

A’ est une constante réelle fixée, ’application conforme ¢ est définie comme dans
le Chap. 2.A et les coefficients b,, sont définis par le développement

(& WIW) ™ g7 W)= T by W™ 4.5)

pour |w|<1. By(z) dépend donc des trois paramétres fixés ¢, B’, A. (L’approxi-
mant de Borel du Chap. 2.A correspond au cas B'=0, A’ =0).
Pour fixer les idées et pour simplifier la discusion nous supposons en plus:

1) z positif.
2) a,=(-A)"-T'(n+B+1)-C-(1+0(1/n))
=(—=A)"-n!-n®-C"-(1+0(1/n))
(en physique les coefficients a, des séries perturbatives posse¢dent souvent
ce comportement).

3) La transformée de Borel g, définie par (4.2), est holomorphe dans le plan
coupé C\(—, —1/A].

(Les méthodes ci-dessous s’adaptent ais€ément au cas ou ces hypotheses
supplémentaires ne sont pas satisfaites).

Méthode 1. a) L’idée est de faire varier I’application conforme ¢. Ceci a
pour effet de modifier la position de la singularité de w— g(¢ '(w)) en w, =
¢ '(—1/A), et donc de modifier le comportement des coefficients b,,. Un choix
convenable de ¢ peut améliorer la rapidité de convergence de la suite {Bn(z)}n.
Nous I’avons déja noté au Chap. 2.B.

b) Pour ce type d’étude la famille d’applications conformes ¢ la plus simple
est donnée par ¢(t)=1—(p-t+1)7", et les meilleurs résultats sont en général
obtenus (dans le cas A’ =0) avec y =3 et p=A. Notons que ¢(—1/A)=0o0. (Voir
Figs. 8a et 9a).

Méthode 2 (d’aprés Le Guillou-Zinn Justin (1977 et 1980)). a) L’idée est de
faire varier le paramétre B’ dans un voisinage de B. Ceci a pour effet de modifier
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la nature de la singularité de la transformée de Borel g(t) lorsque t\x—A ™" (voir
Exemple 3 ci-dessus) et donc de modifier le comportement des coefficients b,,. Un
choix convenable de B’ peut améliorer la rapidité de convergence de la suite
{Bn(2)}n

b) Pour ¢ tel que ¢(—A ')=—1 on obtient en général le meilleur résultat
avec B'=B +3, c’est a dire pour g(t)~(1+A - t)"? lorsque t\yx—A . (Voir Figs.
8b et 9b).

Méthode 3 (d’apres Parisi (1977)). a) L’idée est de tenir compte du com-
portement de f(z) lorsque z 7o: f(z)~ fr - 2™

Pour ce nous devons bien siir supposer que le Théoreme WN soit satisfait
pour tout z positif (plus précisément Yz € D, .).

b) Pour alléger la notation nous posons A =1 et B'=0. Pour simplifier la
discussion nous prenons ¢(t) =t/(1+t) comme application conforme (¢ applique
le demi plan Ret>—3 dans le disque |w|<1) et nous supposons que la
transformée de Borel g(t) soit holomorphe dans le plan coupé C\(—, —1].
Notons que ¢ '(w)=w/(1—w) et ¢((—»,—1])=[1,<). La fonction w —
g(¢'(w)) est donc holomorphe dans le plan coupé C\[1, =) et le comportement
de f(z) lorsque z 7 « détermine le comportement de g(¢~'(w)) lorsque w .7 1 (et
vice-versa):

Lemme. Soit € >0, z et w réels. On a:

f(2) ~ for 2" +0(z"7°)

si et seulement si

g7 (W), ~, [f/TA+1)]- (1—w) ™ +0((1—w) ™).

w—1

Indication. Suit de f(z)=[ge ' - g(z-t)dt avec g(t)t:;m [fo/TA+D]- 1+ +
0((1+1)*®).

c) L’idée est alors d’écrire g(¢p '(w)) sous la forme g(¢ '(w))=
(1—-w)™ - h(¢~'(w)) et de développer h (et non pas g!) en série de puissance de
w:

h(¢ ' (w) =D b, -w™ pour |w|<1.

Le N-éme approximant de Borel peut alors s’écrire:

Bu(2)= Y. by - My (2)

avece

1

M, (z)=(1/z) J exp[—z ' -w/(l—-w)]-(1—w)™"2-wmdw

0

=(1/z) - Lm exp[—t/z]- A+ - [(/1+0)]" dt
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d) Notons que By(z)~ay - T(1+A)- z* lorsque z — o, c’est a dire

f(2)IBo(z) 7=z follao - T(1+A)].

Cette méthode est donc particulierement bien adapté au régime z >» 1. De plus
dans certains cas la convergence de la suite {By(z)}y devient uniforme en z: p
ex. pour loscillateur anharmonique (voir Parisi (1977)) et pour f(z)=1/(1+2z)
(voir Chap. 4.D, Rem 5). (Voir Figs. 8c et 9c).

