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Approximants de Borei

par Béat Hirsbrunner, Chaire d'Informatique Théorique,
EPFL—DMA, CH-1015 Ecublens—Lausanne, Suisse

(7. IV. 1982)

Abstract. We review several related methods to compute numerically the Borel sum of a Borel
summable power series through the use of what we call «Borel approximants». One of our purposes is

to prepare the ground for a companion paper devoted to a problem in quantum field theory. As an
illustration, we quote our high precision computations of the ground level of the anharmonic oscillator,
and compare them with others obtained by the use of different methods.
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Introduction

Le présent article et son compagnon, Hirsbrunner (1982), ont pour thème
commun la sommabilité selon Borel de séries de puissances divergentes et son
application à certaines séries perturbatives de la physique théorique.

Il arrive fréquemment que les développements perturbatifs en série de
puissance d'un petit paramètre z,

lOnZ",

se trouvent diverger pour toute valeur non nulle de z. Mais souvent ils
représentent asymptotiquement la grandeur physique f(z) qu'ils sont censés

approcher:

f(z)-t anzn=0(zN+1),

lorsque z tend vers 0 sous certaines conditions (voir Chap. LA). Dans certains
cas, on a pu montrer que la série divergente possède une somme selon Borel
(B*-somme, voir Chap. 2.B), et que cette B*-somme est égale à f(z). Comme
exemples de résultats de ce type, mentionnons le cas des niveaux de l'oscillateur
anharmonique, Graffi-Grecchi-Simon (1970), auquel nous consacrons nos Chap.
3 et 4.C, et le cas de la masse des particules asymptotiques dans le modèle
\.:cf>4:2, Eckmann-Epstein (1979), qui fournit le sujet de notre second article,
Hirsbrunner (1982). Notre Chap. 5 contient des références à d'autres cas où l'on
démontre que la série de puissances est B*-sommable avec B*-somme égale à /.

Les démonstrations consistent presque toutes dans l'application d'un
intéressant critère que nous exposerons au Chap. l.C, sous le nom de théorème
de Watson-Nevanlinna.

Le Chap. 2 montre comment l'évaluation numérique d'une B*-somme peut
se faire par une série convergente £ bmMm(z) dans l'hypothèse où les conditions
d'applicabilité du théorème de Watson-Nevanlinna sont remplies. Cette remarque
est ancienne: Watson (1912) prenait pour les Mm(z) des ((factorielles inverses)).
Mais, du point de vue numérique, la convergence est alors très lente. En 1975, J.
J. Loeffel a proposé un nouvel algorithme basé sur un prolongement analytique à

l'aide d'une application conforme, voir Hirsbrunner-Loeffel (1975), Loeffel
(1976) et Le Guillou-Zinn Justin (1977). Dans beaucoup de cas £ bmM„,(z)
devient alors une série «rapidement)) convergente (voir Chap. 2.B).

Comme nous l'avons déjà dit, notre Chap. 3 est consacré à l'oscillateur
anharmonique, à titre d'illustration. Nous donnons les résultats de nos calculs
numériques du niveau fondamental de l'oscillateur anharmonique, et nous comparons

les méthodes décrites au Chap. 2 à la multitude de celles qu'on trouve sur le
marché et dont certaines sont particulièrement bien adaptées à ce cas.

Ces méthodes sont susceptibles de variations qui permettent de tenir compte
de circonstances spéciales et d'atteindre certains buts tels qu'augmenter la rapidité
de la convergence, obtenir une convergence monotone ou plus uniforme. Notre
Chap. 4 donne un aperçu de la question, illustré par quelques applications
numériques. Nous insistons en particulier sur l'attention qu'il faut accorder aux
singularités de la transformée de Borel XKaJnOt" de la série étudiée.
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Le Chap. 5, qui clos cet article de caractère général, contient une brève revue
de quelques autres aspects du sujet.

Notre deuxième article, Hirsbrunner (1982), est consacré à une délicate
application des méthodes décrites ici dans un contexte de théorie quantique des
champs.

1. Le Théorème de Watson-Nevanlinna

Ce chapitre contient avant tout des rappels: sur les développements asymp-
totiques en séries de puissances, sur la notion de somme borélienne (B*-somme)
de telles séries, et sur le Théorème de Watson-Nevanlinna, qui donne un critère
pour l'existence de la B*-somme et pour l'égalité entre cette B*-somme et la
fonction asymptotique à la série considérée.

I.A. Séries asymptotiques

Soit / une fonction définie dans un ouvert connexe

DczC, OeD.

Définition (d'après Poincaré (1886)). La série formelle £ anzn est appefée
uniformément asymptotique à / dans D en z 0 si et seulement si VN e Z+ on a :

^Ah-^zn)/zNh°
lorsque r—>0.

On note alors f(z)~YJanzn.

Propriété. Si /(z)~£ o„ • z" et /(z)~£ bn ¦ zn alors Vn an bn. C'est à dire
toute fonction / possède au plus une série asymptotique. (Ceci suit du fait que

VNaN-bN
i

lim (f an-zn- £ bn ¦ zn) /zN 0).

Exemple 1. /(z) exp(-z-1) possède la série uniformément asymptotique
X™=00 • zn dans

D={zeC/\aigz\<ïrr-8}, 8>0, en z=o.
Deux fonctions différentes peuvent donc avoir la même série asymptotique.

Exemple 2. Considérons f<=C°°(R) sur l'intervalle D=[0,1]. Alors /
possède la série asymptotique

£ (n!)-1-/(n)(0)-xn,
n=0

dans D en x 0. De plus le théorème de Taylor nous assure que

/W-Z^7-/(n)(0)-x'
"(N+l)! o^isup |/(N+1)(a)| Vxe[0,l].
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Une série asymptotique peut donc diverger (p. ex. fe C00, non analytique). Si elle
converge, la somme a0+ axz + a2z2 + ¦ ¦ ¦ ne représente pas nécessairement la
fonction f(z) (voir l'exemple 1). La reconstruction de / à partir de sa série
asymptotique n'est donc en général pas possible.

Rappelons que la définition de Poincaré n'exige rien ni sur la fonction / ni sur
la manière dont le terme (f(z)~Y.NaT,zn)/zN s'approche de zéro. Quelles conditions

supplémentaires faut-il imposer pour qu'une reconstruction soit possible?
Celle-ci devrait s'effectuer de telle sorte qu'une série convergente ne représente
que sa somme de Cauchy. Le cas de convergence correspond à: 3M, 3A>0,
3O0 telles que VzeD, VN&iVf

|/(2)-Y«n2n /kr1 sc
I n=0 /

La généralisation la plus naturelle est de multiplier le membre de droite par un
facteur p,N où {p-n}°n=m est une suite positive croissante. Ceci entraîne que
\tn>M: \an\<C-An-pn.

l.B. La B*-somme d'une série de puissances

En suivant la méthode de sommation due à Borel (1899) nous introduisons la
notion de la B*-somme:

Définition. Soit z réel positif, fixe. La série formelle £ c-n " zn est appelée
B*-sommable si et seulement si:

1) 3|xn>0, 3r>0 tels que a(t) ^n=0 (ajp,n) ¦ tn converge Vf avec \t\<r,
1) a(t) possède un prolongement analytique g(f) le long de l'axe réel positif,
3) il existe une fonction positive, décroissante tp telle que

Vn:fötn'<f>(t)dt iLn et

f cf>(t) • g(z • t) dt Bz existe.

Bz est appelée la B*-somme de ^z". La fonction tt-^g(t) est appelée la
transformée de Borel de {a„}"=o

Dans la suite nous allons nous intéresser au cas où 3A >0, 3O0 telles que
VzgD, VN:

f(z)- Z a^Z" <C-N!-AN-|zr. (1.1)

On peut alors prendre pn n\, r A 1 et tp(t) =exp(—t).

Exemple 3. La fonction f0 définie pour les z réels positifs par /0(z)
Jo exp(—f)/(l + z • t) dt possède les propriétés suivantes:

1) /0 possède un prolongement analytique / dans le plan coupé C\(—°°, 0] et
même dans le domaine Da={z e<C/|z|>0, |argz|<a}, Va>0; Da est non
schlicht si a^rr.
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2) La série £(—1)" ¦ n\ • zn est uniformément asymptotique à f(z) dans Da
pour tout a avec ct<i\<3rr/l, A fixe.

(Et il est aisé de vérifier que la condition (1.1) est satisfaite Va<À.
Notons que les constantes A et C dépendent de À; en particulier
nous nous servirons dans la remarque 1 du paragraphe l.D du
résultat: A lsiÀ<7retA 1/cos (A - rr) si rr < À < 3 tt/2.)

3) La série S(-l)nn! • zn est B*-sommable de B*-somme Bz
Jo exp (-t)/(l + z • 0 dtVz e C\(-oo,0). Il est intéressant de noter que
Bz=f0(z).

l.C. Le théorème WN

Watson a démontré en 1911 que toute fonction / qui possède des propriétés
du type 1) et 2) de l'exemple 3 peut être reconstruite à partir de sa série
asymptotique. Plus précisément on a le critère suivant dû à Watson (1911) et à

Nevanlinna (1918):
Soient les domaines (voir Figs. 1 à 3):

D0_R={zeCI\z-^R\<m {zeC/Re^>^,

DaM=yD^ avec D(<b) e*D0,R>

Da.R est non schlicht si a a rr/1.

T0,A {t e C/dist (t, U+) < 1/A},

Ta,A= U T<*> avec T(<t) e»T0^
|<f>|---.a.

