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Single-particle energies in enlarged
shell-model spaces

by W. Pfeifer,
Alte Kantonsschule, CH-5000 Aarau, Switzerland

(4. II. 1981; rev. 23. II. 1982)

Abstract. For a standard nuclear shell-model calculation in an enlarged model-space different
single-particle energies have to be used than in the original space. Here expressions are developed for
the new single-particle energies and for the binding energy in the enlarged model space. The relation
between the single-hole energy and the corresponding single-particle energy is given.

1. Introduction

The standard shell-model calculation is frequently used to compute energies
of nuclear states and transition amplitudes of nuclear processes. A. De Shalit and
I. Talmi [1] have described this method comprehensively and J. B. French et al.
[2] have transformed it into a computer program usually called Oak Ridge-
Rochester shell-model code which has been discussed by P. J. Brussaard and P.
W. M. Glaudemans [3], too.

The model-space of a shell configuration is formed by the single-particle
states (active orbits or shells) which lie out of the inert core and contribute to the
basic states of the nucleus. The calculation bases on the effective two-body matrix
elements describing the mutual interaction of two single-particle states. The
effective interaction of one particle of an active shell with the inert core is

represented by the single-particle energy. The effective two-body matrix elements
and the single-particle energies are often determined empirically by regarding
them as parameters. Their values are then obtained from a fit of calculated
energies to experimental data on energy levels (empirical approach). [4], [5], and
[6] report on successful approaches of this kind.

Large, modern computers are able to perform shell-model calculations with
many active shells. However, it is advisable to start with few shells or to use old
computations first. Then one enlarges the model-space of the old calculation to
treat more states of the nuclei in question adequately, i.e. one introduces new
shells which were empty originally or fully occupied if they were a part of the old
core. By applying the empirical approach mentioned above on the extended
model-space one has to adjust not only the new single-particle energies and
two-body matrix-elements but the elements of the old model-space, too.

The present paper treats a commendable step suited to open this method as
follows. By enlarging the model-space the old two-body matrix elements are kept
unchanged and the single-particle energies are transformed in such a manner that
the calculations reproduce the level energies gained in the original model-space
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provided that the following conditions are fulfilled
(a) new shells loosened from the core are still filled completely
(b) originally empty shells remain unoccupied.

S. T. Hsieh et al. [7] have transformed single-particle (single-hole) energies for a

special case of this kind. In the present paper the transformation of single-particle
energies is described more generally. Moreover, shell-model configurations with
hole-states are treated. Further, the relative binding energy is calculated which
relates the level energies of one model-space to the levels of the other.

2. Single-particle energies, energy scale

First, one considers a model-space with only one active shell. Its single-
particle state is usually characterized with the letter p covering the radial quantum
number, the angular momentum, the spin jp, and the isospin tp=2. n particles of
this shell constitute the single-shell state p"Ta with spin J and isospin T. The
quantity a stands there for the other quantum numbers of the state. The total
binding energy of the nucleus in this state is called Eb (old core + p«)jt- Next one
separates a shell from the core which is named X. analogously as before. This shell
is closed and contains m (ljK +1) • 2 particles. Within the scope of the spin-
isospin formalism this number is also denoted by 1K + 1. Both shells form the
state (p,lr\.m)jT which is coupled with the new core. The binding energy of the
nucleus in this state is named Eb (new core + p£Am)JT. Since both representations
describe the same physical situation one equates their binding energies. Then
either is expressed in terms of the shell-model formalism. It will be shown that
both expressions formally are identical apart from two details discussed below.

Thus one states

Eb(old core + p£)JT Eb(new core + p^A"1)^ (1)

with m=lk + l. Both sides are rewritten by means of the shell-model formalism
(see e.g. Brussaard, Glaudemans [3], equation 3.34)

E^ore + ne°p + E(pn)JTa Eœre + nep + mex + E(p^Am/JT (2)

with

Ecore : binding energy of the particles in the core
e : single-particle energy
E(.. .)}T: interaction energy between the particles out of the core

The superscript o characterizes the original situation comprising the old core.
In reference [3], chapter 5, it is shown

E(pn0l.\m)jT E(p")JTa+E(.\m)00+(VpK) (3)

(Vpx) contains only two-particle interactions between different shells. Using the
normalization of the coefficients of fractional parentage and the fact that À is a
closed shell one finds

<VpX) ^--I(2d + l)-(PA|V|pA)^ (4)
2p + l 0

(p\\V\p\)# is a diagonal two-body matrix element for the effective interaction.
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The sum runs over J# and T& which are included in -d. The interaction between
the particles of the closed shell A is given by

E(Am)00 è • m • (m -1) • I <Am(oo){|A—2, A2(S))<A2| V|A2)8 (5)
6

The coefficients of fractional parentage can be written as

<Am(ooM|A—2, A2(5))=
2(26 + 1>

m • (m — 1)

One obtains

E(Am)oo=Z(2ô + l)-(A2|V|A2)8 (6)
S

The formulas (3), (4), and (6) are inserted in (2)