Méthode 4 (généralisation de Parisi (1977) et Kazakov et al. (1979)). a) En
général le comportement de f(z) lorsque z 7« n’est pas connu. Et plus grave, le
Théoreme WN n’est en général pas satisfait pour z >R, R fini. La méthode 3
n’est donc que tres rarement applicable.

b) Mais méme dans le cas ol R <, la méthode 3 nous suggere d’écrire le
Neéme approximant de Borel By(z) de f(z) sous la forme des relations (4.3) a
(4.5) ci-dessus. Notons que

Bo(z) ,~ by -T(B'+A'+1)- z*

avec

_ [(dod 7 (w)
bo_( dw

)A . ao/T(B'+1).
w=0

c) Pour une application ¢ donnée, I’idée est alors d’optimiser la rapidité de
convergence de {Bn(z)}x en variant A’. Dans le cas oll f(z)~f.-z" lorsque
z — o, les meilleurs résultats sont en général obtenus pour A’ = A, voir Kazakov et
al. (1979). '

d) Pour ce type d’étude, la famille d’applications conformes ¢ la plus simple
est donnée par ¢ telle que

' (w)=t=q"-w/(l-w)f, 0<B=2.

Pour ¢ telle que ¢(—A ') =—1, le meilleur résultat est en général obtenu avec
B’'=~B+2. (Voir Figs. 8d et 9d).

Méthode 5. D’autres raffinements peuvent augmenter la rapidité de con-
vergence de la suite {By(z)}n, tels par exemple:

a) Construire les approximants de Borel de la fonction composée hef, ou h
est une fonction convenablement choisie. Par exemple:

—(hef)(z)=(f(z)—f(0))/z, ce qui a pour effet de modifier, comme dans les
méthodes 3 et 4, le comportement de la transformée de Borel au voisinage
de I'infini.

—hef=f""sif(0)#0 et f(z)~(z.—z)" lorsque z 7 z,, z. >0; voir Hirsbrun-
ner (1982). ‘

b) (Voir Corollaire 2, Chap 1.C.): écrire f sous la forme

f(z)=1/z)- Loo exp (—t/z) - [(1/t) -J.w exp (—s/t) - ). [a/(n!)?*]- s" ds] dt

0

et appliquer le domaine S, avec R"< S<C, dans le cercle unité. On peut
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s’attendre a obtenir de bons résultats si on tient compte du comportement de la
transformée de Borel g(t) lorsque t — o, ou g(t) =Y (a,/n!)t" pour |t|<1/A (voir
Chap. 4.D, Rem. 5).

4.C. Le niveau fondamental de I’oscillateur anharmongqiue, bis

Nous poursuivons ici la discussion du Chap. 3 des approximants de Borel de
la série perturbative du niveau fondamental E(z) de ’oscillateur anharmonique.
Notre but est d’illustrer les méthodes de raffinements du Chap. 4.B, en d’autres
termes d’illustrer I'influence des trois paramétres (fixés) ¢, B', A" sur le comporte-
ment de la suite {By(z)}y pour N=<N,, N, étant de 'ordre de quelques unités.

Pour le choix de B’ et A’, nous sommes gmdes par les résultats de Bender—
Wu (1969) et Simon (1970):

a,~(A)"-T'(n+B+1):- C-(1+0(1/n)) lorsque n— oo,
E(z)~E.-z" - (1+0(z *%) lorsque z— x,

avec A =3, B =-3, A =1. Le choix de I’application conforme ¢ a été discuté dans
le Chap. 3.A; nous utiliserons les ¢ suivants

¢1(t)=1—exp(—pBt) avec B=A-In2 (4.6)
o) =(u—1)/u avec u=At+1 (4.7)
d;()=(u—1)/(u+1) avec u=At+1 (4.8)
b ()=(u—1/u avec u=vAt+1 (4.9)
ds(t)=(u—1)/(u+1) avec u=vAt+1 (4.10)

Il est intéressant de noter que la singularité de la transformée de Borel g(t) en
t=—1/A est appliquée en

¢;(-1/A)=—-1 pour j=1,3,5 et ¢(—1/A)= pour j=2,4.
La Fig. 6 illustre le comportement des sommes partielles

N
Sn(z)= X a,z"
n=0
et des approximants de Borel By(z) du niveau fondamental E(z). Les By(z),
définis par les relations (4.3) a (4.5), ont été construits avec

¢s,B'=B=—3, A'=0 (4.11)

La divergence de la suite {Sy(z)}x est clairement illustrée par cette figure. Nous
voyons aussi que plus z est grand, plus la convergence de la suite {By(z)}n est
lente. Ceci est en accord avec les résultats des Chap. 2.B et 3.D. Un choix
convenable de A, 4 savoir A'=\ =3, permet de rendre la convergence plus
uniforme en z, voir Parisi (1977); ce paramétre est donc particulierement
intéressant dans le régime z > 1.

La Fig. 7 illustre la rapidité de convergence des approximants de Borel
Bn(z) du niveau fondamental E(z). Les Byn(z), définis par les relations (4.3) a
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16 —
S.(2) S,(2) B,(2)
oo Bs(z)
E(2)
14 — B4(z)
B,(z)
12 —
L. S,(2) 22
10 412Z)\ | I l L .
0 05 10 15 20 AZ
Figure 6

Le comportement des sommes partielles Sy (z) et des approximants de Borel By(z) du niveau
fondamental E(z). Les By (z) ont été construits avec (4.11). Comme a, ~—(—3)" - n! lorsque n — o,
nous avons reporté en abscisse les valeurs de A - z, avec A =3.