TaA est schlicht Va>0.

Théorème WN (Watson, Nevanlinna)
Hypothèses:
1) Soient a>0, R>0, a et R fixes.
1) Soit f une fonction continue sur DaR et holomorphe dans DaR (multi-valuée

si a > 7t/2).
3) Soit YrC-n - zn une série formelle telle que 3A >0, 3O0,

VzeD„,R,VN:|/(z)- £ an ¦ z" <C • N! • AN ¦ \z\N
'

n 0

1 donc

Conclusion:

1) X û« " z" est B*-sommable, plus précisément:
a) a(0=_Cr=o (ajn\) • tn converge dans {|t|<l/A}
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Figure 1

Les domaines d'holomorphie ((D)). Da R est le domaine d'holomorphie de la fonction z —» f(z) du
Théorème WN. DaR est non schlicht si a air/2. D0R est le domaine d'holomorphie minimal de /
nécessaire pour la reconstruction de / à partir de sa série asymptotique (aus sens du Théorème WN).
D' est le domaine d'holomorphie de f utilisé par Hardy (1949).

4 Im t

i Ĵ.

II I I I I I I I I I "
—»- Re t

i i i i u i i i i

3T,o,A

4 Im t
a9T

3T,a,A
Ret

Figure 2
Les domaines d'holomorphie ((T)} (indiqués dans la figure par leurs frontières ((dT))). TaA est le
domaine d'holomorphie de la transformée de Borel t —» g(t) du Théorème WN. TaA est schlicht
Va '¦¦ -0; en particulier TaA

1/(A • sin a).
C si a > tt. T A est le secteur {t e C| |arg (t + ra )| s a} si it/2 rs a < v, avec



Vol. 55, 1982 Approximants de Borel 301

Imt
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Figure 3
Les domaines d'holomorphie «T» (indiqués dans la figure par leurs frontières ((dT))). TaA comme
dans la Fig. 2, mais pour 0<a -Stt/2. T' est le domaine d'holomorphie de g utilisé par Hardy (1949).
Ta, est le domaine appliqué dans le cercle unité par la transformation conforme <f> (des exemples sont
donnés dans les Figs. 4 et 5).

b) a(t) possède un prolongement analytique g(t) dans TaA
c) VA'>A, 3d>0 telles que VteTaA-.

\g(t)\<Cx-exp(\t\/R)
d) Bz=(l/z) • j^"e"*exp(-t/z) • g(t) dt converge absolument pour tout ze

D«\\<f>\^a
1) f(z) Bz pour tout z eDw, \cf>\<a.

Pour la démonstration originale voir Watson (1911) (a >0) et Nevanlinna (1918)
(a=0). On trouve la démonstration également dans Hardy (1949) (a>0) et
Loeffel (1982) (a>0). L'idée de la démonstration est exposée dans Sokal (1979)
(a 3:0). Notons encore que la borne supérieure de |g(t)| peut être précisée,
notamment lorsque t s'approche du bord du domaine TaA: voir Loeffel (1982).

Remarque. Hardy (1949) utilise les domaines D' et T' (voir figures 1 et 3)
définies par:

D'={z€C/0<|z|<taR, |argz|<a + TT/2},

T'={t6C/|f|<l/A} C/{teC/|argt|<a}.
Notons que D' => DaR, alors que T'c TaA.
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Corollaire 1. Si les hypothèses du Théorème WN sont satisfaites pour a > rr
alors

1) S OnZn est une série convergente dans le disque

D={zeC/\z\<R},
1) VzeD: f(z) YTn^anzn.

Pour la démonstration voir Loeffel (1982). Si a est suffisamment grand, le
prolongement analytique g possède la représentation:

Corollaire 2. Soit t —» g(t) la fonction définie dans le Théorème WN et soit
a > rr/1.

Alors

g(f) (1/t) • [ exp (-slt) ¦ h(s) ds

Vteel*-U+, Vtp avec \tf>\<a-rr/l,
où h est une fonction entière définie VseC par h(s) YZ=o (On/(nO2) • s".

En fait nous avons plus: comme Y,(ajn^ ¦ t" représente une fonction t—*
g(t) holomorphe dans le disque |t|<l/A, ]\(ajn\)tn est B'-sommable de B'-
somme égale à g(t) dans le polygone de Borel PB, voir Hardy (1949) chap. 8.8 et
Whittaker-Watson (1927) chap. 7.8. De plus l'holomorphie de g dans TaA nous
assure que e^R+cPj pour 0<|<f>|<a-7r/2. (Dans le Chap. 4.D, Rem. 5 nous
discuterons les approximants de Borel de la B'-somme de la série £ (—z)n).

I.D. Remarques

1) Les constantes A et C du Théorème WN dépendent de a et R.
Il est intéressant de noter que la dépendance de A en a est souvent telle que

ra (voir Fig. 2) est indépendant de a : voir exemple 3. Mais il n'en est pas toujours
ainsi: voir ci-dessous l'Exemple 4.

2) Le corollaire 2 est intéressant dans le sens qu'il nous livre une
représentation explicite des fonctions / et g intervenant dans le Théorème WN
(pour z e D(<fc), 0 < \tf>\ < a - rrfl).

3) L'inverse du Théorème WN, connu sous le nom de 'lemme de Watson',
est également vrai. Voir Beyer-Heller (1967) et Olver (1974).

4) Le théorème WN peut se généraliser à

f(z)- Z ct^z' <C-AN-r(N+B + l)-|zr, B>-1,

avec

«Bz =(l/z) • f exp(-t/z) • (t/z)B ^(Oninn + B + l)) ¦ t"dt)). (1.2)

Ceci permet donc aux coefficients a„ de croître plus rapidement: |a„|<
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CAnT(n + B + l)~An-n\-nB. Voir par exemple Beyer-Heller (1967). C'est
la version que nous Utiliserons dans le Chap. 4.

5) Le théorème WN peut aussi se généraliser à

N-X

¦Z
n=0

f(z)- £ OtataZ" <C-AN-r(N/k + l).|z|N, k>0,

avec

«Bz (l/zk) • f exp (-t/zk) ¦ £ (aJY(nlk +1)) ¦ tn,k dt)) (1.3)

Indication; montrer que la fonction h définie par h(y) /(z), y z\ satisfait le
Théorème WN. Voir Nevanlinna (1918), Beyer-Heller (1967), Graffi-Grecchi-
Simon (1970).

Exemple 4. Soit la fonction / définie pour z positif par f(z)
Jô exp (-t) ¦ exp (~z2t2) dt. On a

f(z)~ Z OnZ" I bn ¦ (z2T avec a2n bn=(-l)n ¦ (2n)!/n!
n=0

et a2n+1 0. Il est aisé de vérifier que:

1) £ anzn satisfait le Théorème WN pour a < À. < ir/4 et on a £ (ajn ¦ tn

exp (-t2) et

B2 (1/z) • exp (-tjz) ¦ exp (-t2) dt,

2) Z fcny" satisfait le Théorème WN pour a =sà <rr (dans la variable y z2)
et on a\Z(bJn.) ¦ tn (1 + 4t)-1'2 et

eBz =(l/z2) • exp (-t/z2)(l + 4r)-1/2 dt,

3) Y.Or.zn satisfait le Théorème WN généralisé à k=l (voir remarque 5

ci-dessus) et on a X(aJ(n/2)!) • tnl2 (1 +4tT112 et Bz comme pour 2).

Indication: analogue à l'exemple 3; voir aussi Olver (1974) chap. 14.

Exemple 5. En mécanique quantique la série perturbative Y. OnZn de la
n-ième valeur propre E\^n)(z) de l'oscillateur anharmonique p2 + q2+zq2m, m
2,3... satisfait le Théorème WN généralisé pour fc l/(m-l), voir Gralîi-
Grecchi-Simon (1970). Nous continuerons la discussion de cet exemple dans les
Chap. 3 et 4.C.

2. Construction des approximants de Borel

Le Théorème de Watson-Nevanlinna nous assure l'égalité entre la B*-
somme

ïBz exp (-t) • g(zt) dt
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de la série £ a„2" et la fonction f(z) asymptotique à cette série. Dans ce chapitre
nous montrons comment l'évaluation numérique de cette B*-somme peut se faire
par une série convergente

Bz Z bm ¦ Mm(z),
m 0

et nous montrons que dans beaucoup de cas cette série converge ((rapidement)).

2.A. Les approximants de Borel

La difficulté de l'évaluation numérique de la B*-somme Bz est liée au fait que la
transformée de Borel g(t) n'est connue que pour |f|<l/A:

g(0= Z (aJn\)-t\
n=0

L'idée clef pour surmonter cette difficulté consiste à appliquer, par une
transformation conforme cf>, le domaine d'holomorphie TaA de g(t) dans le disque
| w\ < 1. Pour tout t e T„,A on a alors g(t) g(cf>~1(w)) £ bmwm I bmtf>(t)m, d'où

<(f(z) (l/z)-|exp(-f/z)-g(t)dt

(Hz) ¦ Z K • | exp (-tlz) ¦ <p(t)m dtp
Plus explicitement, en suivant Loeffel (1976):
-Soient f(z) et £ anzn satisfaisant les hypothèses du Théorème WN.
- Soit pour simplifier la discussion z e D0R (voir Fig. 1).
-Soit cp-.T,,,^Dx={weCf\w\<l} une transformation conforme avec U+cz

T(,cTa>A (voir Fig. 3) et <f>(0) 0, <f>(t)>0 pour tout t>0, </>(âT<(l) ôD1.
-Soit cp'1 l'application inverse de tf>.

