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On the S-operator for the external field
problem of QED

by H. P. Seipp, Institut fiir theoretische Physik der Universitat
Zurich, Schonberggasse 9, CH-8001 Ziirich, Switzerland

(22. XII. 1981)

Abstract. The scattering operator associated with the quantized electron-positron field interacting
with a time-dependent external electromagnetic field is investigated. It is shown that it depends
analytically on the strength of the external field up to arbitrarily high values. As a consequence, there
exists no threshold for the occurrence of spontaneous pair production.

1. Introduction

Looking at the Hamiltonian H = H,+xV, where H, is the free Dirac
Hamiltonian and V an electrostatic potential associated with a distribution of
positive charges, one observes the following pecularities: when x increases, bound
states appear at the upper continuous part of the spectrum (E =m), move across
the energy gap and dive iito the lower continuum at E =—m. This is usually
illustrated by a gedanken experiment, considering an atomic nucleus of charge Z,
assuming that Z increases infinitely slowly [1]. When the 1s level reaches the
lower continuum, its binding energy reaches the value 2m and the creation of an
electron—positron pair becomes energetically favorable. The value Z at which this
happens is called the critical charge Z. When Z>Z., the creation of an
electron—positron pair even reduces the total energy of the system. This phenome-
non is interpreted as ‘decay of the neutral vacuum’ to a ‘charged vacuum’ by
‘spontaneous pair production’ and is expected to arise in strong fields, since the
calculated value of Z_ for a ‘realistic’ potential is equal to about 173. (Notice that
the potential of a point charge is not suitable because the Hamiltonian ceases to
be essentially selfadjoint at Z =137.)

Today the only practical means of creating strong electromagnetic fields are
experiments involving heavy-ion scattering. Provided that two colliding nuclei
approach each other closely enough so that their joint electric potential exceeds
the critical strength, the occurring spontaneous pair production could be detected.
However the electromagnetic field created during the collision is time-dependent,
so pair production induced by the changing field is also expected to occur. A
criterion is needed which makes it possible to distinguish between ‘induced’ and
‘spontaneous’ pair creation.

Most of the results that can be found in the literature concerning QED in
strong fields (for a review, see [2, 3]) are based on approximate calculations, so
the notion of spontaneous pair creation remains ambiguous.
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If radiative corrections are neglected, which is an adequate first approxima-
tion, the problem can be treated rigororously in the framework of the external
field problem of QED, i.e. the theory of the quantized electron—positron field
interacting with an external classical electromagnetic field [4-8]. In the case of
certain regular static electromagnetic potentials, a vacuum can be defined that
becomes charged discontinuously as the potential increases. This has been discus-
sed by Klaus and Scharf in [9, 10] (see also [11, 12]). A basic requirement of these
investigations is the existence of a dressing transformation on Fock space which
converts the ‘bare’ vacuum into a ‘dressed’ vacuum. However this construction
refers to a static external field and cannot be used to describe the situation present
in heavy-ion collisions. Furthermore it is known that in static fields no pair
creation occurs.

Since pair creation is a scattering phenomenon it is most natural to discuss
the problem in the framework of scattering theory. At the same time it yields an
unambiguous particle interpretation of the asymptotically free incoming and
outgoing states [13]. One observes that there is a resemblance between the Fock
space S-operator with time-dependent external field and the dressing transforma-
tion in the static case (for a comparison, see [14]). At certain values of the field
strength, the S-operator has singularities which are analogous to the discon-
tinuities of the dressing transformation corresponding to the occurrence of the
charged vacuum. For this reason one might suspect that these singularities are
related to the occurrence of spontaneous pair creation.

It is the aim of our investigations to answer the following questions: Is it
possible to distinguish between

(1) undercritical and overcritical external fields
(i1) induced and spontaneous pair creation
on the basis of the Fock space S-operator?

We will show that the singularities mentioned above are spurious. Moreover
the S-operator depends analytically on the strength of the external field up to
arbitrarily high values. Therefore, contrary to the presumptions, the answer to
questions (i) and (ii) is negative.

2. Some results of classical Dirac theory

In the following we fix some basic notions of classical, i.e. nonquantized
Dirac theory, and collect several results which we will use in Section 3 and most
of which are well known [4, 5, 15]. The observations stated in Theorems 2 and 4
seem to be new and lead to a clarification of the situation.

The underlying Hilbert space % = (L*(R>))* is the space of Dirac four-spinors.
We will only need its structure as an abstract Hilbert space later on. The set of
bounded operators on # is denoted by B(¥).

Because we frequently are dealing with holomorphic operator-valued func-
tions C — B(¥) we recall the convenient criterion [16]: Let T(x)e B(¥) be
defined on a domain G of the complex plane. T(x) is holomorphic in G if and
only if each x€ G has a neighbourhood in which ||T(x)|| is bounded and
{f| T(3¢)g) is holomorphic for any f, g in a fundamental subset of 3 (i.e. a subset
which has a dense linear span in #). We note that T(x) ! (if it exists) and T(%)*
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are holomorphic functions of »x if T(x) is holomorphic' whereas T(x)* is not
holomorphic (notice that the inner product {-|) is conjugate linear in the first
argument).

The Dirac equation with time-dependent external field reads

HOMO) =i 10, fes 2.1)
where
H(t)=Hy+»xV(t)
Hy=—ia-V+mp (2.2)

V)= VX, t)=eAyx, t)—ea- A(X, t)
(2.1) is solved by the unitary propagator U(t, s) |
f(ty=U(t, $)f(s) (2.3)

The spectrum of H, is o(H,) = (—%, —m]U[m, =) and we introduce the spectral
resolution Hy={ A dE(X).