(4.5), ont été construits avec

a) ¢5, BP=B=-1, A =0 {comme (4.11)} _ (4.12)
b) ¢5, B'=B=-1 A'=0 (4.13)
¢) ¢, B'=B=—3, A=0 | (4.14)
d) ¢;,B'=B+3=1, A=0. (4.15)

Les cas a) a ¢) montrent que la rapidité de convergence de la suite {By(z)}n
dépend du choix de I’application conforme ¢: plus le domaine T, est grand, plus
la convergence est rapide. Cette propriété (obtenue ici déja pour N petit!) est en

BN(LI3)
L a ]
150 E“b ;
E(4/3) = S
145 = E
— ey
1.40 E _ d|
Y i =
135 - Y l,"~..:/ _]
S =
130 —de.__/ -
| ! L | l [ |
0 2 4 6 8 N 10
Figure 7

La rapidité de convergence des approximants de Borel By (z) du niveau fondamental E(z), pour z =%.
Les By (z) ont été construits avec respectivement (4.12), (4.13), (4.14), (4.15). La valeur exacte est
E(%)=1.47295- - -
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accord avec les résultats théoriques du Chap. 2.B. Les cas c) et d) illustrent
influence du parameétre B’ sur le comportement de la suite {By(z)}y. Dans le cas
c) on a

Byn(2) <E(z) < Bon-1(2),
alors que dans le cas d) on a
Byn(z) <Bon—1(2) <E(2).

Dans le cas a), une variation de B’ produit un effet analogue; voir Figs. 7a et 8b.
Voir aussi Le Guillou-Zinn Justin (1980).

Les Figs. 8 et 9 illustrent les méthodes de raffinements 1 a 4 du Chap. 4.B.
Les approximants de Borel, définis par les relations (4.3) a (4.5), ont été construits
avec

a) méthode 1: ¢,, B'=B =1, A'=0 (4.16)
b) méthode 2: ¢s, B'=B+3=1, A'=0 (4.17)
¢) méthode 3: ¢,, B'=B+3=0, A=A =2 (4.18)
d) méthode 4: ¢s, B'=B+2=3, AN=A=% (4.19)

Les Figs. 7 a 9 montrent que le comportement de la suite {By(z)}n dépend
tres sensiblement du choix des parametres ¢, B, A': un choix convenable permet
de construire des suites {Byn(2)}n, N =N,, respectivement monotones croissantes
ou oscillantes ou monotones décroissantes. (Les choix optimaux de ¢, B', A’
dépendent de N,). Notre conclusion est que, pour N, fixé, la combinaison de ces
différentes suites permet d’augmenter tres sensiblement la précision du résultat.

Ces méthodes améliorées nous seront d’un grand secours dans larticle
compagnon, Hirsbrunner (1982), consacré au calcul de la masse des particules
asymptotiques dans le modeéle A : ¢?:,.

[

E(4/3)

LITITTTTT

145
140 —
- 135
— 1 | | | | | | I
0 2 4 6 8 N 10

Figure 8
Ilustration des méthodes de raffinements 1 4 4 du Chap. 4.B. Les approximants de Borel By (z) ont
été construits avec respectivement (4.16), (4.17), (4.18), (4.19). L’échelle de ’axe des ordonnées est
identique a celle de la Fig. 7.
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By (4/3)

c
~d 1.474 —
E(4/3)

e

1472

1.470 —

1.468 —

L1
14 N

Figure 9
Comme la Fig. 8, mais pour 5=<N=15. L’échelle de I’axe des ordonnées a été multipliée par un
facteur 30.

4.D. Quelques remarques

Nous terminons ce chapitre avec quelques remarques de caractére général.

1) Pour pouvoir reconstruire une fonction f(z) a partir de sa série asymptoti-
que Y a,z" il suffit que le Théoréme WN soit satisfait pour a = (. Mais dans la
pratique cela ne permettra de calculer (numériquement) f(z) qu’avec une
précision tres faible (voir Fig. 7c). Notons aussi que pour « =0 les méthodes 1 a 5
ne permettent pas (en général) d’améliorer sensiblement la précision du résultat
(voir figure 7d).

2) Il est trés difficile de faire une ((bonne)) théorie de I’erreur pour N ‘petit’
et en tenant compte des raffinements des méthodes 1 a 5. Ceci d’autant plus que
la valeur exacte de R n’est en général pas connue et que les meilleurs résultats
sont obtenus en combinant les méthodes 1 & 5. Dans la pratique on se contente
donc souvent d’une théorie de 'erreur ‘expérimentale’ (simulation numérique). En
général la précision ‘expérimentale’ du résultat final est considérablement
supérieure a la précision théorique.

Mais nous attirons I’attention du lecteur sur le fait que cette erreur ‘ex-
périmentale’ doit étre estimée avec une grande prudence. Voir Gaunt—Guttmann
(1974).

3) Dans la pratique les hypothéses du Théoréme WN sont souvent tres
difficiles a vérifier. En particulier le domaine d’holomorphie de la transformée de
Borel g(t) est en général trés mal connu. La méthode 1 nous fournit alors un outil
simple et efficace permettant d’estimer la position et la nature des singularités
de g(t); voir aussi Jeffreys (1958). Une telle étude est a la base des résultats de
Collet-Eckmann-Hirsbrunner (1977).
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Notons aussi qu’une étude numérique de la décroissance de N —
|f(z) — Bn(2)| peut donner des informations sur la valeur de R (par comparaison
avec la théorie d’erreur, voir Chap. 2.B).