On a alors: comme t -* g(t) est holomorphe dans T^,, g ° t£-1 est holomorphe dans
Dx; on peut donc écrire VteT,,,, c'est à dire V|w| |-£(f)|<l:

oo

g(t) g(cf,-1(w))= J bm-wn.
m=0

Or pour |t|<A_1 on a g(t)=Z(On/«0 ' t"; d'où il suit pour tout |t| |^^x(w)|<
A'1 (et en se rappelant que par construction de cf> :<f)'1(0) 0):

g(<r1(w)) a0+ Z (ajn\) • (tp-\w)T
n l

a0+ Z (ajn\)-(]t Cm,n-wA
n=l ^m^n '

a0+ Z Z Cm,n-ajnl)-wm.
m l \i l '

Pour les séries convergentes il est bien connu que l'on peut obtenir un prolongement analytique
en dehors du cercle de convergence à l'aide d'une transformation conforme, voir par exemple
Dienes (1931) page 311. En physique cette idée a été souvent utilisée, voir par exemple
Weinberg (1964) et Ciulli et al. (1975).
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Les coefficients bm sont donc définis par:

b0 a0, (21)
m

bm Z Cm,n • ajn\ Vm> 1,
n X

où les Cm n sont les coefficients du développement de Taylor de (cp~1(w))n
y c '. „,"•

Il vient maintenant pour la fonction /(z):

/(z) (l/z)- f exp (-t/z) ¦ g(t) dt
Jo

(llz) ¦ f exp (-t/z) • lim £ bm ¦ <f>(t)A dt,
Jo N^oo \m=o '

et comme [g(()| < Cx exp (—\t\fR) pour tout teT^ (voh Théorème WN), le
théorème de la convergence dominée de Lebesgue nous permet d'interchanger
l'intégrale avec la limite (Loeffel (1982)). D'où

f(z) lim BN(z) VzeD0>R

avec

BN(z)= t bm-Mm(z) (1.1)
m=0

Mm(z) (1/z) • f exp (-t/z) • cp(t)m dt (2.3)
Jo

BN(z) est appelé le N-ème approximant de Borel de f(z).

Remarques. La construction de la suite {BN(z)}N est analogue pour ze
exp (icp) ¦ D0R, \tj>\ < a.

2.B. Sur la théorie d'erreur

La rapidité de convergence de la suite {BN(z)}N dépend de l'application
conforme tf>. Nous donnons ici les résultats pour deux familles d'applications
conformes tf> particulièrement intéressantes (ces tf> seront utilisés dans le Chap.
4.C):

1) tf>(t) 1 -exp (-ß ¦ t), avec ß >0 (2.4)

(voir Fig 4).

Advantage. Les intégrales Mm(z) peuvent être calculées sous forme fermée:

Mm(z) ßm-m\/(j[(z-1 + f-ß)]j, m>l (2.5)

(factorielle inverse).
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Tt/(2ß)
Im

/(ln2)/ß

Ret

Figure 4

ß a A ¦ ir/2 (où T0-ia
voir Fig. 2).

est le domaine d'holomorphie de la transformée de Borel g(() du Théorème WN,

Désavantage. La convergence de la suit {BN(z)}N est très lente:

|/(z)-BN_1(z)|=0(N-c-) lorsque N^co,

VzeD0,R, avec Cz =- • (Re--^)>0-

(2.6)

Remarque. Dans ce cas £ bmMm(z) est une série de factorielles inverses. On
peut trouver une étude détaillée des séries de factorielles inverses dans Nörlund
(1926) et Doetsch (1955), Chap. 11. Ces auteurs étudient, en particulier, la
représentation f(z)=Y,bmMm(z) avec l'application conforme (2.4).

2) tj>(t) (u-l)l(u + l)
avec u =(q ¦ t+l)y; y>^ et q>0 (voir Fig. 5).

(2.7)

Désavantage (secondaire de nos jours). Les intégrales Mm(z) doivent être
calculées avec l'ordinateur (sauf pour y 1 où les iVfm(z) peuvent s'exprimer à

l'aide de fractions continues, voir Chap. 3.C; ceci peut être utile pour les calculs à

haute précision, voir Chap. 3.D et aussi Hirsbrunner (1976)).

4 mt

it/(2Y)
Re t

Figure 5
Ta, est le domaine appliqué dans le cercle unité par l'application conforme (2.7). Si a e(0, ir/2), on a

Ta, <= TaA pour y a ir/(2a) et q a A ; si a e [w/2, ir), onaT^ç TaA pour 7 > ir/(2a) et q a A • sin a
(où Ta A est le domaine d'holomorphie de la transformée de Borel g(t) du Théorème WN, voir Figs. 2
et 3).

'
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Avantage. L'application conforme (2.7) permet de mieux tenir compte du
domaine d'holomorphie de la transformée de Borel g(t). Conséquence: la
convergence de la suite {BN(z)}N est beaucoup plus rapide:

\f(z)-BN_x(z)\ 0(exp- Q ¦ N8) lorsque N-* oo, (2.8)

11 IV'8 (1 IV'8
VzeDoR avec Cz= --Re- >0,

\q z/ \q R)
8 1/(1 +y) <1.

Indication: estimer

|Mm(z)| o(exp (- (- • Re^ ¦ m8))

par la méthode du col; estimer

|bm|=|(27nT1 • <j> (g • 4>-*)(w) • w'—1 dw =o(exp (f^jj"- m8))

en utilisant |g(f)|<Ci ¦ exp (\t\/R), voir Théorème WN; et finalement estimer

Z bmMm(z) « \bmMm(z)\ dm.
m=N I Jn

Pour plus de détail voir Loeffel (1982).

2.C. Remarques

1) Les bm sont des combinaisons linéaires des an,n^m; les coefficients de
ces combinaisons (les Cmn) et les intégrales Mm(z) (z fixé) ne dépendent que du
choix de l'application conforme cf>.

1) Avec l'application conforme (2.4) la série X bmMm(z) devient une série de
factorielles inverses. Déjà Stirling et Euler ont montré que certaines séries
divergentes du type £(—1)" ¦ n! • z" peuvent se ramener à l'étude de séries de
factorielles inverses. Dans le cadre du Théorème WN, la représentation f(z)
Y.bmMm(z) avec l'application conforme (2.4) est probablement due à Watson
(1912).

L'idée de Watson est d'écrire / sous la forme

/(z) (l/z)- [ exp (-t/z) ¦ g(t) dt

(l/z)- f (l-w)(1/z)~1-h(w)dw

où g est la transformée de Borel de Y. OnZn,

h(w) g(tf>x\w)) et tpx(t) 1 -exp (-t) w.
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Watson obtient la représentation
N-l

f(z)= Z bmMm(z) + RN(z)
m=0

en intégrant N fois par partie l'intégrale JJ • • • dw. (Rappelons que dans
l'algorithme proposé par Loeffel (1976) l'idée est de développer h(w) en puissances
de tv et d'inverser J avec Y)- Une étude détaillée de la n-ème dérivée hM(w) dans
le disque \w\ < 1 permet à Watson de montrer que |RN(z)| < C • N~Ci avec Cz > 0,

pour zeDczD0R. Pour plus de détail voir Watson (1912).
3) La resommation selon Borel n'améliore pas la rapidité de convergence

d'une série Y ctnzn convergente. (Ce résultat théorique n'est toutefois valable que
pour N suffisamment grand, voir Chap. 4.D, Rem 5).

En effet pour une série de puissance convergente, le reste

f(z)- Z OnZn
n=0

est borné, pour N suffisamment grand, par

£ rn rN ¦ (1 - r)'1 (1 - r)-1 • exp (-|ln r\ ¦ N),
n-ta-rN

où r C-|z|, C une constante positive. Or \f(z) — BN_x(z)| décroît au mieux
comme exp(-C • N8) avec C>0, S<1 (voir Chap. 2.B).

4) Le Chap. 4 est consacré à décrire et à discuter d'autres approximants de
Borel, construits en utilisant des méthodes proches de celle que nous venons de
présenter, dans le but d'améliorer la convergence dans divers sens (rapidité,
monotonie, uniformité,...).

3. Le niveau fondamental de l'oscillateur anharmonique

Dans l'exemple 5 du Chap. l.D, nous avons mentionné les résultats de
Graffi-Grecchi-Simon (1970) concernant l'oscillateur anharmonique d'hamilto-
nien p2 + q2 + zq4. En particulier, le niveau fondamental E(z) et sa série perturbative

usuelle Y £-nZn satisfont les conditions du Théorème de Watson-Nevanlinna.
Nous pouvons donc appliquer les méthodes du Chap. 2 et calculer les approximants

de Borel BN(z) de Ê(z).
Dans la Section A nous discutons le choix de l'application conforme. Dans les

Sections B et C nous mentionnons quelques difficultés liées au calcul numérique
des approximants de Borel BN(z). Dans la Section D nous calculons les BN(z) et
nous montrons que nos méthodes permettent de reproduire les résultats les plus
précis connus par ailleurs. Et enfin dans la Section E nous comparons nos
méthodes à la multitude de celles qu'on trouve sur le marché et dont certaines
sont particulièrement bien adaptées à ce cas.