The spectral pro;ectlons corresponding to the positive and negative part of
the spectrum are given by

p, - L dEQ) =L +-1 r de(H, — it)

—m 21 o 1 (= (2.4)
p = "aBw-3-5- [ aer—io
They satisfy
P, +P_=1, P.P_=0 (2.5)
and give rise to the direct sum decomposition
H=H . DK _, ¥,.=P. ¥ (2.6)

of the Hilbert space in ‘electron’ and ‘positron’ subspace.
(2.1) can be converted into the interaction picture integral equation for the
propagator U(t, s)

Ut,s)=1—ix J E dt, V(t,)Ul(t,, s) 2.7

where
U(t, s) = e U(t, s)eHo
V(t) = eV (t)e Ho

If V(¢) is assumed to be a bounded (and of course selfadjoint) operator for each ¢,

and strongly continuous in t, one obtains the norm converging Dyson expansion of
U(t, s) by iterating (2.7)

(2.8)

O, s)= Y (—ix)"j' dtlr Jp. j de.V(t) -+ V(1) | (2.9)
n=0 s s S
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If furthermore |, dt || V()| <, the scattering operator exists by the strong limit
S=lim U(t,s) (2.10)

t—c0

§—>—00

and according to (2.9) we have

S(x)= i (—ix)"S,
n=0

S (2.11)

S. :J dtIJ dt, - - J- dtnv(tl) T V(tn)

—0o

We take (2.11) as the definition of the classical S-operator. Since the series has an
infinite radius of convergence, S is an entire function of x. Moreover S is unitary
for real », thus

S()*S(%)=S(%)S()* =1, x cR (2.12)

This relation can be extended to the whole complex plane by analytic continua-
tion since S(») and S(%)* are entire. One has

S()*S(x)=S(x)S()* =1, xeC (2.13)

For simplicity we will omit the argument »x resp. x whenever this does not give
rise to confusion. It has to be chosen in such a way that the operators become
holomorphic functions of .

Using the projections P, (2.4) we define

$S.+=P,SP,.,S__=P_SP_

S, =P,SP_,S ,=P SP. (2.14)

and for the adjoints we adopt the convention
S* =(S,y*=P_S*P,
S*, =(S_)*=P,.S*P_
Taking into account (2.5) one derives from (2.13)
Si+s++ * Sf+s—+ =P,
S++Sj+ + S+,Sf, =P,
S* S _+S*S. =P
S_S* +8_.S*. =P_

(2.15)

(2.16)

ST:S,_+S8*S_ =0
S, S*,+8, 8* =0
SES ,+8% 8. =0
S _S¥ +S_.S*¥.=0

(2.17)

The existence of the implemented S-operator on Fock space depends essentially
on the fact that S,  and S_, are Hilbert-Schmidt operators (cf. Section 3,
Theorem 5). According to Theorem 7 in the appendix, potentials V(t) which give
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rise to this property exist under quite general conditions. Therefore it is justified
to assume

S._(%), S_,(%)e HS, VxeC (2.18)
Hence the operators
S+—(7_ﬂ)*s+ﬁ(%)a S+—(%)S+—(ﬁ)*

2.19
S_(%)*S (),  S_.(%)S_.()* st
are trace class for all complex .
We define the operators®)
F, =S, +P_, F =S +P, (2.20)

They satisfy the following relations which can be verified using (2.16) and (2.17)
FiF,=1-8*,S_,
F.F¥f=1-8, 8%
F*F_ =1-8*_S,_
F F*=1-S_,8*,

(2.21)

F.S* +8, _F*=0
FS* +8 .F*=0
F*S, +S8* F =0
F*S__+8* F. =0

(2.22)

F.S*.,S ,=S, St F,
F St S, =S ,S*F_
FiS, ST =S*S .F*
F*S_,S* =S% S, F*

In the following the kernel of an operator T is denoted by N(T), its
eigenspace corresponding to the eigenvalue 1 by E,(T) and its range by R(T).

N(T)=N(T*T)={fex | Tf=0}
E(T)=N(T-1)={fex | Tf=f}
# decomposes according to _
% = N(T)®R(T*) = N(T*)®R(T) (2.25)

where R(T) means the closure of R(T).

We briefly summarize some facts about the theory of Fredholm operators
which can be found in [17, 18, 19]: An operator T € B(¥) is called Fredholm if
and only if dim N(T) and dim N(T™) are finite. The set of Fredholm operators is

(2.23)

(2.24)

1 In literature usually the restrictions of S . resp. S__ defined on %, resp. ¥_ are used, but it is
more convenient to consider the operators (2.20) because in this way one has not to worry about
domains.
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denoted by %(%). The integer ind T =dim N(T)—dim N(T¥) is called the index
Qf T. It follows from the definition that

ind T*=—ind T. (2.26)

Since dim N(T™*) <, the range of a Fredholm operator is closed [17].

Let M be a topological space. One says two elements x, y € M can be joined
by a path in M if and only if there exists a continuous mapping (a path)
m:[a, b]— M of some closed interval in the real line into M, such that w(a)=x
and m(b) =y. An equivalence relation ~ can be defined on M, writing x ~y if and
only if x and y can be jointed by a path in M. The equivalence classes are called
the path components of M.

Now consider (%) as a topological space endowed with the operator norm
topology. One has

Theorem 1 [17, 18, 19]. The index is constant on each path component of
F (). If two Fredholm operators have the same index, then they are in the same
path component of F ().

Corollary. A Fredholm operator T has index zero if and only if T~ 1.
We are now ready to prove

Theorem 2. F.(x) and F_(x) (2.20) are Fredholm operators of index zero for
every complex x. _

Proof. From (2.21) we conclude
N(F,) < E{(S*,S_,)
N(FY)<= E(S,-S%.)
N(F_)= E\(S7_S,.)
N(F*)c E,(S_.S*.,)

Each kernel on the left-hand side is finite dimensional because it is contained in
the eigenspace corresponding to a nonzero eigenvalue of a compact operator.
Hence F,, F_e€ %(%). Let 7:[0, 1]— C be a path in the complex plane such that
w(0)=% and w(1)=0. Then F.(m(-)) is a path joining F.(x) and 1 in ().
t — F,(m(t)) is continuous since F, is holomorphic in x.

F (w(t) e F(3¢), VielO, 1]

F.(m(0)) = F,(x)

F (mw(1))=F.(0)=1 since S(0)=1.

Thus F,(») has index zero for every » € C by the corollary of Theorem 1.
The same argument holds for F_(x). O

(2.27)

The kernels are explicitly given by
N(F . (x)=%,NS(x)*3%_
N(F.(%)*)=3%.N0S(x)%_
N(F_(x)=%_NS(x)*%.,
NF_(%))=3%_NS(x)%¥.,

(2.28)
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Notice that the subspaces S ., S*¥ .. are closed due to the invertibility of S resp.
S* guaranteed by (2.13).