E°ore+ ne°p +E(pn)jTa Ecore + nep + mek+E(pn)TTa

+ I(26 + 1)-(A2|V|A2)8 (7)
a

2p + l Ä

This equation is divided in two parts. One contains the arbitrary factor n and
yields

eP <-r7~-\l(2^ + l)-(pX\V\p\^. (8)
2p + l #

The other part is

Ecore E°coie -(2A +1) • ex -1 (18 +1) ¦ <A2|V|A2>8 (9)
8

These results have the following meaning. By using the single-particle energy of
(8) for a calculation in the enlarged model-space one produces a level scheme
which agrees energetically with the corresponding scheme of the original space
except for the constant energy difference E^e -E°ore according to (9).

Now several active shells in the original model-space are considered. They
are labeled with i and the states are denoted by p(i). Their single-particle energies
are named ep(i). It can be shown that (8) holds generally

<ko eg(o-0 ,Li • I (20 + D ¦ <p(0A|V|p(i)A>«
2p(j)+l .j

(10)

(9) does not change here.
In case several shells, A(l), A(2),..., k(K), are separated from the core (9)

and (10) can be generalized as follows

cp(0 cp(0 T„/-.-\ i 12p(i) + l fc=i «
Irr.r ¦ I I (20+D • <p(i)A(k)|v|p(i)A(k)>, (ii)
0 + 1 k=i «

Ecore £core- Ì f (2A(k) +1) • ex(k) +1 (28 +1) ¦ < A2(k)|V|A2(k))8
k l L S

£ X(2# + l)-<A(0A(q)|V|A(0A(q))^
(12)

l=q l *
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The last term in (12) describes the interaction energy between particles of
different shells separated from the core.

Finally one considers a model enlarged by shells not populated in the original
space. For the time being they are kept empty in the enlarged model-space.
Naturally here the single-particle energies of the active shells are not to be
modified so that shell-model calculations yield the same results in both model-
spaces.

3. Relation between the single-particle energy ex and the single-hole energy ëx

Certain shell-model codes (e.g. [2]) are not able to treat model-spaces
covering particle states and hole states simultaneously. In order to handle such
problems with these codes the hole states have to be transformed into particle
states by separating their shells from the core.

One considers a nucleus with one sole hole. The corresponding shell is
loosened from the core by keeping the number of particles unchanged. As before,
one demands that the binding energy of the nucleus is not altered, i.e.

Eb(old core + A_1)x =Eb(new core + Am_1)x (13)

with m =2A + 1.
The left hand side has a simple form, the right one is expressed like in

chapter 2

E°ore + êx=Ecore + (m-l)-ex + E(Am-1)x. (14)

fix — 2
It can be shown that E(Am_1)x E(Am)00. Ecore is replaced by (9). From
(14) one obtains m

e>, -êK-^-r-l (20 + 1) • (A2|V|A%. (15)
ZA ti .^

(15) holds likewise if there are several holes in the shell A and if there exist active
shells in the original model-space. The single-particle energies of the active shells
have to be calculated by means of (10). If several shells containing holes are
separated from the core each single-particle energy is influenced by the other
shells of this kind according to (11) as follows

ex(o -ëA(o-
*

1
• £ (l + ôlfc)-I(2#+l)-(A(0A(k)|V|A(i)A(k))<>

(16)
with 8ik 1 for i k, 8ik 0 else.

Even if part of the shells A(fc) with k^= i does not contain holes in the original
space, equation (16) still holds. In order to calculate ep(j) for originally active
shells through (11) all shells A(k) have to be put in irrespective of the existence of
holes. The same holds for Emie in (12).

4. Discussion

I have verified the formulas (11), (12), and (16) with the Oak Ridge-
Rochester shell-model code [2]. The calculations yield the same level scheme in



Vol. 55, 1982 Single-particle energies in enlarged shell-model spaces 73

the original as in the expanded model-space provided that the activated shells are
equally occupied in both spaces as mentioned above. Both level schemes differ by
the constant Emte — E£ore according to (12).

The results of the present paper may be applied to the following situations

(i) If one has to enlarge the model-space to treat more states adequately the
first approximative shell-model calculation may be performed with the
new single-particle energies according to (11).

(ii) This calculation is a good starting-point for the empirical approach
mentioned in chapter 1 producing a set of fitted single-particle energies
and two-body matrix elements.

(iii) The present theory may be used to procure the single-particle energy of
a shell scarcely occupied and lying energetically high. One starts with a
nucleus which contains only one particle in this shell and whose other
shells are regarded as closed and forming a large core. The measured
binding energy of the particle referred to is its single-particle energy in
this simple model-space. With (11) and (12) it can be transformed to the
space of the original nucleus containing a smaller core and some active
shells poorly occupied.

(iv) In chapter 3 it is shown how shell-model calculations originally per¬
formed in the particle-hole representation can be reproduced with codes
written only for particle representation.
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