Dans ce chapitre les approximants de Borel BN(z), définis par les relations
(2.1) à (2.3), ne seront calculés qu'avec une seule application conforme th. Ces
calculs seront repris (notamment avec plusieurs applications conformes
différentes) dans le Chap. 4.C.
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3.A. Le choix de l'application conforme tf>

Simon (1970) a montré que la transformée de Borei de la série perturbative
de E(z) est analytique dans le domaine

T {teC||arg(t+!)|<7j--e}, e>0. (3.1)

Nous pouvons donc choisir

tj>(t) (u-l)/u, u=(p-t+iy, (3.2)

avec y =5 et p=g. Notons que <£(—§) —1. Ce choix est motivé par la triple
exigence:

1. T,,, c T (par construction des BN(z), voir Chap. 2.A).
2. T^ est le domaine le plus grand possible. Car plus T^ est grand, plus la

convergence de la suite {BN(z)}N est rapide (voir Chap. 2.B; avec (3.2),
l'erreur |E(z) —BN_1(z)| est voisine de (2.8)).

3. Il existe un algorithme simple qui permet de calculer les intégrales Mm(z),
définies par (2.3), avec une grande précision (voir Chap. 3.C).

3.B. Le calcul des coefficients bm

A première vue, le calcul des coefficients bm, définis par
m

bm= Z cm,„ • ajn\,
n=0

voir (2.1), ne pose aucun problème. En effet les coefficients a,, ont été calculés par
Reid (1967) pour n>20, puis par Bender-Wu (1969) pour n>75 (avec 12
chiffres significatifs). Et le calcul des coefficients Cm„, qui ne dépendent que de
l'application conforme cp, donc ici de (3.2), est facile. Mais malheureusement on a

\bm\ Dm ¦ max |Cm>n • ajn\\,
n

avec Dm « 1 (il n'est pas très difficile d'établir cette inégalité à partir de la théorie
d'erreur du Chap. 2.B). A titre d'exemple, nous avons obtenu par simulation
numérique dans le cas qui nous intéresse ici:

Dm 10"d(m) avec d(m) 0.6 • m.3)

En d'autres termes, si les coefficients an, n<m, sont connus avec N chiffres
significatifs, le coefficient bm ne pourra être calculé qu'avec au plus N—0.6 • m
chiffres significatifs. Pour cette raison Gagnebin (1975) a recalculé les coefficients
an, n<60, avec plus de 100(!) chiffres significatifs.4)

Plus généralement, on a la règle heuristique (basée sur les innombrables exemples que nous
avons testés): «plus m^>Dm décroît rapidement, plus la suite des approximants de Borel
converge rapidement)).
Ces calculs ont été refaits à partir des équations (2.8) et (2.9) de Bender-Wu (1969). Nous
signalons que l'équation (2.9) de Bender-Wu (1969) s'écrit en fait A, (-l)n+1. Bnl et non pas
An -Bnl. Je remercie Thierry Gagnebin de m'avoir communiqué ses résultats.
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3.C. Le calcul des intégrales Mm(z)

Nous avons testé d'innombrables méthodes d'intégration numérique. Une des
méthodes les plus efficaces, pour le calcul des intégrales iVfm(z) définies par (2.3),
est celle dite de Gauss-Legendre.5,6) Cette méthode possède néanmoins un grave
désavantage: il est pratiquement impossible d'évaluer de manière réaliste l'erreur
\Mm(z)-I\, où I est la valeur approchée de Mm(z) obtenue avec Gauss-Legendre.
Pour cette raison nous avons utilisé la méthode suivante pour le calcul à haute
pécision du Chap. 3.D. Avec l'application conforme (3.2), l'intégrale Mm(z) peut
s'exprimer comme une somme d'intégrales du type

Fn(z)=[ e'' -(z-p-t+iy dt,

Osnsm. Et le calcul précis de l'intégrale Fn(z) est très simple. Eh effet, Fn(z)
possède une représentation sous la forme d'une fraction continue, voir Wall (1948)
page 355. Et on a, si Ak(z) est le k-ème approximant de cette fraction continue:

1. La suite {Ak(z)}k converge (rapidement) vers FN(z).
1. A2k(z)<Fn(z)<A2k+x(z), voir Wall (1948) page 334.
3. Ak(z) NJDk où Nk et Dk sont définis par une simple relation de

récurrence, voir Wall (1948) page 15.

3.D. Les approximants de Borel

Nous avons calculé la suite des approximants de Borel {BN(z)}N de la série
perturbative du niveau fondamental Ë(z), pour 0<N<60 et 0<z<10. Les
BN(z), définis par les relations (2.1) à (2.3), ont été construits avec l'application
conforme (3.2).

Le Tableau 1 illustre la rapidité de convergence de la suite {BN(z)}N. Ce
tableau montre que la convergence est très rapide pour z suffisamment petit, ici
z<0.1. Toutefois, elle devient de plus en plus lente lorsque z augmente. Ce
comportement est en accord avec nos résultats théoriques du Chap. 2.B.

Nous avons poussé nos calculs assez loin, pour von s'il était possible de
reproduire les résultats les plus précis connus par ailleurs.7) Dans le Tableau 2
nous donnons nos résultats obtenus en utilisant les coefficients perturbatifs
an, n<60. Pour z>0.8 nos résultats sont en accord avec ceux de Biswas et al.
(1973). Pour z <0.8 les résultats publiés à ce jour ne sont pas aussi précis; nous
avons comblé cette lacune en recalculant E(z) à l'aide d'une méthode
nonperturbative, plus précisément à l'aide de la relation (11.11) de Hioe et al. (1975).
Les résultats ainsi obtenus sont en parfait accord avec ceux du Tableau 2.

Vour p. ex. Mineur (1966). Nous avons utilisé le programme de Williams (1969): ce programme
est disponible au Centre de Calcul de l'EPF-Lausanne.
Cette méthode de Gauss-Legendre est également bien adaptée au cas des intégrales Mm(z) du
Chap. 4. Seule exception: le cas m=0, -1<B'<0, A'/O doit être traité avec beaucoup de
prudence.
Les résultats, à 15 décimales, de Biswas et al. (1973) sont les plus précis publiés à ce jour.
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Tableau 1

La rapidité de convergence de la suite des approximants de Borel {BN(z)}N du niveau
fondamental E(z) de l'oscillateur anharmonique p2 + q2 + zq4. Les BN(z), définis par les relations (2.1)
à (2.3), ont été construits avec l'application conforme (3.2).

N z=0.1 z l z 10

0 1.00 1.00 1.00
1 1.064 95 1.345 1.81
2 1.064 64 1.338 1.78
3 1.065 290 1.386 2.16
4 1.065 272 1.382 2.11
5 1.065 285 28 1.390 3 2.279
6 1.065 285 07 1.390 0 2.268
7 1.065 285 501 1.391 83 2.352
8 1.065 285 489 1.391 70 2.344
9 1.065 285 508 7 1.392 176 2.389

10 1.065 285 508 3 1.392 157 2.386
11 1.065 285 509 485 1.392 297 2.412 4
12 1.065 285 509 459 1.392 290 2.410 7
13 1.065 285 509 538 3 1.392 331 9 2.425 4
14 1.065 285 509 536 5 1.392 330 0 2.424 5

15 1.065 285 509 543 13 1.392 344 3 2.433 8

16 1.065 285 509 543 06 1.392 344 0 2.433 5

17 1.065 285 509 543 664 1.392 348 98 2.439 2
18 1.065 285 509 543 652 1.392 348 79 2.438 9
19 1.065 285 509 543 711 0 1.392 350 55 2.442 41
20 1.065 285 509 543 710 1 1.392 350 50 2.442 27

Tableau 2
Le niveau fondamental E(z) calculé avec les approximants de Borel BN(z). Ces approximants, définis
par les relations (2.1) à (2.3), ont été construits avec l'application conforme (3.2). Les nombres entre
parenthèses sont les erreurs estimées sur la dernière décimale. Ces erreurs ont été obtenues à partir de
la rapidité de convergence apparente de la suite des approximants de Borel.

N E(z)

1.007 373 672 081 382 460 533 843 88 (12)
1.065 285 509 543 717 688 857 09 (5)
1.118 292 654 367 039 153 430 8 (3)
1.164 047 157 353 841 982 74 (5)
1.204 810 327 372 499 431 (3)
1.241 854 059 651 497 32 (8)
1.275 983 566 342 557 0 (8)
1.307 748 651 120 030 (6)
1.337 545 208 148 18 (4)
1.365 669 825 784 45 (15)
1.392 351 641 530 3 (4)

0.01 17
0.1 41
0.2 55
0.3 60
0.4 60
0.5 60
0.6 60
0.7 60
0.8 60
0.9 60
1.0 60

Il est intéressant de remarquer que la somme partielle de la série perturbative
de E(z) permet également de calculer la valeur E(0.01) avec une très grande
précision, toutefois en utilisant un nombre de coefficients perturbatifs a,, bien plus
élevé. En effet soit

/N-l N

SN(z)={ £ anzn +\aNzN)±l
Vi=o '

\aN\z
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Comme a„ ~—n!(—§)", le reste 5 \aN\ zN est minimal pour N~2/(3z). On obtient
ainsi:

S67(0.01) 1.007373672081382460533843905983 • (1±0.12 • 10"28).

Malheureusement le minimum du reste \ \aN\ zN croît très rapidement lorsque z
augmente. Pour z =0.1 p. ex., on obtient

S6(0.1) 1.0653 • (1 ±0.10 • 10"2).