We give the proof for N(F,): #,.NS*%_<cN(F,) is verified directly: let
fe#x . NS*¥*_, hence fe¥,,feS*#_ and by (2.13) Sfe¥_. Thus F,.f=
S f+P_f=P.Sf=0. Now suppose F.f=0,f#0. From S,.f+P_f=
S, ftf—P.f=0 it follows that f=P.f—S..f, hence fe¥,.. Thus we have
F.f=P.Sf=0 and therefore Sfe¥_,feS*¥_.. We conclude N(F,)c
%.NS*%_. O

Inspecting the expressions (2.28) we observe that

S(e)N(F.(x)) = N(F_(3)¥)

S(x)N(F_(x)) = N(F, (%)) =2
Because S is nonsingular it follows that

d%m N(F (%)= d%m N(F_(ﬂf)*) (2.30)

dim N(F_(»)) =dim N(F,(%)*) ,
Furthermore by Theorem 2 we have

dim N(F, () = dim N(F, ()*) (2.31)

dim N(F_()) =dim N(F_(»)¥)
We conclude from (2.30) and (2.31)

dim N(F, (x)) = dim N(F. (x)*) = dim N(F_(%)) = dim N(F_()*) (2.32)

dim N(F_(x)) =dim N(F_(»)*) = dim N(F,(%)) = dim N(F,(5)*)
VxeC

For certain values of » the upper four resp. the lower four kernels (2.32) appear
simultaneously with the same finite dimension. The sets of these exceptional
points are defined by

S ={x €C | N(F,(x)) # 0}
5= {xeC | N(F_(x)) # 0}

(2.32) shows that 3 is the complex conjugate of 3.

(2.33)

Definition. The points k € SUZ, are called singular, all other points of C are
called regular.

Theorem 3. The set 3, (and hence 3) is discrete in C (i.e. there is only a finite
number of singular points in each compact subset of C) and lies outside the disk

In2

{z eC |zl<—a—}, where a=[; dt |V

Proof. 1t follows from (2.27) that S_, (%)*S_. (%) has an eigenvalue 1 if x € 3,
but by the analytic Fredholm theorem [20] (see also [16] Chapter VII) this is the
case only on a discrete set.
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By estimating

[= o]

Il £ ierp-s,p.
= 3 "I
= i lxl“;ﬂi—j—e‘”°c1 1

we see, that if e*™—1<1, i.e. |x|<(In2)/a holds, $*,S_, cannot have an eigen-
value 1. O

In the rest of this section we restrict our considerations to real values of ». If
» 1s real, the operators (2.19) are selfadjoint and the spectrum of each is a subset
of the interval [0, 1]. In this case it follows from (2.21) and (2.28) that

N(F,)=N(F*F,)=E,(S*,S_) =%, NS*%_
N(F¥)=N(F.F¥)=E,(S,._S¥ )=9%.NS¥_
N(F_)=N(F*F_)=E,(S*_S, )=%_NS*%,
N(F¥)=N(F_F*) =E,(S_.S*.)=%_NS%.

(2.34)

Theorem 4. If x is real, the operators S*_S, ,S,_S* ,S*.S .,S_.S*, have
the same spectrum including multiplicity.

Proof.

o(S%_S, )=0(S._S%)
o(S*.S_)=0(S_,S*))

holds in any case [16, 20]. If x is regular, F,(x) and F_(x) are nonsingular and
(2.23) can be written

S, S* =F.S* S _.F'

2.35)

S_.S*,=F.S* S, F (2.36)
Thus we have
S+—S*— = ST+S_+
” o ) (2.37)

a(S_.8* )=0c(8%_8.)

due to the similarity of the operators. If » is a singular point, the four operators
(2.19) have an eigenvalue 1 of the same multiplicity, as a consequence of (2.32)
and (2.34). The similarities (2.36) still hold with the restricted operators

F+:F+ TN(FJL

] 2.38
F =F |} N(F.)* ( )
for which the inverses exist
F7U:N(FH*— N(F.,)*
(F3)™— N(F,) (2.39)

E~':N(F** — N(F.)*
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(cf. (2.25)). Hence
S, S* =F,S*,S . F;' on N(FH)'=E|(S, St )*
S_.S*,=F 8* S, F' on NFH»'=E/(S_,S*)*

so that (2.37) is true also in the singular case. Combining (2.35) with (2.37) proves
the theorem. [J

We remark that the symmetry expressed in Theorem 4 is independent of the
existence of an isomorphism between ¥, and #_ (e.g. charge conjugation).

Introducing explicitly the eigenvalues and eigenvectors, we write, in consid-
eration of Theorem 4

SIS idn=M\o7
ST-Sidn=Ao,

S, ST =My (2.40)
S_.SE =\
0=A, =1

where the eigenvalues are counted with their multiplicites.
Each eigenvalue A, (x) is a holomorphic function on the real axis as long as it
does not reach the value zero [16]. The eigenvectors (including those correspond-

ing to the eigenvalue zero) constitute complete orthonormal systems in ¥, resp.
¥ _:

b YneH,, b, Y EH_
(Dml oD =W | ¥D=(dm| b0 =Wm| ) =8mn
We call the systems

{73 {dh {unh {wnd

canonical bases.

Notice that the canonical bases are not uniquely determined when there are
degenerate eigenvalues. Especially the eigenvalue zero has infinite multiplicity.
But it is possible to choose the vectors as holomorphic functions of x» whenever
the corresponding eigenvalues are holomorphic. Using the canonical bases we
obtain the canonical expansions of the compact operators S,_ and S_, [16, 20]:

S, =2 waldn |

(2.41)

S =2l | s
St =Y w Ui | Ve (2.42)
S* =Y p | Ve

n

o = +VA,
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from which it follows that

Si-dbn= P"n‘l’:
S +dbn=patb,
ST 4i= b 243
Sf+‘!’; = nPn
From (2.40) one derives
FiF.¢,= St+s++d’: =(1-\)o%
F*F_¢,=S*S__¢,=(1-1)¢, (2.44)

F+Ffllf: = S++Sf+¢’: =(1-A)¢,
F F*,=S _S* ¢,=(1-A\)¢,

The remaining properties we are interested in are more subtle.
Let us assume for a moment that x is regular, i.e. A, <1, Vn. Multlphcatlon
of the first of the relations (2.44) by F, yields

F.FiF.¢,=(1-\,)F.¢;
and comparison with
F.Fig,=(1-A)¢,
shows that we can write
F.¢p.=c.yn

by choosing the vectors ¢, properly (remember that the eigenvalues can be
degenerate). Normalization leads to

leal* =I|F 7P = (dn | FIF.d7)=1-1,
We fix the constant ¢, by

c,=e"V1—A,
hence

F.¢r=eV1-Ny, (@)
If we multiply (i) by F* we obtain

FiF,¢,=e"V1-AFipr=(1-1)é}
thus

Fiyn=e V1-\¢ (ii)
Multiplying this by S_, yields

S Figy = e /1= Aty
but by (2.22) we have

S Fi,=—-F.Si ¢, =—p.F_ ¢,
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hence