4) Le comportement de f(z) lorsque z — o n’est en général pas connu. Mais
si le Théoréeme WN est satisfait pour a>n/2, R=» et si le comportement
asymptotique des coefficients a,, n — %, est connu alors il est possible de
déterminer (approximativement) le comportement de f(z), z — «, a partir des N
premiers coefficients a,, N=10(!): voir Tarasov (1979).

5) Nous avons vu dans le Chap. 2.C, Rem. 3 que la resommation selon Borel
n’améliore pas la rapidité de convergence d’une série Y a,z" convergente. Nous
montrons ici, a I'aide d’'un exemple, que ce résultat théorique, établi pour N
suffisamment grand, n’est pas valable pour N petit.

Exemple. Soit la fonction f(z)=1/(1+z). Pour |z|<1 on a

f(z)=lim Sy(z)= lim i (—2z)",
N—>x

N-—w© n =0

et pour Re z>—1 on a, voir Hardy (1949) Chap. 8.8:

f(2)=j exp(—t) - t% - Y (—zt)Y[(n+B'+1) dt,
° 0 n=0

avec B'>—1, B’ fixé. Dans le Tableau 4 nous avons calculé les sommes partielles
Sn(z) et les approximants de Borel By(z) de f(z). Les By(z), définis par les
relations (4.3) a (4.5), ont été construits avec

&o(t)=(u—1)/u, u=t20+1; B'=0, A'=0 (4.20)
&) =(u—1)/u, u=t60+1; B’ =60, AN=-1 (4.21)

Ce tableau montre clairement que la suite {By(z)}x converge plus rapidement
que la suite {Sx(2)}n, pour N =10. De plus les approximants de Borel permettent

Tableau 4
Les sommes partielles Sy (z) et les approximants de Borel By(z) de la fonction f(z)=1/(1+2z)=
Y (—2)" Les By(z), définis par les relations (4.3) a (4.5), ont été construits avec (4.20) dans les
colonnes 3 et 4, et (4.21) dans les colonnes 5 a 7.

N 5005  By(0.5) By(2.0)  Bn(0.5)  By(2.0) B (2999)
0 1.000 0  1.000 000 1.000 0 0.664 211 0.332 099 0.000 333 331
1 05000 0523292 —0.687 3 0.667 854 0.335 722 338 794
2 0750 0 0718 892 1544 7 0.666 706  0.333 462 333 686
306250 0.650 957  —0.774 6 661 291 107
4 06875 0.670 401 1.092 7 666 326 283
5 06563 0.666 026  —0.029 4 667 334 343
6 0.6719 727 0.429 S 334 340
7 0.664 1 669 0.337 2 333 334
8  0.668 0 665 0322 5 333
9 0.666 0 667 0.334 0
10 0.667 0 0.334 8
o 2 2 1 2 i 5-107°




Vol. 55, 1982  Approximants de Borel 323

de calculer la fonction f(z) en dehors du cercle de convergence de la série
Y. (—=2)", plus précisément pour tout z avec Rez>—1. Pour A'=—1, la con-
vergence de la suite {Bn(z)}y est uniforme en z; la rapidité de convergence est
spectaculaire et peut s’expliquer par le comportement de By(z) lorsque z —
®©:By(z)~z*". (Nous avons étudié un autre exemple, tiré de la physique des
écoulements, dans Hirsbrunner (1981b); les résultats sont tout a fait analogues,
sauf que la convergence de la suite {By(z)}y n’est pas aussi rapide).

5. Notes et bibliographie commentée

0. Des progrés considérables ont été réalisés durant les années 70 dans le
domaine des séries perturbatives sommables selon Borel. On peut trouver un
résumé dans

A) Simon (1981): pour les résultats rigoureux
B) Zinn-Justin (1981): pour les résultats heuristiques.
Ces deux travaux contiennent également une bibliographie détaillée.

1. On trouve une bibliographie détaillée dans les références suivantes:

A) Sur les séries convergentes et divergentes et sur les développements
asymptotiques:

1) avant 1880: voir Burkhardt (1911) et Dingle (1973)
2) de 1880 a 1930: voir Dienes (1931)
3) de 1930 a 1974: voir Dingle (1973) et Olver (1974).

B) Sur les séries perturbatives en mécanique quantique, avec applications
numériques:

1) de 1967 a 1979: voir paragraphe 5 ci-dessous.

C) Sur les séries perturbatives sommables selon Borel en mécanique
quantique: '
1) de 1969 a 1975: voir Reed-Simon (1978), pages 61-64
2) de 1977 a 1979: voir Hunziker (1979), pages 38-40
3) jusqu’en 1980: voir Simon (1981).

D) Sur les séries perturbatives sommables selon Borel en théorie construc-
tive des champs:

1) de 1975 a 1979: voir Magnen—-Sénéor (1979), pages 221-222 et Le
Guillou—Zinn Justin (1980).

E) Sur le comportement asymptotique des coefficients d’une série asymptoti-
que (((Lipatov)y), avec applications numériques (par sommation selon
Borel):

1) de 1977 a 1978: voir Herbst-Simon (1978), note 4, page 69.
2) jusqu’en 1980: voir Zinn—Justin (1981).