3.E. Comparaison de différentes méthodes

Depuis 1930 d'innombrables méthodes ont été développées pour le calcul de
E(z), voir tableaux 5 à 7 du Chap. 5. La méthode la plus efficace est certainement
la méthode non-perturbative de Banerjee et al. (1978). Malheureusement, parmi
toutes ces méthodes, seules les méthodes perturbatives, c'est à dire basées sur des
développements en séries de puissances de z, sont aisément généralisables au
calcul numérique de certaines fonctions en théorie des champs à d dimensions,
d > 2. Pour cette raison, nous ne discutons ici que les différentes méthodes
perturbatives.

Dans le Tableau 3 nous comparons les erreurs relatives

RN(z) |ApproximantN(z) —E(z)|/E(z),

obtenues par différentes méthodes de resommation de la série perturbative, à
l'ordre N, de E(z). Dans ce tableau nous distinguons très nettement deux
groupes, caractérisés aussi bien par l'ordre de grandeur de RN(z) que par la
rapidité de croissance de RN(z) lorsque z augmente.

Dans le premier groupe nous avons, par ordre croissant de l'erreur relative
RN(z), les approximants de Borel et Padé-Borel, puis Euler, et enfin Padé. Ces
approximants sont caractérisés par une croissance relativement rapide de RN(z)
lorsque z augmente. Ce comportement est en accord avec la théorie d'erreur (voir
Chap. 2.B et Gunson-Ng (1972), section 6). Dans les innombrables exemples que
nous avons testés, nous avons obtenu, dans le cas des approximants de Borel, des
erreurs relatives voisines de celles du Tableau 3. Dans ce sens, la rapidité de
convergence des approximants de Borel de E(z) est représentative d'une large
classe de fonctions.

Tableau 3

Les erreurs relatives JRN(z) |ApproximantN(z)-E(z)|/E(z) obtenues par différentes méthodes de
resommation de la série perturbative, à l'ordre N, de E(z). La convergence des approximants précédés
d'une étoile * n'est pas démontrée. Les approximants de Borel de Hirsbrunner-Loeffel (1975) sont
définis comme dans le Tableau 1 ; les approximants de ((Wick)) ont été calculés avec la relation (70) de
Seznec-Zinn Justin (1979). Pour le calcul des erreurs relatives nous avons utilisé les E(z) de Biswas et
al. (1973); la notation 2E-07 signifie 2 • 10"7.

Auteurs Approximants N RN (0.2) RN(0.8) RN(D

Simon (1970)
Graffi-Grecchi-Simon (1970)
Gunson-Ng (1972)
Hirsbrunner-Loeffel (1975)

Caswell (1979)
Caswell (1979)
Seznec-Zinn Justin (1979)

Padé
*Padé-Borel
Euler
Borel

Borel-Wick
*'Wick'
*«Wick))

40
20
32
20

25
20

5

9E-12
8E-12
3E-11
8E-12

3E-14
2E-07

3E-06
2E-07
8E-07
2E-07

1E-06

3E-04
2E-05

2E-05

3E-13
8E-11
1E-06
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Dans certains cas, il est possible d'augmenter sensiblement la précision des
résultats en utilisant certaines propriétés supplémentaires. Dans le cas du niveau
fondamental E(z), un raffinement très efficace consiste à ramener, par un changement

d'échelle, la variable z < °° à une variable bornée g < constante (voir Caswell
(1979), section II). Ceci a été mise en oeuvre par Caswell (1979), section II, et
dans une version généralisée par Caswell (1979), sections III-V, et Seznec-Zinn
Justin (1979). Les résultats ainsi obtenus sont spectaculaires, voir Tableau 3. Ce
raffinement permet aussi d'obtenir d'excellents résultats pour le k-ème niveau de
l'oscillateur anharmonique p2 + q2-l-zq2m, pour m =2 et 3 (voir Caswell (1979),
Tableaux 3 et 6). Dans le cas de certaines fonctions en théorie des champs tpi, ce
raffinement ne permet par contre pas d'améliorer les résultats obtenus par la
méthode des approximants de Borel (voir Seznec-Zinn Justin (1979), section 5).

Notre conclusion est que la méthode de la sommation selon Borel, combinée
avec des raffinements dans les cas où cela est possible, se révèle être parmi les
méthodes perturbatives les plus efficaces.

Dans le prochain chapitre nous allons montrer comment il est possible de
raffiner la construction des approximants de Borel, afin d'atteindre certains buts
tels qu'augmenter la rapidité de convergence ou obtenir une convergence
monotone ou plus uniforme. Contrairement à la discussion ci-dessus, nous porterons

notre attention sur le comportement des approximants de Borel BN(z) pour
N petit, disons 0<N<10. Nous continuerons la discussion de l'exemple du
niveau fondamental E(z) dans le Chap. 4.C.

4. Raffinements

La construction des approximants de Borel donnée au Chap. 2 contient un
élément de souplesse dans le choix de l'application conforme tf>. Nous avons dit au
Chap. 2.B comment on peut augmenter la rapidité de la convergence des séries
Y bmMm(z) en faisant un choix judicieux de tf>.

Dans ce chapitre, nous poursuivons cette discussion, et nous l'élargissons. Il
est en effet possible de varier d'autres façons encore la construction des approximants

de Borel, dans le but d'améliorer leur convergence. Après avior évoqué
quelques propriétés générales des séries de puissances, nous passons en revue
quelques-uns de ces raffinements.

Ces efforts pour affiner la construction des approximants de Borel ne sont pas
sans importance. En physique, les coefficients an des séries perturbatives Y <K.zn

ne sont souvent connus de manière précise que pour n^N,N étant de l'ordre de
quelques unités. Il est alors essentiel de tirer le meilleur parti possible des

quelques coefficients connus en utilisant de manière judicieuse les libertés que
nous avons dans la construction des approximants de Borel. Ces méthodes
améliorées nous seront d'un grand secours dans les calculs que nous présentons
dans Hirsbrunner (1982).

4.A. Quelques théorèmes sur le comportement des coefficients d'une série de

puissances

L'idée clef des différents raffinements est de tenir compte de la position et de
la nature des singularités de la transformée de Borel, c'est-à-dire des fonctions

t^g(t) et w -* g(tf)-1(w)).
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Les différentes méthodes de raffinement sont basées sur les trois propositions bien
connues suivantes, voir Titchmarsh (1939) chap. 7.:

Le rayon de convergence d'une série de puissance est déterminée par la
position des singularités de la fonction représentée, mais aussi par le comportement

asymptotique des modules des coefficients de la série:

Proposition 1. La série de puissance Y Cnzn possède le rayon de convergence
r l/limsup|Cn|1/n.

Exemple 1. Si r 1 et si les seules singularités sur le cercle unité sont des
pôles isolés d'ordre p alors

\Cn\=0(np'1).

La position exacte des singularités est plus difficile à déterminer. Mais on a

par exemple:

Proposition 2. Soit h(z)=Y Cnzn avec Vn Cn \Cn\ • exp (in a), a fixé. Si la
série possède un rayon de convergence r alors z r • exp (— ia) est un point singulier
de h.

Exemple 2. 1/(1+ z) I(-l)n ¦ zn.

Le comportement asymptotique des coefficients Cn, n —> oo, est relié au
comportement asymptotique de h(z)=YCnzn lorsque z s'approche du cercle de

convergence le long d'un rayon:

Proposition 3. Soient hx(z) YCnz" et h2(z) Ydy, ' zn, où Cn 2=0, d„ >0 et
les séries convergent pour |z| < 1 et divergent pour z 1. Soit C une constante. Si

Cn~C ¦ dn lorsque n —»°° alors

hx(z)~C • h2(z) lorsque z/1!.

Exemple 3. Soit hx(t) =Y Cn ¦ tn avec

Cn (-A)" • (T(n + B + 1)/T(n + B' + 1)) ¦ C ¦ (1 + 0(l/n))
où A>0. Soit h2(t) (1 + At)a -(In(1 + At)f avec a=B'-B-l et ß l si

a € Z+, ß 0 sinon. .Alors

hx(t)~C • h2(t) lorsque t\-A1.
(Indication: suit de la proposition 3 avec z =—A • t).

4.B. Cinq méthodes de raffinements

Soient f(z) et E^z" satisfaisant le Théorème WN (voir Chap. l.C); mais
nous utiliserons désormais la représentation généralisée

fJo
f(z) (1/z) • exp (-t/z) ¦ (t/z)B ¦ g(t) dt, (4.1)



Vol. 55, 1982 Approximants de Borel 315

avec

B'>-1
et

g(0= Z (aJT(n+B' + l)) ¦ tn (4.2)
n=0

pour \t\< 1/A. (Le Théorème WN correspond au cas B' 0). Et nous écrivons le
N-ème approximant de Borel BN(z) de f(z) lim BN(z) sous la forme généralisée

N

BN(z)= £ bm-Mm(z), (4.3)
m=0

OÙ

rMm(z) (1/2) • exp (-t/z) ¦ (t/z)B ¦ (t/tp(t))k ¦ <t>(t)m dt, (4.4)
Jo

X.' est une constante réelle fixée, l'application conforme tf> est définie comme dans
le Chap. 2.A et les coefficients bm sont définis par le développement

(«TKhO/w)-*' • g^-V)) Z bm ¦ wm, (4.5)
m=0

pour |w|<l. BN(z) dépend donc des trois paramètres fixés tf>,B',\.. (L'approximant
de Borel du Chap. 2.A correspond au cas B' 0, À' 0).