F ¢, =—e""1-\a, (iii)
Multiplication by F* leads finally to

F¥y,=—e"VI-A¢n (iv)

The phases are arbitrary and we put 6, =0.
Now suppose that x approaches a singular point %, and that for an eigen-

value A, we have A, (%) =1. Thus the function v1—A,(x) vanishes at that point
and the question arises whether there is a unique analytic continuation if » goes
through x,. To see what happens, we recall that A,(x) is bounded by 1 hence its
power series around x, is of the form

l\.,.l (%) =1- ao(% - x0)2m - al(% - x0)2m+1 F=5 i ap >0 (2.45)
Therefore the function
V(%) = V1=, (%) = (% —30)"Vao— a, (s — %) — * - - (2.46)

has no branch point at », and has a unique analytic continuation. Notice however
that its sign changes when » goes through x, if m is odd.
We adopt the convention v, (0)=+1, Vn.
With the functions v, defined in this way we write the relations (i)—(iv)
F+¢: = S++d’: = n'l’::
F ¢,.=S__db,=—v4,
Fiy,=S* ¢, =-v,d,
Each function », is holomorphic where A, is holomorphic, i.e. », may have no
further analytic continuation if A, becomes zero at some x.

(2.47)

3. The Fock space S-operator

In this section we study the S-operator in the framework of quantized Dirac
theory with external field, especially its dependence on the coupling parameter x.

The existence of the scattering operator on Fock space is guaranteed for
every real » by (2.18) and Theorem 5 below, and its properties can be derived
from the results of the ‘c-number’ theory discussed in Section 2.

Explicit expressions have been constructed by several authors with different
methods [9, 11, 21-24]. One observes that an exceptional form is obtained at the
singular points and it is not clear whether this is related to discontinuities in the
dependence on .

Ruijsenaars [25] proved that the S-operator is analytic for small % and has a
possibly two-valued analytic continuation, the singular points being branch points.

We will improve this result by showing that there exists a unique analytic
continuation along the real axis (Theorem 6). The exceptional form of the
S-operator at each real singular point x, is the limit of the expression at regular x
as » approaches x,.
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We first introduce the quantized free Dirac field. It is constructed by choosing
the Hilbert space # introduced in Section 2 as test function space and represent-
ing the *-algebra generated by the field operators W (f), f € %, satisfying canonical
anticommutation relations, on a second Hilbert space ¥ (the physical state
space):

V:%— B (%F)
f—W¥(f) conjugate linear

@), ¥(@*=(f 2
{¥({f), ¥(g)h=0 (3.2)
{¥()*, ¥(e)*t=0

The annihilation operators b(f), d(f) for electrons respectively positrons are
defined by

b(f) =¥(P.f) = b(P.f)
d(f) =¥(P_f)*=d(P-f) (3.3)
Y (f) = b(f) +d()*

and satisfy the canonical anticommutation relations

{b(f), b(g)*}=(f| P.g)
{d()*, d(@)}=(f|P-g)

b(f) is conjugate linear and d(f) linear in f. It is assumed that a unique vacuum
exists, 1.e. a vector e # for which

b(f)Q=0, d({)Q=0, Vfex, |Q|=1 (3.5)

holds.

Let {f.},{g.} be complete orthonormal systems in ¥, resp. ¥_. Then a
fundamental subset D < % is given by the orthonormal vectors

O b(fin)™ -+ - b(fn, V¥ d(8)* - -+ d(ga,)*Q
Mm<m,<:-:-<my

(3.1)

(3.4)

(3.6)
n<n,<---<nn
M,N=0,1,2,...
The number operator N and charge operator Q (both unbounded)
N =Y (b(f)*b(f) +d(g.)*d(g,) (3.7)
Q=X (b(f)*b(f,) —d(g)*d(g.) (3.8)

are well-defined on D, and are independent of the orthonormal bases chosen. The
time evolution of the free field is given by

T, (f) =¥(e"of) = V()" ¥ (F)Vo(1) (3.9)

where H, is the free Dirac Hamiltonian on # and V(t) the implemented unitary
group on # which now has a positive generator.
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A representation of the Fermi field algebra as described here can always be
constructed in the well known way, if ¥ is chosen to be the antisymmetrized
Fock space over #.

Within the framework of scattering theory, two free asymptotic fields W, (f)
and ¥,,(f) are related by the formula

Y oui(f) = ¥in(S*f) (3.10)

S being the classical S-operator (2.11). We identify ¥,.(f) with the field ¥(f) (3.1)
on ¥ and write to have a simpler notation

V() =Youlf) =¥ (S*f) =V(S*f) (3.11)

From (3.2), (3.11) and the unitarity of S it follows that the out-field again satisfies
the canonical anticommutation relation

W), ¥'(@)*=(| 2 (3.12)

Considering the decomposition into electron- and positron-annihilation operators
b'(f)="'(P.f)=b'(P.f)

d'(f)=V'(P_f)*=d'(P_f) (3.13)
V'(f)=b'(f)+d'(f)*
we have

{b'(f), b'(2)*t=(f| P.g)
{d'()*, d'(g)}=(f | P-g)

Writing finally (3.11) in terms of creation and annihilation operators, we obtain a
Bogoliubov transformation on ¥ .

b'(f)=b(SE.f)+d(ST_f)*
d'(f)*=b(SZ,f)+d(S*_f)*
The question about the implementability of (3.15) is answered by a well known

theorem proved by Shale and Stinespring [26]. We state it here for the sake of
completeness.

(3.14)

(3.15)

Theorem 5. The Bogoliubov transformation (3.15) is implementable by a
unitary operator S on ¥ if and only if S,_ and S_, are Hilbert—Schmidt.

The existence of the operator S is equivalent to the existence of a vector
) € % which satisfies

b'(HQ =0, d'(HY =0, Vfek (3.16)
As a result we have
b'(f) =S*b(f)S
d'(f)=S*d(f)S
O =S*Q (3.18)

S is uniquely determined up to a phase factor due to the irreducibility of the

(3.17)
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representation of the field algebra. It is interpreted as the S-operator on the
physical state space # transforming incoming into outgoing many-particle states
at time zero. () (3.5) represents the incoming vacuum.