F) Sur l'utilisation des approximants de Padé en physique: voir Baker,
Jr-Gammel (1970). '

G) Sur les procédés d’accélération de convergence en analyse numérique:
1) de 1955 a 1980: voir Brezinski (1980) et Mori (1980).

2. La sommabilité selon Borel a été introduite par Emile Borel dans une
série d’articles publiés de 1895 a 1899. Pour I’histoire des séries divergentes on
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peut se référer a:

A) Burkhardt (1911) pour la période 1750-1860. On y trouve de nom-
breuses informations difficile a trouver ailleurs.

B) Houzel et al. (1976). Cet ouvrage est le fruit d’'une collaboration rare et
délicate: la coopération de spécialistes en mathématique et en
philosophie. Il aborde essentiellement les difficultés auxquelles les
mathématiciens du 18e siécle furent confrontés dans la manipulation des
séries.

C) On trouve un excellent résumé dans Hardy (1949), pages 13-20, pour la
période 1700-1900 et dans Dingle (1958), pages 456—7, pour la période
1860-1955.

D) On trouve de nombreuses notes historiques intéressantes dans Olver
(1974).

3. Pour un exposé pédagogigue sur les diverses méthodes de resommation de

séries convergentes et divergentes on peut se référer a:

A) Hardy (1949).
B) Wall (1948) et Baker, Jr et al. (1970) (pages 1-39) pour les fractions
continues et les approximants de Padé.

4. La resommation selon Borel a été étendue a la double série f(x,y)~
Y 4, .xMy" par Sobelman (1979).

5. Depuis 1930 d’innombrables travaux ont été consacrés au calcul du k-éme
niveau d’énergie de l'oscillateur anharmonique d’hamiltonien p*+aq”+zq®™
pour a=—1,0,1 m=2,3,4 et 0=z <. Dans les Tableaux 5 a 7 nous avons
résumé les principales méthodes (variationnelles, perturbatives et autres)
développées de 1962 a 1979; pour la période 1930 a 1968 voir les références de
Reid (1970).

Tableau 5

Méthode variationnelle.
Auteurs a m k z
Reid (1965) 1 2 0ao9 0.1a1
Reid (1970) 0 2 0a?z23 1
Somorjai-Hornig (1962) —1 2 0as8 0.05 a 04

La méthode la plus efficace (du point de vue du calcul numérique) est
certainement celle proposée par Banerjee et al. (1978).%) Leur méthode est
analogue a celle de Biswas et al. (1973), mais elle introduit en plus un change-
ment d’échelle astucieux qui permet d’obtenir une rapidité de convergence (plus
ou moins) indépendante de z.°) Cette méthode a été généralisée par Richardson—
Blankenbecler (1979).

Les résultats les plus précis (15 décimales) ont été publiés par Biswas et al.

&) Je remerice Mark Robert de m’avoir communiqué cette référence.
%) Le changement d’échelle est également une technique bien adaptée aux méthodes perturbatives,
voir Chap. 3.E.
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Tableau 6
Méthode perturbative.
Auteurs a m k z Approximants
Reid (1967) 1 2 0ao9 025a1
Loeffel et al. (1969) 1 2 0 01 a1 Padé
Simon (1970) 1 2 0 01 ais
Graffi et al. (1970) 1 2 0 0.1 al4 Padé—-Borel
Gunson-Ng (1972) 1 2 0 0.2 a08 Euler
‘Chap. 3 ci-dessus’ 1 2 0 0.01 a 10 Borel
Caswell (1979) 12 0a2 2 a2-108 ore
Caswell (1979) 1 2 0al0 002 ax
1 3 0210  0.02 4 Wick
-1 2 0a10  0.054200 e
-1 3 04310 0.01 a 200
Tableau 7
Autres méthodes.
Auteurs a m k z Méthode
Biswas et al. (1973) 1 2 0a7 0.1 a 100
1 3 0et?2 0.1 a 100 Déterminant
1 4 Qet2 0.1 a 100 de ‘Hill’.
Banerjee et al. (1978) 1 2 0310 0.0001, 1, 40000
0 2 0a10* 1
Hioe et al. (1975) 1 2 0as8 0.004 a o
Hioe et al. (1976) 1 3 0as 0.0002 a ‘Déterminant’
1 4 0a3 0.0002 a o et formules
Hioe et al. (1978) 1 2 0as8 02acx approchées.
Bender et al. (1977) 0 2 0al10 1 WKB
Balian et al. (1978) 0 2 0ae6 1

(1973) et Banerjee (1978). On trouve les tableaux les plus complets dans Hoie et
al. (1975, 1976 et 1978). (Les méthodes perturbatives ont été discutées dans le
Chap. 3.E ci-dessus).

6. Dans la littérature mathématique le Théoréme WN n’a pas recu d’atten-
tion particuliere: tout au plus est-il cité de temps en temps (plutdt comme
‘curiosité’ et souvent dans une formulation partielle comme dans Hardy (1949)).

L’inverse du théoréeme WN par contre, connu sous le nom de ‘lemme de
Watson’, a été 'objet de nombreuses recherches: voir Dingle (1973) et Olver
(1974). Quelques uns de ces travaux sont fort utile pour I’étude des approximants
de Borel, notamment dans le cadre de la méthode 1 (Chap. 4.B): p. ex. Jeffreys
(1958) et Beyer—Heller (1967).