Pour fixer les idées et pour simplifier la discusion nous supposons en plus:

1) z positif.
1)0^= (-AT ¦ T(n + B +1) • C ¦ (14- 0(l/n))

(-A)n • n • nB ¦ C ¦ (1 + 0(l/n))
(en physique les coefficients an des séries perturbatives possèdent souvent
ce comportement).

3) La transformée de Borel g, définie par (4.2), est holomorphe dans le plan
coupé C\(-oo, -1/A].

(Les méthodes ci-dessous s'adaptent aisément au cas où ces hypothèses
supplémentaires ne sont pas satisfaites).

Méthode 1. a) L'idée est de faire varier l'application conforme tf>. Ceci a

pour effet de modifier la position de la singularité de w^ g(cf>~1(w)) en vvs

cf>_1(— 1/A), et donc de modifier le comportement des coefficients bm. Un choix
convenable de cp peut améliorer la rapidité de convergence de la suite {BN(z)}N.
Nous l'avons déjà noté au Chap. 2.B.

b) Pour ce type d'étude la famille d'applications conformes tp la plus simple
est donnée par tp(t) l-(p • t+1)""', et les meilleurs résultats sont en général
obtenus (dans le cas À' 0) avec y=2 et p=A. Notons que tp(— l/A) oo. (Voir
Figs. 8a et 9a).

Méthode 2 (d'après Le Guillou-Zinn Justin (1977 et 1980)). a) L'idée est de
faire varier le paramètre B' dans un voisinage de B. Ceci a pour effet de modifier
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la nature de la singularité de la transformée de Borel g(t) lorsque t\.-A_1 (voir
Exemple 3 ci-dessus) et donc de modifier le comportement des coefficients bm. Un
choix convenable de B' peut améliorer la rapidité de convergence de la suite
{BN(z)}N.

b) Pour tp tel que tp(—A 1) — 1 on obtient en général le meilleur résultat
avec B' B-I-|, c'est à dire pour g(t)~(l4-A • t)112 lorsque tSi-A-1. (Voir Figs.
8b et 9b).

Méthode 3 (d'après Parisi (1977)). a) L'idée est de tenir compte du
comportement de f(z) lorsque z/"oo: f(z)~f„,- z\

Pour ce nous devons bien sûr supposer que le Théorème WN soit satisfait
pour tout z positif (plus précisément Vz e D0oo).

b) Pour alléger la notation nous posons A 1 et B' 0. Pour simplifier la
discussion nous prenons cp(t) t/(l + t) comme application conforme (tp applique
le demi plan ReO-5 dans le disque |w|<l) et nous supposons que la
transformée de Borel g(t) soit holomorphe dans le plan coupé C\(—°°, —1].
Notons que tf>~1(w) wf(l- w) et <M(-°°, -l]) [l,°o). La fonction w^
g(cf>^1(w)) est donc holomorphe dans le plan coupé C\[l, °°) et le comportement
de f(z) lorsque Z/*°° détermine le comportement de g(</>-1(w)) lorsque w/ 1 (et
vice-versa):

Lemme. Soit e >0, z et w réels. On a:

f(z)zZxU-zK+0(zK~e)

si et seulement si

g(tp~1(w))wZi [fJT(X +1)] ¦ (1 - w)-" + 0((1 - w)-"+°).

Indication. Suit de f(z)=£<T* ¦ g(z ¦ t) dt avec g(f) ~ [fJT(A +1)] • (1 4g t)x +
0((l + t)K~e).

c) L'idée est alors d'écrire g(tf>~x(w)) sous la forme g(tf>~1(w))

(1- w)~x • h(tf>^1(w)) et de développer h (et non pas g!) en série de puissance de
w:

h(tf>-\w)) £ bm ¦ wm pour |w|<l.

Le N-ème approximant de Borel peut alors s'écrire:

¦ N
BN(z)= X bm-Mm(z)

m=0

avec

Mm(z) (Hz) ¦ f exp [-z-1 • w/(l - w)] • (1 - w)~K-2 ¦ wm dw
Jo

(1/z) • f exp [-t/z] • (1 + t)k ¦ [t/(l + t)T dt
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d) Notons que B0(z)~a0 • T(l4-A) • zx lorsque z -*¦<», c'est à dire

/(z)/ß0(z)-^Ma0T(l + \)].

Cette méthode est donc particulièrement bien adapté au régime z»l. De plus
dans certains cas la convergence de la suite {BN(z)}N devient uniforme en z: p.
ex. pour l'oscillateur anharmonique (voir Parisi (1977)) et pour f(z) 1/(1+ z)
(voir Chap. 4.D, Rem 5). (Voir Figs. 8c et 9c).

Méthode 4 (généralisation de Parisi (1977) et Kazakov et al. (1979)). a) En
général le comportement de f(z) lorsque z/"00 n'est pas connu. Et plus grave, le
Théorème WN n'est en général pas satisfait pour z>R,R fini. La méthode 3

n'est donc que très rarement applicable.
b) Mais même dans le cas où R < oo, la méthode 3 nous suggère d'écrire le

Nème approximant de Borel BN(z) de f(z) sous la forme des relations (4.3) à

(4.5) ci-dessus. Notons que

B0(z)~ Vr(B'+ À' + l)-zv

avec

\ aw w=o/

c) Pour une application tp donnée, l'idée est alors d'optimiser la rapidité de

convergence de {BN(z)}N en variant À'. Dans le cas où f(z)~fa>- zK lorsque
z —> oo, les meilleurs résultats sont en général obtenus pour A' ~ À, voir Kazakov et
al. (1979).

d) Pour ce type d'étude, la famille d'applications conformes tp la plus simple
est donnée par $ telle que

t]>-1(w) t q-1- w/tt-wf, 0</3<2.
Pour tf> telle que tj>(-A~1) -l, le meilleur résultat est en général obtenu avec
B' B + 2. (Voir Figs. 8d et 9d).

Méthode 5. D'autres raffinements peuvent augmenter la rapidité de
convergence de la suite {BN(z)}N, tels par exemple:

a) Construire les approximants de Borel de la fonction composée h°f, où h
est une fonction convenablement choisie. Par exemple:

-(h°f)(z) (f(z)-f(0))/z, ce qui a pour effet de modifier, comme dans les
méthodes 3 et 4, le comportement de la transformée de Borel au voisinage
de l'infini.

-h°f fllv si /(0) + 0 et f(z) ~ (zc - z)v lorsque z / zc, zc > 0; voir Hirsbrunner

(1982).

b) (Voir Corollaire 2, Chap I.C.): écrire / sous la forme

f(z) (Hz) • f exp (-t/z) • [(1/t) • J exp (-s/t) ¦ Z K/(n!)2] • s" ds] dt

et appliquer le domaine S, avec IR+<--ScC, dans le cercle unité. On peut
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s'attendre à obtenir de bons résultats si on tient compte du comportement de la
transformée de Borel g(t) lorsque t—»oo, où g(t)=H(an/n!)t" pour |f|<l/A (voir
Chap. 4.D, Rem. 5).

4.C. Le niveau fondamental de l'oscillateur anharmonqiue, bis

Nous poursuivons ici la discussion du Chap. 3 des approximants de Borel de
la série perturbative du niveau fondamental E(z) de l'oscillateur anharmonique.
Notre but est d'illustrer les méthodes de raffinements du Chap. 4.B, en d'autres
termes d'illustrer l'influence des trois paramètres (fixés) tf>, B', À' sur le comportement

de la suite {Bn(z)}n pour N<N0, N0 étant de l'ordre de quelques unités.
Pour le choix de B' et À', nous sommes guidés par les résultats de Bender-

Wu (1969) et Simon (1970):

an~(-A)n-T(n + B + l)-C-(l + 0(l/n)) lorsque n^œ,
E(z) ~ E-. • zK ¦ (14- 0(z"2/3)) lorsque z -» oo,

avec A §, B —\, À =5. Le choix de l'application conforme tp a été discuté dans
le Chap. 3.A; nous utiliserons les tp suivants

tpx(t) l-exp(-ßt) avec ß=A-ln2 (4.6)

cp2(t) (u-l)/u avec u Af + l (4.7)

tp3(t) (u-l)/(u + l) avec u=At + l (4.8)

tpA(t) (u-l)/u avec u y/At +1 (4.9)

tP5(t) (u - l)/(u +1) avec u=VAt 4-1 (4.10)

Il est intéressant de noter que la singularité de la transformée de Borel g(t) en
t —1/A est appliquée en

tpi(-l/A) -l pour / 1,3,5 et <£,(-l/A) =00 pour / 2,4.

La Fig. 6 illustre le comportement des sommes partielles
N

SN(Z)= Z OnZ"
n=0

et des approximants de Borel BN(z) du niveau fondamental E(z). Les BN(z),
définis par les relations (4.3) à (4.5), ont été construits avec

tp5,B' B -l \' 0 (4.11)

La divergence de la suite {SN(z)}N est clairement illustrée par cette figure. Nous
voyons aussi que plus z est grand, plus la convergence de la suite {BN(z)}N est
lente. Ceci est en accord avec les résultats des Chap. 2.B et 3.D. Un choix
convenable de À', à savoir À' A.=5, permet de rendre la convergence plus
uniforme en z, voir Parisi (1977); ce paramètre est donc particulièrement
intéressant dans le régime z»l.