At this stage it is instructive to check the charge conservation. As a

representative example we first calculate the charge expectation value of the state
SQ:

(SQ| QSO =(Q| S*QSN)
= (018" 6.~ d(a)*d(z.)50)
=2 b'(fn)*b'm)m—; Q] d'(g,)*d'(g.)Q)
= Z Q| d(S%_f,)d(S%_f,)*Q)~ Z (@] b(S*,8,)b(S*.8,)*Q)
= Z (SE_f.|S%_f)- Z (S*. 8. | S*,8.)

According to Theorem 4 the traces are equal

trS,_S* =trS_.S*. =) A, | (3.19)
thus we have "
(SQ| QSO =0 (3.20)

in agreement with the fact that particles and antiparticles are created in pairs. To
verify the charge conservation in the general case we write the Bogoliubov
transformation (3.15) in terms of the canonical bases (2.41). Putting f = ¢, resp.
f=47 in (3.15) and using (2.43) and (2.47) we get

b'(¢7) = v.b(¢7) + wnd (b 7)*
Cd' (W) = pab(d7) v d(d)*
With Q expanded as follows
Q=X (b )*b (W)~ d(W)*d(¥y)

(3.21)

we calculate
S$*QS= Z (b (W) *b' () — d' () *d (7))
=Y. (b (d3)* + tod(d ) (b () + pnd (D)%)
S (b2~ 1,6 ) b () — 1yl (67)
= ;?(1—An)b(<b:)*b(¢:)+And(qb;)d(qb;)f

—MDb(Db(D*—(1-A)d(d7)*d(d7)
=2 (b(¢7)*b(d ) —d(d7)*d($7))

=Q (3.22)

Therefore the charge conservation is established.
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We now collect some formulas by which it will be quite easy to handle the
expressions we are dealing with in the following.

Let T be a bounded operator on ¥ and {f..}, {f..} resp. {g.}, {g.} complete
orthonormal systems in ¥, resp. #_. On ¥ we define formally the operators

To*d* = Y. (f,, | Tg.)b(f,)*d(g,)*
Tdb = Z (8m | Tf,)d(g,)b(f.)
Tb*b = Z (o | TFIB(f)*b(F2)

Tdd* = Z (8m | Tgh)d(g)d(gl)*

(3.23)

They are independent of the orthonormal systems chosen whenever they are

well-defined. This is immediately seen by carrying out orthogonal transformations
on the bases.

In the same sense we consider the exponentials

* g% * * '
et 4" er", palP By THAT (3.24)

where the dots mean normal ordering of the operators b, b*, d, d*. The adjoints
are given by

(eTo"d%y* = oT*db

(erb)* eT*b*d*
( eTb b, )* T*b*b: (325)
(erd )* T*dd*:

It is straightforward to verify the following intertwining relations by expanding the
exponentials and using (3.4). .

:e(T——l)b*b: b(f)* - b(TP+f)* e(T—l)b*b:
:e(T—l)b*b . b(T*P+f) — b(f) .e(T—l)b*b .

oA, QO = A(T*P_f)* 18T, (.20
:e(l-T)dd*- d(TP_f) — d(f) ‘e(l T)dd*.

erbb(f)* — (b(f)* +_d(TP+f))erb

e’[‘dbd(f)* — (d(f)*_b(T*P_f))erb (327)

e™ b (f) = (b(f)— d(T*P,f)*)e™ "

e™ " d(f) = (d(f) + b(TP_f)*)e™ %
If T has a bounded inverse and leaves the subspaces #, and % _ invariant, one
has in addition to (3.26)

(T~ Db*b. b(TF)* = b(f)* : e(T1-Db*,

-e(T1=Db*b. b(f) = b(T*f) : .o (T~1=1b*b.

- e(1-T~Hda*, d(T*f)*=d(f)* : p(1—T~Vdd*.

:e~T ™" J(f) = d(T¥) :e2"T 094",

(3.28)
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Before we discuss the operator S, it is worthwhile to consider the vector )
since it has a simple expression characterized by (3.16) and shows all essential
features of the full implemented operator.

We show that )’ for regular » is given by

Q' =ce ") (3.29)
A=F;'S, =-8* F*1 (3.30)

The two expressions (3.30) for A are equal by (2.22). Because the inverse
F.', F*7' are bounded in the regular case, A is Hilbert-Schmidt. Its canonical
expansion follows from the canonical expansion of S,_ (2.42) and (2.47)

A=F7'S, =) u.dn| YF:'ui

=Y a b | VT, anz% (3.31)

n

If the operator Ab*d* is expanded in terms of the canonical bases, it diagonalizes
according to

Ab*d* =Y (¢i| Ad)b(dr) d(d7)*

m.,n

=Y a,b(dr)*d(d,)* (3.32)

Thus (3.29) can be written
Q' = ce~Encab®,%d,%)

— CH e %@ N, ()
=c[T (- ab(@p)*d(e0)"0 (3.33)
In the last step it is used that b(f)*b(f)* =0, d(f)*d(f)*=0,Vfe ¥, thus the

expansion of the exponentials consists of two terms only. Using this result, the
norm of ()’ is calculated

o =leP(e | TT (- a,d@2b(@)(1 - a,b (@) A7)
= IeP(0 | TT 1+ a2d(@7)b@ b6 d(6,))0)

=|cP[T (1 +a2) (3.34)

The infinite product has a finite value [, (1+a2) <o since ¥, a2 < holds true,
the o being the eigenvalues of the trace class operator A*A. Consequently the
vector ()’ (3.29) is well-defined. We normalize it choosing

c= (H (1+aﬁ))_mzA”2 (3.35)
A= (n (1+a§))_1 =T1A-A) (3.36)
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A =A(x) defined by (3.36) is equal to the determinant
A=det(1-S*.S,) (3.37)

which is a holomorphic function of x in the whole complex plane, since ST_S, _ is
holomorphic and trace class there [27]. It vanishes if and only if S*_S,_ has an
eigenvalue 1. This is the case exactly at the singular points. Note that one has

det(1-S* S, )=det(1-S._S* )=det(1-S*.S_,)
=det(1-S_,S*,) VxeC - (3.38)
by Theorem 4 and the unique analytic continuation property.
We stress that the determinant A as a whole behaves much better than the
individual eigenvalues A,, which are holomorphic in restricted regions only, even

on the real axis. This has to be kept in mind when the expression (3.36) is used.
The square root of A is given by

1/2
AVR = (1’[ (1—)tn)) =[1» (3.39)
where the phasefactor is fixed in such a way that AY?>=1, if % = 0. Suppose that at
a real singular point %, the functions v,,..., v, vanish. Then we have in a
neighbourhood of x,
1o o 1/2
A2 =T] vn( I1 (1—)\“)) (3.40)
n=1 n=ng+1

Both factors are holomorphic according to the discussion at the end of Section 2.
Since this holds at any real singular point »,, A" is a holomorphic function on the
real axis.