7. Au cas ou le Théoreme WN est satisfait pour a = /2 il est possible de
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reconstruire la fonction f(z) a partir de sa série asymptotique } a,z" en resom-
mant } a,z" selon Euler, voir Gunson—Ng (1972). Ce travail est resté totalement
inconnu (sauf semble-t-il pour Dingle (1973) et Biswas et al. (1973)) et ceci bien
qu’il se situe a une époque ou les physiciens furent trés intéressés a trouver des
méthodes de resommation rigoureuses et aptes au calcul numérique (voir Graffi-
Grecchi-Simon (1970)).

Comme pour les approximants de Borel (pour a =m/2) la rapidité de
convergence des approximants de ‘Gunson—-Ng’ est du type exp (-8, - VvN), 8,>0.
Notons néanmoins que la construction des approximants de ‘Gunson-Ng  est
moins transparente que celle des approximants de Borel.

8. Il serait intéressant de voir si [’analogie entre les approximants de -
‘Gunson-Ng’ et les approximants de Padé [N, N] (voir Gunson-Ng (1972)) peut
étre étendue aux approximants de Borel. Indication: dans les trois cas le Neme
approximant est obtenu a partir d’un réarrangement des N premiers coefficients
a,.

9. Le comportement asymptotique des coefficients C, est déterminé par la
position et la nature des singularités de la fonction h(z)=) C,-z", et
inversément; voir Chap. 4.A. On peut trouver des informations supplémentaires
sur:

a) la théorie générale: dans Titchmarsh (1939), chap. 7;

b) une analyse dans le cadre du lemme de Watson: dans Jeffreys (1958) et
Olver (1974);

¢) une analyse numérique du comportement des coefficients: dans Bender—
Wu (1969) et Tarasov (1979);

d) une analyse numérique de l'erreur ‘expérimentale’ (Chap. 4.D): dans
Gaunt—Guttmann (1974).

10. Le comportement des coefficients a, est reli€ aux singularités de la
transformée de Borel g(t): si a,~A"-I'(n+B+1)-cos(nd) - C-(1+0(1/n))
lorsque n — o alors g(t) posséde une singularité en t,= A" - exp (£if). Si 1,>0
alors la Borel-somme [3 e % - g(t) - dt n’est pas définie et le théoréme WN n’est
pas valable: Y a, - z" est non-Borel-sommable. Dans ce cas il n’existe aucune
théorie (générale) de resommation de ) a,z". Néanmoins quelques progres ont
été réalisés ces dernieres années, voir Khuri (1979).

Remerciements

Je remercie Jean-Jacques Loeffel pour ses encouragements et ses précieux
conseils.

REFERENCES BIBLIOGRAPHIQUES

G. A. BAKER Jr et J. L. GAMMEL, The Padé Approximant in Theoretical Physics {Academic Press
1970).

R. BaLIaN, G. Parisi et A. VOROS, Discrepancies from Asympiotic Series and Their Relation to
Complex Classical Trajectories, Phys. Rev. Lett. 41, 1141-1144 (1978).

K. BANERIJEE, S. P. BHATNAGAR, V. CHOUDHRY et S. S. KaNnwaLL The Anharmonic Oscillator, Proc.
R. Soc. Lond. A360, 575-586 (1978).



Vol. 55, 1982 Approximants de Borel 327

C. M. BENDER, K. OLAUSSEN et P. S. WANG, Numerological Analysis of the WKB Approximation in
Large Order, Phys. Rev. D16, 1740-1748 (1977).

C. M. Bender et T. T. Wu, Anharmonic Oscillator, Phys. Rev. 184, 1231-1260 (1969).

W. A. Beyer et L. Heller, Analytic Continuation of Laplace Transforms by means of Asymptotic Series,
J. Math. Phys. 8, 1004-1018 (1967).

S. N. Biswas, K. DATTA, R. P. SAXENA, P. K. SRIvastava et V. S. VARMA, Eigenvalues of Ax*™
Anharmonic Oscillators, J. Math. Phys. 14, 1190-1195 (1973).

E. BOREL (1899), Mémoire sur les séries divergentes, Ann. Sci. Ecole Norm. Sup. 16, 9-136 (1899);
Lecons sur les séries divergentes, 2e édition (Gauthier—Villars 1928), pages 135 ff.

C. BREZINSKI, A General Extrapolation Algorithm, Numer. Math. 35, 175-187 {1980).

H. BURKHARDT (1911), Ueber den Gebrauch divergenter Reihen in der Zeit von 1750-1860, Math.
Ann. 70, 169-206 (1911), Trigonometrische Reihen und Integrale, Enzykl. Math. Wiss. Ila 12,
820-1354 (1916).

W. E. CASWELL, Accurate Energy Levels for the Anharmonic Oscillator and a Summable Series for the
Double-Well Potential in Perturbation Theory, Ann. Phys. 123, 153-184 (1979).

B. CruLLi, C. PoMPONIU, I. SABBA-STEFANESCU, Analytic Extrapolation Techniques and Stability
Problems in Dispersion Relation Theory, Phys. Rep. 17c, 133-224 (1975).