La Fig. 7 illustre la rapidité de convergence des approximants de Borel
BN(z) du niveau fondamental E(z). Les BN(z), définis par les relations (4.3) à
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1.6 - S5(z)| /S3(z) B3(z)

U
^< B5(z)^^^ E(z)^j^^^ B4(z)

;^_-— b2(z)

1.2

/SJz)\ |

\S,(z)\ 1 1 I

0.5 1.0 1.5 20 A-Z

Figure 6
Le comportement des sommes partielles SN(z) et des approximants de Borel BN(z) du niveau
fondamental E(z). Les BN(z) ont été construits avec (4.11). Comme an (—§)" ¦ n\ lorsque n—»°°,
nous avons reporté en abscisse les valeurs de A • z, avec A |.

(4.5), ont été construits avec

a) 4,5,B' B=-i
b) cp3,B' B=-i
c) ^1;B' B=-i
d) 4>j,B' B 4-§=l,

A' 0 {comme (4.11)}

A' 0

A' 0

A' 0.

(4.12)

(4.13)

(4.14)

(4.15)

Les cas a) à c) montrent que la rapidité de convergence de la suite {BN(z)}N
dépend du choix de l'application conforme tp : plus le domaine T^ est grand, plus
la convergence est rapide. Cette propriété (obtenue ici déjà pour N petit!) est en

E(4/3)

BN(A/3)

_ a
\ -1.50 - \rT-b

\bW/.45 - \ / *

\ /»W ///1.A0
W

/\ I

1.35 \'
1.30 -d-tata '

J I I I =1

0 2 k 6 8 N 10

Figure 7
La rapidité de convergence des approximants de Borel BN(z) du niveau fondamental E(z), pour z =f.
Les BN(z) ont été construits avec respectivement (4.12), (4.13), (4.14), (4.15). La valeur exacte est
E(*) 1.47 295- • •
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accord avec les résultats théoriques du Chap. 2.B. Les cas c) et d) illustrent
l'influence du paramètre B' sur le comportement de la suite {BN(z)}N. Dans le cas
c) on a

B2N(z)<E(z)<B2N_x(z),

alors que dans le cas d) on a

B2N(z)<B2N_x(z)<E(z).

Dans le cas a), une variation de B' produit un effet analogue; voir Figs. 7a et 8b.
Voir aussi Le Guillou-Zinn Justin (1980).

Les Figs. 8 et 9 illustrent les méthodes de raffinements 1 à 4 du Chap. 4.B.
Les approximants de Borel, définis par les relations (4.3) à (4.5), ont été construits
avec

(4.16)

(4.17)

(4.18)

(4.19)

Les" Figs. 7 à 9 montrent que le comportement de la suite {BN(z)}N dépend
très sensiblement du choix des paramètres cp, B', A': un choix convenable permet
de construire des suites {BN(z)}N,N^N0, respectivement monotones croissantes
ou oscillantes ou monotones décroissantes. (Les choix optimaux de tp, B', A'
dépendent de N0). Notre conclusion est que, pour N0 fixé, la combinaison de ces
différentes suites permet d'augmenter très sensiblement la précision du résultat.

Ces méthodes améliorées nous seront d'un grand secours dans l'article
compagnon, Hirsbrunner (1982), consacré au calcul de la masse des particules
asymptotiques dans le modèle A : tp4:2.

a) méthode 1: tp4,B' B=-l A' 0

b) méthode 2: tp5, B' B+§=1, A' 0

c) méthode 3: tp2,B' B4-| 0, A' A i" 3

d) méthode 4: tps, B' B4-2 |, A' A _ 1

- 3

E(A/3) =¦

Bkl(4/3)

1.50

1.A5

U0

1.35 -
0 2 A 6 8 N 10

Figure 8
Illustration des méthodes de raffinements 1 à 4 du Chap. 4.B. Les approximants de Borel BN(z) ont
été construits avec respectivement (4.16), (4.17), (4.18), (4.19). L'échelle de l'axe des ordonnées est
identique à celle de la Fig. 7.
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Bi.,(4/3)
StataC

1.474 -

/ 1.472 -

-/
/a/

1.470 -

1.468 -
—

I i I I I 1 1 I I

E(4/3)

8 10 12 14 N

Figure 9
Comme la Fig. 8, mais pour 5 s TV .< 15. L'échelle de l'axe des ordonnées a été multipliée par un
facteur 30.

4.D. Quelques remarques

Nous terminons ce chapitre avec quelques remarques de caractère général.
1) Pour pouvoir reconstruire une fonction f(z) à partir de sa série asymptotique

Y a^zn il suffit que le Théorème WN soit satisfait pour a 0. Mais dans la
pratique cela ne permettra de calculer (numériquement) f(z) qu'avec une
précision très faible (voir Fig. 7c). Notons aussi que pour a 0 les méthodes 1 à 5

ne permettent pas (en général) d'améliorer sensiblement la précision du résultat
(voir figure 7d).

2) Il est très difficile de faire une ((bonne)) théorie de l'erreur pour N 'petit'
et en tenant compte des raffinements des méthodes 1 à 5. Ceci d'autant plus que
la valeur exacte de R n'est en général pas connue et que les meilleurs résultats
sont obtenus en combinant les méthodes 1 à 5. Dans la pratique on se contente
donc souvent d'une théorie de l'erreur 'expérimentale' (simulation numérique). En
général la précision 'expérimentale' du résultat final est considérablement
supérieure à la précision théorique.

Mais nous attirons l'attention du lecteur sur le fait que cette erreur
'expérimentale' doit être estimée avec une grande prudence. Voir Gaunt-Guttmann
(1974).

3) Dans la pratique les hypothèses du Théorème WN sont souvent très
difficiles à vérifier. En particulier le domaine d'holomorphie de la transformée de
Borel g(t) est en général très mal connu. La méthode 1 nous fournit alors un outil
simple et efficace permettant d'estimer la position et la nature des singularités
de g(0; voir aussi Jeffreys (1958). Une telle étude est à la base des résultats de
Collet-Eckmann-Hirsbrunner (1977).
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Notons aussi qu'une étude numérique de la décroissance de N—»
\f(z) — BN(z)\ peut donner des informations sur la valeur de R (par comparaison
avec la théorie d'erreur, voir Chap. 2.B).

4) Le comportement de f(z) lorsque z —> oo n'est en général pas connu. Mais
si le Théorème WN est satisfait pour a > rrfl, R=co et si le comportement
asymptotique des coefficients an, n —*¦ oo, est connu alors il est possible de
déterminer (approximativement) le comportement de f(z), z —»oo, à partir des N
premiers coefficients an,N~ 10(!): voir Tarasov (1979).

5) Nous avons vu dans le Chap. 2.C, Rem. 3 que la resommation selon Borel
n'améliore pas la rapidité de convergence d'une série Y anzn convergente. Nous
montrons ici, à l'aide d'un exemple, que ce résultat théorique, établi pour N
suffisamment grand, n'est pas valable pour N petit.

Exemple. Soit la fonction f(z) 1/(14-z). Pour |z|<l on a

f(z) lim SN(z) lim £ (-z)n,
N^co N^oo„=0

et pour Rez>-1 on a, voir Hardy (1949) Chap. 8.8:

f(z)= f exp(-t)-tB'- £ (-zf)7r(n + B'+l)df,
•"0 n=0

avec B'>—1, B' fixé. Dans le Tableau 4 nous avons calculé les sommes partielles
SN(z) et les approximants de Borel BN(z) de f(z). Les BN(z), définis par les
relations (4.3) à (4.5), ont été construits avec

tp(t) (u-l)/u, u t/10+l; B' 0, A' 0 (4.20)

tp(t) (u-l)lu, u t/60+l; B' 60, A' -l (4.21)

Ce tableau montre clairement que la suite {BN(z)}N converge plus rapidement
que la suite {SN(z)}N, pour N.s 10. De plus les approximants de Borel permettent

Tableau 4
Les sommes partielles SN(z) et les approximants de Borel BN(z) de la fonction f(z) 1/(1+ z)
X(-z)n. Les BN(z), définis par les relations (4.3) à (4.5), ont été construits avec (4.20) dans les
colonnes 3 et 4, et (4.21) dans les colonnes 5 à 7.

N SN(0.5) BN(0.5) BN(2.0) BN(0.5) BN(2.0) BN(2'999)

0 1.000 0 1.000 000 1.000 0 0.664 211 0.332 099 0.000 333 331
1 0.500 0 0.523 292 -0.687 3 0.667 854 0.335 722 338 794
2 0.750 0 0.718 892 1.544 7 0.666 706 0.333 462 333 686
3 0.625 0 0.650 957 -0.774 6 661 291 107
4 0.687 5 0.670 401 1.092 7 666 326 283
5 0.656 3 0.666 026 -0.029 4 667 334 343
6 0.671 9 727 0.429 5 334 340
7 0.664 1 669 0.337 2 333 334
8 0.668 0 665 0.322 5 333
9 0.666 0 667 0.334 0

10 0.667 0 0.334 8

OO 2
3

2
3 i3 2

3 i3 £¦ io--3
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de calculer la fonction f(z) en dehors du cercle de convergence de la série
Y(~z)n, plus précisément pour tout z avec Rez>-1. Pour A' —1, la
convergence de la suite {BN(z)}N est uniforme en z ; la rapidité de convergence est
spectaculaire et peut s'expliquer par le comportement de B0(z) lorsque z —»

oo :B0(z)~zK. (Nous avons étudié un autre exemple, tiré de la physique des
écoulements, dans Hirsbrunner (1981b); les résultats sont tout à fait analogues,
sauf que la convergence de la suite {Bn(z)In n'est pas aussi rapide).