To verify that (' satisfies (3.16) we take the expression (3.33) and the
Bogoliubov transformation in the form (3.21).

b'WQ = c(ub(d5)+ 1 d(d7)®) - [ (1 - anb(di)*d(d7)*)Q
=c [1 Q—a.b(ér)*d(dn)*)

m¥#n

s (b (D) + pnd (67))(1— b (9 7)*d (d7))Q
=c [1 (1—ab(@p)*d(d)™) - (pad(d7)* — tab(@D)b(d7)*d (b))

=0
d' W) = c(pb(@5)* —v,d(d7) - [ ] 1—a,.b(dr)*d(d7)H)Q

=c [1 Q- anb(@n)*d(@m)*)  (pub(@r)* = 1, d($:)(1 —anb(dr)*d (b))

m#n

=c [T (1—ab(@7)*d(dm)*) - (nb(d7)* + med(d7)b () *d (7))

m¥*n
=0
Q' has the required properties and is given by (3.29) or equivalently by (3.33),
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both forms being well-defined for regular x. If » approaches a singular point, the
normalization constant ¢ vanishes and the operator A diverges and therefore the
exponential expression (3.29) ceases to be meaningful. The product form (3.33)
however can be written

=[1v. I1 (1 - a.b(d)*d(d7))Q
=[1 .~ mb@D*d(6)MQ (3.41)

and is detined for all x€R. At the singular points one has v, =0, n, =1 for
some n.

The analyticity properties of () are established as follows.

Let @ be a vector of the fundamental subset D (3.6) and Ab*d* expanded in
terms of a fixed (i.e. x- 1ndependent) basis.

~ Then
o) =(®| )
— A112(¢) l e—Ab*d*Q)
= AV~ | ) (3.42)

consists of a finite sum of terms, each being a holomorphic function since A(x)"/*
and A(x) are holomorphic. Hence ¢(x) is holomorphic and so is }'(x) by the
criterion stated at the beginning of Section 2, which is also valid for vector-valued
functions.

Now consider a neighbourhood G of a singular point x,€R. By the previous
argument the function ¢(x) is holomorphic in G except at the point x, where it is
not defined. Furthermore ¢(x) is bounded in G —{%,} since ||Q?||=1. Thus by a
theorem of function theory [28] the limit lim,_,, ¢(2) exists in a unique way, and
defining ¢(%) =lim,_.,., @ (), ¢(x) becomes a holomorphic function in the whole
of G.

This argument holds for every singular point. We conclude that '(x) is
holomorphic on the whole real axis.

The limit % — %, is trivial to evaluate starting from (3.41). Writing the
regular factor in exponential form we obtain a more familiar expression. Suppose

/\n(%()):l, n:192:"'7n0

M) <1;  n>ng 343)
then we have
Qo) =) [1 b@)*d@7* - 1 (3~ wab(d)*d(d7))Q
n=1 n=ng+1
= TTb@pra@n* e (- L wb@dd@n*)o
n=1 n=ng+1
= (e I b@D)*d(d) e 2P0 (3.44)
c’=( I (1—)\,,))1/2 | (3.45)

n=ng+1

=A(1-P) (3.46)
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where P is the projection on the subspace spanned by the vectors ¢71, ..., d,,.
Expressions similar to (3.44) are found in literature. With the method
described here, the exceptional creation operators b(¢5)*, d(¢n)*, n=
1,2, ..., ny automatically occur in pairs, in agreement with charge conservation.
We now consider the implemented S-operator. Since its explicit expression is
known, as mentioned at the beginning of this section, we don’t give a deduction
but merely a verification of the result in our notation.
For regular » we write S* as follows
SF = ceATb*d* . H(AT-Db%b.

(1—Af)dd*, _A¥db

‘e e
=c :eA;“b*d*+(A;‘~1)b*b+(1—A_;“)dd*+A;“db: . (347)
Note that written between normal ordering signs, the operators b, b*,d, d*
anticommute thus the quadratic expressions commute, a fact we will use fre-
quently in the following. By (3.25) the adjoint is given by

S = ceAlb*q* e(17ADdd*, . o (A,—Db*b. ,A,db
= ceibrd* . G(AmDb¥b. . (1-A)dd*. A db
— ¢ 1 @Ab A~ Db*b+(1-A)dd* +A db. (3.48)
The operators introduced are
Ay= Ff—l
A;=F! _ (3.49)
A,=F'S ,=—S* Ffl=—A*%
c=A"2

Using the intertwining relations (3.26)—(3.28) it is not hard to show that S* given
by (3.47) and S given by (3.48) satisfy
S*b(f) = b'(f)S*
S*d(f)=d'(f)S*
b(f)S =Sb'(f)
d(f)S =Sd'(f)
We will do this for the first of the equations (3.50).only. The proof of the others is

quite similar and may be omitted.
b(f) commutes with e*1% and :e

S*b(f) — CeA:‘;b*d* :e(Aj—l)b*b: b(f) e(1+A3)dd*: eAdb
By the second relation (3.28)
:@ATTIBTE . () = e FF' LB ()
= b(Fif) 100"

(3.50)

(3.51)

(1-Apdd™. thyus we have

which leads to

g*b(f) = ceAjb*d*b (Fff) :e(Ag—l)b*b: . e(l—A’;)dd*: eA’fdb
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Now using the third of the equations (3.27) and F*P, =P, F*
e D(FEf) = e FH'S P p(FES)
= (b(FIf)+d(SI_Fi P, Fif)*)e =s.brd”
= (b(SE.f)+d(S¥_f)*)ers™d
=b'(f)e” ™
Hence S*b(f) = b'(f)S™ is verified. Since by (3.50)
IS*b(f)* - -+ b(fin)*d(g)* - - - d(g,)* Q|
=|o'(f)* - - - B'(f)*d'(g0)* - - - d'(g)* Q| =1 (3.52)

holds for any vector of D, S* is well-defined on D and extends to an isometry on
# . Moreover from (3.50) and (3.51) it follows that we have

SS*b(f) = b()SS*
SS*d(f) = d(f)SS*
S*Sb'(f) = b'()S*S
S*Sd'(f) =d'(f)S*S

(3.53)

for every f e %. Because the representation of the field algebra is irreducible and
generated by W(f) as well as by ¥'(f), we conclude from (3.52), (3.53) and Schur’s
lemma

Therefore the operators (3.47) and (3.48) have the required properties and
implement the Bogoliubov transformation (3.15) in the sense of Theorem 5.
To discuss the analyticity properties of S we consider a matrix element

E(x)=(D|SD"); ®,d'eD (3.55)

where 'S is taken in the form (3.48), the operators in the exponent expanded in a
basis independent of x.