P. CoLLET, J. P. ECKMANN et B. HIRSBRUNNER, A numerical test of Borel summability in the
g-expansion of the hierarchical model, Phys. Let. 71B, 385-386 (1977).

P. DieNEs, The Taylor Series (Oxford 1931).

R. B. DINGLE, Asymptotic expansions and converging factors, Proc. Roy. Soc. London 244A, 456-490
(1958).

R. B. DINGLE, Asymptotic Expansions: Their Derivation and Interpretation (Academic Press 1973).

G. DogtscH, Handbuch der Laplace Transformation (Birkhduser Basel 1955), Vol. 2, chap. 11.

J. P. EckMANN et H. EPSTEIN, Borel Summability of the Mass and the S Matrix in ¢* Models, Comm.
Math. Phys. 68, 245-258 (1979).

D. S. GAUNT et A. J. GUTTMANN, Asymptotic Analysis of Coefficient, paru dans Phase Transitions and
Critical Phenomena, Vol. 3, édité par Domb et al. (Academic Press 1974), pages 181-243.

TH. GAGNEBIN, Calcul a multiple précision des coefficients a, de Bender—Wu, Centre de Calcul
Université de Neuchdtel, avril 1975, non publié. Communication privée.

S. GRAFFI, V. GRECCHI et B. SIMON, Borel Summability: Application to the Anharmonic Oscillator,
Phys. Let. 32B, 631-634 (1970). & .

J. GunsoN et P. H. NG, Summability of Asymptotic Perturbation Expansions, Nuovo Cim. 8A, 63-78
(1972). ‘

G. H. HARDY, Divergent Series (Oxford Univ. Press 1949).

W. HERBST et B. SIMON Stark Effect Revisited, Phys. Rev. Let. 41, 67-69 (1978).

F. T. HioE, DON MACMILLEN et E. W. MONTROLL, Quantum Theory of Anharmonic Oscillators. II.
Energy Levels of Oscillators with x>* Anharmonicity, J. Math. Phys. 17, 1320-1337 (1976).

F. T. HioE, DoON MACMILLEN et E. W. MoNTROLL, Quantum Theory of Anharmonic Oscillators, Phys.
Rep. C43, 305-335 (1978).

F. T. HioE et E. W. MONTROLL, Quantum Theory of Anharmonic Oscillators. I. Energy Levels of
Oscillators with Positive Quartic Anharmonicity, J. Math. Phys. 16, 1945-1955 (1975).

B. HIRSBRUNNER, Calcul a haute précision du niveau fondamental de I’oscillateur anharmonique A - q*,
Rapport interne Université de Lausanne, aolt 1976, non publié.

B. HIRSBRUNNER (1981a), La sommabilité selon Borel et son application en théorie des champs, thése de
doctorat Université de Lausanne, avril 1981. 206 pages, 155 références. Non publié. Peut étre
obtenue sur demande.

B. HIRSBRUNNER (1981b), Plane Poiseuille Flow: A Numerical Test of Borel Summability, Rapport
Chaire d’Informatique Théorique EPFL-DMA, sept. 1981, non publié. 26 pages. Peut étre obtenu
sur demande.

B. HIRSBRUNNER (1982), Calcul numérique de la masse physique dans le modéle X : ¢* : ,, pour de petites
valeurs de A, Helv. Phys. Acta—, — (1983).

B. HIRSBRUNNER et J. J. LOEFFEL, Sur les séries asymptotiques sommables selon Borel, Helv. Phys. Acta
48, 546 (1975).

CH. HouzegL, J. L. OVAERT, P. RAYMOND et J. J. SaANsuc, Philosophie et calcul de U'infini (Maspero
Paris 1976).

W. HUNZIKER, Schroedinger Operators with Electric or Magnetic Fields, paru dans Mathematical
Problems in Theoretical Physics, Proceedings Lausanne 1979, édité par K. Osterwalder (Springer
1979), pages 25-44.



328 Béat Hirsbrunner H.P. A.

H. JEFFREYS, The Remainder in Watson’s Lemma, Proc. Roy. Soc. London, 248A, 88-92 (1958).

D. I. Kazakov, O. V. TARASOV et A. A. VLADIMOROV, On the Calculation of Critical Exponents by
the Methods of Quantum Field Theory, Sov. Phys. JETP 50, 521-526 (1979).

N. N. KHUR1, Zeros of the Gell-Mann-Low Function and Borel Summations in Renormalizable
Theories, Phys. Let. 82B, 83 (1979). Voir aussi: G. PARrisi, Asympiotic Estimates in Perturbation
Theory, paru dans Hadron Structure and Lepton—Hadron Interactions, Cargése 1977 (Plenum Press
1979) pages 665-85; R. BALIAN, G. PARisI et A. VOros, Quartic Oscillator, paru dans Feynman
Path Integrals, Marseille mai 1978 (Springer 1979), pages 337-60, Ed. S. Albeverio; SEZNEC-ZINN-
JustiN (1979).

J. C. LE GuILLOU et J. ZINN-JUSTIN, Critical Exponents for the n-Vector Model in Three Dimensions
from Field Theory, Phys. Rev. Lett. 39, 95-98 (1977).