5. Notes et bibliographie commentée

0. Des progrès considérables ont été réalisés durant les années 70 dans le
domaine des séries perturbatives sommables selon Borel. On peut trouver un
résumé dans

A) Simon (1981): pour les résultats rigoureux
B) Zinn-Justin (1981): pour les résultats heuristiques.

Ces deux travaux contiennent également une bibliographie détaillée.

1. On trouve une bibliographie détaillée dans les références suivantes:

A) Sur les séries convergentes et divergentes et sur les développements
asymptotiques:
1) avant 1880: voir Burkhardt (1911) et Dingle (1973)
2) de 1880 à 1930: voir Dienes (1931)
3) de 1930 à 1974: voir Dingle (1973) et Olver (1974).

B) Sur les séries perturbatives en mécanique quantique, avec applications
numériques:
1) de 1967 à 1979: voir paragraphe 5 ci-dessous.

C) Sur les séries perturbatives sommables selon Borel en mécanique
quantique:
1) de 1969 à 1975: voir Reed-Simon (1978), pages 61-64
2) de 1977 à 1979: voir Hunziker (1979), pages 38-40
3) jusqu'en 1980: voir Simon (1981).

D) Sur les séries perturbatives sommables selon Borel en théorie construc¬
tive des champs:
1) de 1975 à 1979: voir Magnen-Sénéor (1979), pages 221-222 et Le

Guillou-Zinn Justin (1980).
E) Sur le comportement asymptotique des coefficients d'une série asymptoti¬

que (((Lipatov))), avec applications numériques (par sommation selon
Borel):
1) de 1977 à 1978: voir Herbst-Simon (1978), note 4, page 69.
2) jusqu'en 1980: voir Zinn-Justin (1981).

F) Sur l'utilisation des approximants de Padé en physique: voir Baker,
Jr-Gammel (1970).

G) Sur les procédés d'accélération de convergence en analyse numérique:
1) de 1955 à 1980: voir Brezinski (1980) et Mori (1980).

2. La sommabilité selon Borel a été introduite par Emile Borel dans une
série d'articles publiés de 1895 à 1899. Pour l'histoire des séries divergentes on
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peut se référer à:

A) Burkhardt (1911) pour la période 1750-1860. On y trouve de nom¬
breuses informations difficile à trouver ailleurs.

B) Houzel et al. (1976). Cet ouvrage est le fruit d'une collaboration rare et
délicate: la coopération de spécialistes en mathématique et en
philosophie. Il aborde essentiellement les difficultés auxquelles les
mathématiciens du 18e siècle furent confrontés dans la manipulation des
séries.

C) On trouve un excellent résumé dans Hardy (1949), pages 13-20, pour la
période 1700-1900 et dans Dingle (1958), pages 456-7, pour la période
1860-1955.

D) On trouve de nombreuses notes historiques intéressantes dans Olver
(1974).

3. Pour un exposé pédagogigue sur les diverses méthodes de resommation de
séries convergentes et divergentes on peut se référer à:

A) Hardy (1949).
B) Wall (1948) et Baker, Jr et al. (1970) (pages 1-39) pour les fractions

continues et les approximants de Padé.

4. La resommation selon Borel a été étendue à la double série f(x, y) ~
Y an.,r,xmyn par Sobelman (1979).

5. Depuis 1930 d'innombrables travaux ont été consacrés au calcul du k-ème
niveau d'énergie de l'oscillateur anharmonique d'hamiltonien p2 + aq2 + zq2m

pour a -1, 0,1 m 2, 3,4 et 0<z <oo. Dans les Tableaux 5 à 7 nous avons
résumé les principales méthodes (variationnelles, perturbatives et autres)
développées de 1962 à 1979; pour la période 1930 à 1968 voir les références de
Reid (1970).

Tableau 5

éthode variationnelle

Auteurs a m k z

Reid (1965)
Reid (1970)
Somorjai-Hornig (1962)

1

0
-1

2
2
2

0 à 9
0 à 23
0 à 8

0.1 à 1

1

0.05 à 0.4

La méthode la plus efficace (du point de vue du calcul numérique) est
certainement celle proposée par Banerjee et al. (1978).8) Leur méthode est
analogue à celle de Biswas et al. (1973), mais elle introduit en plus un changement

d'échelle astucieux qui permet d'obtenir une rapidité de convergence (plus
ou moins) indépendante de z.9) Cette méthode a été généralisée par Richardson-
Blankenbecler (1979).

Les résultats les plus précis (15 décimales) ont été publiés par Biswas et al.

8) le remerice Mark Robert de m'avoir communiqué cette référence.
9) Le changement d'échelle est également une technique bien adaptée aux méthodes perturbatives,

voir Chap. 3.E.
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Tableau 6
Méthode perturbative.

Auteurs a m k z Approximants

Reid (1967)
Loeffel et al. (1969)
Simon (1970)

1

1

1

2
2
2

0 à

0
0

9 0.25 à 1

0.1 à 1

0.1 à 15
Padé

Graffi et al. (1970) 1 2 0 0.1 à 14 Padé-Borel

Gunson-Ng (1972) 1 2 0 0.2 à 0.8 Euler

'Chap. 3 ci-dessus'
Caswell (1979)

1

1

2
2

0
0 à 2

0.01 à 10
2 à 2 • 106 Borel

Caswell (1979) 1 2 0 à 10 0.02 à oo

1 3 0 à 10 0.02 à oo

-1 2 0 à 10 0.05 à 200
-1 3 0 à 10 0.01 à 200

'Wick'

Tableau 7
Autres méthodes.

Auteurs Méthode

Biswas et al. (1973) 1 2 0 à 7 0.1 à 100
1 3 0 et 2 0.1 à 100 Déterminant
1 4 0 et 2 0.1 à 100 de 'Hill'.

Banerjee et al. (1978) 1 2 0 à 104 0.0001, 1, 40000
0 2 0 à 104 1

Hioe et al. (1975) 1 2 0 à 8 0.004 à oo

Hioe et al. (1976) 1 3 0 à 5 0.0002 à oo 'Déterminant'
1 4 0 à3 0.0002 à oo et formules

Hioe et al. (1978) 1 2 0 à 8 0.2 àoo approchées.

Bender et al. (1977) 0 2 0 à 10 1

Balian et al. (1978) 0 2 0 à 6 1
WKB

(1973) et Banerjee (1978). On trouve les tableaux les plus complets dans Hoie et
al. (1975, 1976 et 1978). (Les méthodes perturbatives ont été discutées dans le
Chap. 3.E ci-dessus).

6. Dans la littérature mathématique le Théorème WN n'a pas reçu d'attention

particulière: tout au plus est-il cité de temps en temps (plutôt comme
'curiosité' et souvent dans une formulation partielle comme dans Hardy (1949)).

L'inverse du théorème WN par contre, connu sous le nom de 'lemme de
Watson', a été l'objet de nombreuses recherches: voir Dingle (1973) et Olver
(1974). Quelques uns de ces travaux sont fort utile pour l'étude des approximants
de Borel, notamment dans le cadre de la méthode 1 (Chap. 4.B): p. ex. Jeffreys
(1958) et Beyer-Heller (1967).

7. Au cas où le Théorème WN est satisfait pour a 2t rr/1 il est possible de
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reconstruire la fonction f(z) à partir de sa série asymptotique Y anzn en resommant

Y £-nZ" selon Euler, voir Gunson-Ng (1972). Ce travail est resté totalement
inconnu (sauf semble-t-il pour Dingle (1973) et Biswas et al. (1973)) et ceci bien
qu'il se situe à une époque où les physiciens furent très intéressés à trouver des
méthodes de resommation rigoureuses et aptes au calcul numérique (voir Graffi-
Grecchi-Simon (1970)).

Comme pour les approximants de Borel (pour a ir/2) la rapidité de

convergence des approximants de lGunson-Ng' est du type exp (—<32 • \N), 8Z >0.
Notons néanmoins que la construction des approximants de 'Gunson-Ng' est
moins transparente que celle des approximants de Borel.

8. Il serait intéressant de voir si l'analogie entre les approximants de
'Gunson-Ng' et les approximants de Padé [N, N] (voir Gunson-Ng (1972)) peut
être étendue aux approximants de Borel. Indication: dans les trois cas le Nème
approximant est obtenu à partir d'un réarrangement des N premiers coefficients
a„'

9. Le comportement asymptotique des coefficients Cn est déterminé par la
position et la nature des singularités de la fonction h(z)=YCn-zn, et
inversement; voir Chap. 4.A. On peut trouver des informations supplémentaires
sur:

a) la théorie générale: dans Titchmarsh (1939), chap. 7;
b) une analyse dans le cadre du lemme de Watson: dans Jeffreys (1958) et
Olver (1974);

c) une analyse numérique du comportement des coefficients: dans Bender-
Wu (1969) et Tarasov (1979);

d) une analyse numérique de l'erreur 'expérimentale' (Chap. 4.D): dans
Gaunt-Guttmann (1974).

10. Le comportement des coefficients an est relié aux singularités de la
transformée de Borel g(t): si an~An ¦ T(n + B4-1) • cos(n0) ¦ C ¦ (14-0(l/n))
lorsque n—»oo alors g(t) possède une singularité en t0 A~1 -exp(±id). Si f0>0
alors la Borel-somme fâ e~"z ¦ g(t) ¦ dt n'est pas définie et le théorème WN n'est
pas valable: Y C-n ' zn est non-Borel-sommable. Dans ce cas il n'existe aucune
théorie (générale) de resommation de Y anzn. Néanmoins quelques progrès ont
été réalisés ces dernières années, voir Khuri (1979).
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