As in the case of (', (3.55) consists of a finite sum of terms and is a
holomorphic function at the regular points since all operators contained in (3.48)
are holomorphic, the constant ¢ included. Let G be a neighbourhood of a
singular point 4. &(3¢) is holomorphic in G —{3,} and bounded since S is unitary.
Hence £&(x,) is defined by lim, _,, &(») and the function becomes holomorphic in
the whole of G. We conclude that the matrix element (3.55) is a holomorphic
function on the real axis for every ®, ® € D, and state our main result in

Theorem 6. The implemented S-operator S(x) is holomorphic on the whole
real axis. [J

It remains to evaluate the expression for S at the singular points. For this
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purpose we expand the operators (3.49) in terms of the canonical bases and get

Ab*d* ==} o by d(y;)*

1
A,b*b = Z —b(U)*b(y) (3.56)

n

Asdd* = =T d(6)d ()"
Aqdb =~} a,d($)b(})

We consider these operators in the neighbourhood of a singular point %, at which
(3.43) holds and separate the diverging terms. Introducing the projections P, P,
on the subspaces spanned by the vectors 47, ..., {,, resp. ¢7,...,¢,, we have

Ab*d* ==Y o, b d(yr)*+ Alb*d*

n=1
E 3 A = 1 +\ %k + r Lk
Ab*b= Y — b(,)*b(d,)+ Asb*b
ke i (3.57)
Asdd*=— Y —d(¢,)d(W,)* + Asdd*
n=1 ¥n
Audb=— Y a,d($;)b(d])+ALdb
n=1
A{ :A1(1 _Pl)
Ay=A,(1-P,)
, | (3.58)
A3 :As(l _P1)
A3=A4(1 _Pz)

Inserting this into (3.48), the exponential containing the diverging terms is
expanded as follows

Ny

:exp (— Zl a,b(Wh)*d(g,)* + Zj 1 b(y)*b(d7)

ng, 1 0

+Y S aendw) - Y andw;)b(m)):
n=1"Vn n=1

~ 1 exp (~anbwi) a(way +-- b b()

n=1

1
- d(@DA)* - o d($,)b(GD)):

n
"o

1
—T1 (1- b2y + b *b(s)

n=1

1
b d($7)A(W,)* — and (67)b(63) — bW AW A Ib(67) )

n



22 | H. P. Seipp H. P A.
Therefore, using (3.40) and (3.45), S can be written
S=c":[] (o — bW d(r)*
n=1

+b(§)*b(d,) +d(d)d ()" — pad(d)b(d )
—v,b()*d (¥ ) d(d,)b(d7))

) Pk gk [ £ — [ * ’
. pAIbTI*HAL ;)b b+(1-A)dd*+A db. (3.59)

The limit x — %, is evaluated putting v, =0, n, =1, n=1,2,...,n

S=c' :SyeAib d HAL Db bH(1-ADdd*+A db .

Ry

So=:I1 (BWH)*— d(d2))(b(d?) - d(Wi)™): 60}

n=1

This is the exceptional form mentioned at the beginning of this section. It
implements the Bogoliubov transformation (3.15) in the singular case.
If all modes with A,# 0 are separated, a form similar to (3.59) is obtained
which is defined for all real x.
Let
M={n|A,#0}
MO = {n’ | An. = O}
Using (3.56) and proceeding as before, we: find
S=:IT (v — W) *d (W) * + b)) *b(7)

neM

+ ()W)~ (G — rb (WD AW G
coxp( T bu@n+ T d@ndw,)*

neMg neMj

~Y b b(dD)+ Y d(tlf;)d(tb;)*): (3.62)

(3.61)

To conclude this section we point out that in spite of the fact that S(x) is
holomorphic on the real axis, its power-series expansion around the origin has a
finite radius of convergence when the function A(x)'’? has complex branch points,
which cannot be excluded.

Appendix

In this appendix we prove the implementability condition (2.18). For poten-
tials V(x, t) the matrix elements of which belong to $(R*), a proof was given by
Ruijsenaars [29]. Palmer [30] considered a larger class of external fields, but his
proof is quite long and complicated. We will follow essentially the proof of a

similar theorem concerning the unitary propagator, given by Fierz and Scharf
[13].
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Before stating the theorem we introduce Fourier transforms.

70 = @2 [ @xe i)

fes = (L*R>)*
Hof (k) = (@ - k+ mB)f(k) = Hy(k)f (k)

N _1 a‘k+mB, _ "
Pif(k)—zi——‘—“zE(k) f(k)= P (k)f(k)

E(k)=+Vk*+m?
The free Dirac Hamiltonian H, and the projections P_ satisfy
Hy(k) = E(k)(P. (k) — P_(k))

Hy(k)P.(k) = P.(k)Ho(k) = +E (k)P (k)
The external field V(x, t) is a real valued function. We write

(V@) = V(x, )f(x)
—_—TN R n
V(0)f(k) = (2w)—3'2J k'VEk-K, )f (k)
=2m) 2V (1) * £ (k)

Vi, t)=Q2a) zj d>*xe ™ *V(x, t)

23

(A.1)
'(A..z)

(A.3)

(A.4)
(A.5)

(A.6)

The norm of the 4 X 4-matrix V(k, t) for each k and ¢ is denoted by |V (k, t)|. If

V@, = (Id% VK, ¢)|v)”p <o

we write

V(, e (L"®))'°

(A.7)

Theorem 7. Suppose that the external field V(x,t) satisfies the following

conditions.

(1) V(t) is strongly continuous on ¥ and two times piecewise strongly differentiable

such that (d*/dt*) V(t) is piecewise strongly continuous.
(2) VO , e (LR NL'R)', Vt; g=0,1,2
where

A ar
V@K, t)= o Vik,t)

3) IVOu,=Ft); p=12; q=0,1,2
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with
b= J dtF(t) <oo
Then S._(x) and S_.(x) are Hilbert—Schmidt for all »x €C.