J. C. Le GumLou et J. ZINN-JUSTIN, Critical Exponents from Field Theory, Phys. Rev. B2I,
3976-3998 (1980).

J. J. LoerreL (1976), Transformation of an Asymptotic Series in a Convergent One, paru dans
Workshop on Padé Approximants, Marseille mai 1975, édité par Bessis et al. (Commissariat a
I’Energie Atomique 1976).

J. J. LOEFFEL (1982), Transformation of an Asymptotic Series in a Convergent one, Helv. Phys. Acta—,
—(1983) Je remercie J. J. Loeffel de m’avoir communiqué ses résultats.

J. J. LoEFFEL, A. MARTIN, B. SIMON et A. S. WIGHTMAN, Padé Approximants and the Anharmonic
Oscillator, Phys. Lett. 30B, 656-658 (1969).

J. MAGNEN et R. SENEOR, Expansions and Summability Methods in Constructive Field Theory, paru
dans Mathematical Problems in Theoretical Physics, Proceedings Lausanne 1979, édité par K.
Osterwalder (Springer 1979), pages 217-223.

H. MINEUR, Techniques de calcul numérique, 605 pages (Dunod 1966).

M. MoRI, Analytic Representations Suitable for Numerical Computation of Some Special Functions,
Numer. Math. 35, 163-174 (1980).

F. NEVANLINNA (1918), Zur Theorie der asymptotischen Potenzreihen, Ann. Acad. Fennicae, A12, n°3
(1918); On trouve un résumé dans L. Bieberbach, Jahrbuch Fort. Math. 46, 1463 (1916-18).

N. E. NORLUND, Lecons sur les séries d’interpolation, (Gauthier-Villars, Paris 1926).

R. B. OLVER, Asymptotics and Special Functions (Academic Press 1974).

G. PaRisi, The Perturbative Expansion and the Infinite Coupling Limit, Phys. Let, 69B, 329 (1977).

H. PoINCARE, Acta Math. 8, 295-344 (1886).

M. REED et B. SIMON, Methods of Modern Mathematical Physics, Vol. IV (Academic Press 1978).

CH. E. REID, Lower Bounds for the Energy Levels of Anharmonic Oscillators, J. Chem. Phys. 43,
S$186-S189 (1965).

CH. E. REID, Transformation of Perturbation Series into Continued Fractions, with Application to an
Anharmonic Oscillator, Int. J. Quantum Chem. 1, 521-534 (1967).

CH. E. RED, Energy Eigenvalues and Matrix Elements for the Quartic Oscillator, J. Mol. Spectr. 36,
183-191 (1970).

J. L. RICHARDSON et R. BLANKENBECLER, Moment Recursions and the Schrédinger Problem, Phys. Rev.
D19, 496-502 (1979).

R. SEZNEC et J. ZINN-JUSTIN, Summation of Divergent Series by Order Dependent Mappings: Applica-
tion to the Anharmonic Oscillator and Critical Exponents in Field Theory, J. Math. Phys. 20,
1398-1408 (1979).

B. SiMON, Coupling Constant Analyticity for the Anharmonic Oscillator, Ann. Phys. 58, 76-136 (1970).

B. SIMON, Large Orders and Summability of Eigenvalue Perturbation Theory: A Mathematical Quver-
view. To appear in Int. J. Quantum Chemistry (Proc. 1981 Sanibel Workshop).

G. E. SOBELMAN, Asymptotic Estimates and Borel Resummation for a Doubly Anharmonic Oscillator,
Phys. Rev. D19, 3754 (1979).

A. SokAL (1979), An Improvement of Watson’s Theorem on Borel Summability, preprint Princeton
08540 (1979). Paru dans J.M.P. 21, 261-3 (1980).

R. L. Somorsal et D. F. HORNIG, Double-Minimum Potentials in Hydrogen-Bonded Solids, J. Chem.
Phys. 36, 1980-1987 (1962).

O. V. Tarasov, The Infinite Coupling Limit and the Asymptotics of Coefficients of the Perturbation
Expansion, Let. Math. Phys. 3, 143-9 (1979).

E. C. TircHMARSH, The Theory of Functions, Oxford University Press, 2e édition 1939.

H. S. WaLL, Analytic Theory of Continued Fractions (Van Nostrand 1948).

G. N. WaTsON, A Theory of Asymptotic Series, Phil. Trans. Royal Soc., 211A, 279 (1911). Voir aussi:
T. Carleman, Les fonctions quasi-analytiques (Gauthier-Villars Paris 1926).



Vol. 55, 1982 Approximants de Borel - 329

G. N. WATSON, The Transformation of an Asymptotic Series into a Convergent Series of Inverse
Factoriels, Rend. Circ. Mat. Palermo 34, 41-88 (1912).

S. WEINBERG, Perturbation Theory of Strong Repulsive Potentials, Journ. Math. Phys. 5, 743 (1964).

E. T. WHITTAKER et G. N. WATsON (1927), A Course of Modern Analysis, Cambridge University
Press, 4e édition (1927 et 1958).

R. O. WiLLiamS, Computation of Integrals by the Method of Gaussian Quadrature, Graduate School
Computing Center, University of Colorado, 30 July 1969.

J. ZINN-JUSTIN, Perturbation Series at Large Orders in Quantum Mechanics and Field Theories:
Application to the Problem of Resummation, Phys. Rep. 70, 109-167 (1981).



	Approximants de Borel