Proof. We deal first with the case where the derivatives of V(t) have no
discontinuities. According to (2.11) we have

<0

Si—(%)= Y (—ix)"T,

n=1
o e | (A.8)
T, = j dt, - - j dt,P.V(t,) - V(t,)P_
The Fourier transform is written in the following form
N A
T,.f(k)= J d*k'T,(k, k)f(k")
o0 tn—l ) ) ,
T.(k k)= j dt, - - J dt,e"F P EOL (K t, .., 1)
T S B v s s T) =(2fn-)‘3"/2J' d’*k, - d’k, P (k)
. V(k—kl, tl)e—-i(tl—tz)Ho(kl) V(kl -k, tz)e—i(tz“'ta)Ho(kz) .
ceT WDV (K, ~ K, 1,)P_(K) (A.9)
Introducing new time variables
) —1(:* +idy+es s+ E,)
R " (A.10)
S]:t}_tjkl; j:2,3,...,n
with
det 9s; =1
ot
and the inverse transformation
1 ¢ )
tlzsl_‘-‘ Z (n_1+1)8j
n ji=2
1 « .
h=s.+= 2 (—Ds (A.11)
ni=>

L o i &
t[=sl+;Z(j—l)s,-—— Y (n—j+ls, 2=I

i=2 Ni-1+1

IA

=
|

[y
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we obtain
oo 0 0
T,k k)= j dslj ds, - - j ds, e E®+EED
- n » . s
v @ HRL SR =i+ DERI-G-DEEN T Qe K% §yp ¢ w005 5 (A.12)

Two successive integrations by parts with respect to s; lead to (the boundary
terms vanish)

oo 0 0 IS HE®+EK))
Tn(k’ k’) = _J' dsl J dSZ o j (E(k) LY E(kﬁ))2
—h’nZ i S; (=i + DE®—-(G-DE®&Y) —_ 0 I k, k' SgsenvsS ) (A.13)

1

Differentiation of I, with respect to s, acts on the potentials only. Since dt/ds; =
1,j=1,2,...,n, (A.13) is equal to

e ltlE (k)e n‘,nE'(k )

" (E()+ EK))?

Tn(ka k’) == J' dtl o j B I(Z)(k> kl, tl: 4R tn)

IOk K; ty, ..., t,)=Q2m) 2 ) [ d’ky - - dk, 1P, (k)

-q1---n
. V(ql)(k_kl, tl)e-i(t ) H (K )V(qz)(kl——kz, tz)
s e i IH) L L o=l mOHE, DY)k K 1 )P_(K) (A.14)

where
= 07 17 2; Z qj ':2
=1

Thus the sum in (A.14) contains n? terms.
We estimate the kernel

it E(k) it, E(k")

e ’
(E(k)+E(k’))2 [Pk, tn)l
E(k)z lI(Z)(k Kty ..., t)
<(2 ) 3n/2 Z -[ d3k v ¥ dskn_ ‘V(ql)(k"k ot )l
E(k)2 e 1 1 L h

: lV(qz)(k1—k2> t)] - - - 1‘7(q")(kn—1—k,’ £l

]. A
- (2W)_3“/2E(k)2 Z j d3p1 e d3pn“1 IV(q])(k“k’_pla tl)‘
q1'*'Gn

’ lv(%)(l)l“l’za t) - lV(q“)(Pn 1 )l
= (2m) "2 Y (Ve (t)]# | V(1) % - - - # |V (e,)NK-K) (A.15)

d1"""Qn

E (k)2
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where we introduced the variables
P. =k, —k; m=1,2,...,n—1
With this result we have
IP.V(t,) - V(t,)P_|lus
=@mPIEG T, L (V@] - - x [Vl

q1°""qn

=2m > IEC . X IV VRGN - - IVt V()

= Q) B A F)F(L) - - FG) (A.16)

where the convolutions are estimated using Young s inequality [31].
Let {¢,,} be a complete orthonormal system in %. From (A.8) it follows that

”Tn"HS = Z nTn(PmH2

= “ [ dt, - - - j T APV - - V()P g

é[ dtl---jnldgj dti---J'Hdt;

NP V() - V()P |- 1P V(D) -+ - V(EDP_@]l (A.17)

and applying Schwarz’s inequality to the sum

= tut o LA
s [ ano [T an [ g [T a

| (§ ATl -~ W(Q)P(P’"Hz)llz(g 1P V() - - - V(t;)P_(pmHz)m

m' tn'l e tr’l—l
=J dtl'-'j dtnj dt{---j it

P V() - V()P s P V(D) - - - V(P s

2

= (EO dt, - - I; dt, |P.V(t,) - - V(t,,)P_HHS) (A.18)

we conclude using (A.16)
| T lias = (27) 2 nE(-)—anan diy - j At F(n) - F(1,)

< (2m) 2 | E() -fl— (A.19)

Calculating i
1
N2 — 3
IO = (| k)

= (4wr dkk> ——1——)1/2 =L
wrmr) " Im

0

(A.20)
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we have finally

T ,b"
n?— (A.21)
\/;1 n!

Now suppose that (d/dt) V(t) is discontinuous at N points. Then the integration by
parts has to be carried out separately in each interval of continuity, leading to 2N
boundary terms of the form

0 0 :s H{E®+E(X))
ds. - -
L, $2 J I B+ E®))

I T lles = (2r) "

sl oE®-G-vE@ L p g w5y (A22)

95,
in addition to (A.13).
By the same arguments we used to conclude (A.21), the HS-norm of the
kernel (A.22) is estimated to be less than or equal to

bn—l
(277) 32 w (A.23)
Jm (n—1)!
[(8/8s1)I, consists of n terms]. Consequently
bn bn—l
ITulbss = 2m) > < (n 2+ 2N —— ) (A.24)
- Jm\ nl (n—1)! |

From this it follows that the series (A.8) converges in the HS-norm for every x,
hence S, (x) is Hilbert-Schmidt. The same holds for S_,(x) as can be seen by
interchanging P, and P_. [

Looking back at the proof, we notice that S, _(x) and S_.(x) are even
HS-entire functions (complex differentiable with respect to the HS-norm in the
whole complex plane) if the external field satisfies the conditions of Theorem 7.
However, to prove Theorem 6 we need only the two operators to be entire in the
ordinary sense and HS for every ». This implies that the determinant A (3.37) is
entire [27].
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