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Helvetica Physica Acta, Vol. 54 (1981), Birkhauser Verlag, Basel

The vacuum structure of the Schwinger model
and its external field problem')

by A. K. Raina®) and G. Wanders

Institut de Physique Théorique, Université de Lausanne, Lausanne, Switzerland?)

(25. VI. 1981)

Abstract. An exact treatment of the effects of external charges localized in a finite region of two
dimensional space-time is used to get a better understanding of massless QED,. Among these effects
we find: creation and absorption of massive bosons, complete shielding of static external charges and
cancellation of constant external electic fields. Furthermore, if the external charges divide space-time
into domains, one has a distinct §-vacuum in each of them. The difference between the values of 6 in

two neighbouring domains is related to the strength of the external charge localized in their common
boundary.

1. Introduction

In this note we continue the study of massless quantum electrodynamics in
two space-time dimensions (QED,) in the covariant Landau gauge that was begun
in [1]. The analysis carried out in [1] emphasized the role of the gauge symmetry
in determining the remarkable vacuum structure of the model. The well known
disappearance of the fermions from the observable spectrum was seen to be a
consequence of the vacuum structure and consequently of the gauge symmetry.
We saw that this vacuum structure is described by a family of sectors labelled by
an angle 6. The gauge symmetry of the model implies that these sectors are
superselection sectors.

In the present work we study the dynamical origin of this spec1al vacuum or
superselection structure, our method being to introduce an external classical
current J, and to study the various responses it induces. This has been the subject
of the well known work of Casher et al. [2], but, since they were mainly interested
in studying the quark-parton model of electroproduction, there is not much
overlap. Our main tool is a straightforward generalisation of the Lowenstein —
Swieca solution of the ‘free’ Schwinger model [3] (we shall frequently use the
work ‘free’ to mean J, =0) to this case. An important feature of this extension is
that it does not affect the 6#-structure of the model. This will become clear in
Section 2 where our solution is described in detail.

In Section 3 we consider the transitions between asymptotic states induced by
an external current of zero total charge and with finite space-time support. We
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find that such a current produces and absorbs 3-particles, the massive, pseudosca-
lar ‘photons’ of the theory. It is amusing to note that while this resembles classical
radiation, in fact radiation is not classically possible in one space dimension.

In Sections 4 and 5 we study the response to the external current J, in the
space-time region where J, is nonvanishing. We take J, to be the current due to
two charges +ae and —ae which are separated initially and then brought together
again after a finite time. In Section 4 we show that the external charges are
completely shielded by the polarization-induced charges even if « is not an
integer. This implies that the constant external electric field between the external
charges is always exactly cancelled [4, 5, 6]. It follows that the only electric field
one can observe macroscopically is the field carried by the X-particles. Since a
constant external field does not produce such particles, it has no observable effects
which can be detected by an electric field measurement.

This does not mean that a constant external field has no observable effects at
all. If we consider the properties of our system in suitable domains A, localized
either outside or inside the space-time loop I' defined by the external charges, we
find a correspondence between its pure states ¥ and observables @ and the states
and observables ¥, ., O;... of the ‘free’ Schwinger model. For each V¥ there exists
a W&.. such that:

(‘P @]&\P‘) (‘Pfreea freeqrfree)

where the operators 0* and Oj,.. represent the same observable localized in A,
resp. with nonvamshlng and Vamshing external current. At fixed ¥, the A-
dependence of Wi .. is such that if ¥f.. belongs to the sector & when A is outside
the loop T, ¥§.. will be in the sector (#+am) when A is inside I'. Consequently
the 6-sensitive chirality carrying observables have different values outside and
inside the loop and reveal the presence of the constant external electric field of
strength —ae inside the loop. There is a transmutation of this field into a chiral
angle am which establishes a connexion between the fractional part of the
external charges and the angle labelling the superselection sectors. Pairs of
external charges induce a domain structure of space time defined by the coexis-
tance of distinct sectors.

2. The solution of the equations of motion

In the covariant Landau gauge (9,A" =0), the model is defined by the
following coupled Dirac and Maxwell equations®):

¥ 8,06 = Tim [y*A, (x+ £)(x) + YAh(x) A, (x )], 2.1

OA, (x)=—e(j, (x)+ T, (x)). (2.2)

In (2.2), j,(x) is the quantized current determined by means of a gauge
invariant point splitting of ¢y, ¢ [3] and J,(x) is a given c-number external
current.

N Our notations are conventional:

'YO:((I) (1)) v‘=(_(l) (I]) Y=y en=e""=1
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The solution of the above equations differs only minimally from the covariant
Lowenstein—Swieca solution [3] of the Schwinger model (J, =0) and can be
expressed in terms of the latter, which we denote by (¢"%, ALS):

P(x) = exp (iy P (x))y-(x),
A, (x)=—(1/e)e,, "¢ (x)+ A5 (x),
¢(x) is a c-number solution of an inhomogeneous Klein—-Gordon equation:
O+ m?)@(x) = eE (x), (2.4)

(2.3)

where m?=(e?/7) and E.,, is the electric field generated by the external current
according to the Maxwell equations:

Eyv 0"Eey(x) = eJ, (x). (2.5)

A general expression of E_,, is:
E..(x)=—e J. dy*Jy(x°, yH) + E,. (2.6)

Coleman [5] has pointed out that the constant E, appearing in (2.6) needs
not be zero in one space dimension and can be associated with ‘charges at
infinity’. We will nevertheless put E, = 0 for the present and later show in Section
4 that a nonvanishing E, does not change the physical content of our results.

We recall that [3]:

P=S(x) = rexp [iVay (3(x) + 7())]: dolx)

- 2.7
ALS(x)=—(Vmle)e,, " (E(x)+7(x)) i)

where ,(x) and 3(x) are, respectively, a canonical massless Dirac field and a
canonical massive boson field; 7n(x) is a massless scalar field with an indefinite
metric:

Y 0.(x)=0, [O+m»E(x)=0, Of(x)=0. (2.8)

While (2.1) is satisfied identically by the solution (2.3), the Maxwell equation
(2.2) only holds on the subspace of states satisfying the subsidiary condition:

(0¥ = (jo . (x) — (1/Vme,, 8"71(x)"¥, (2.9)

where j;,, denotes the negative frequency part of the longitudinal current j;,, and
Jo.. 1S the current associated with ¢4,. An important feature of condition (2.9) is
that it does not depend on the external current J,. Accordingly the analysis of [1]
can be taken over to this case. '

In the subspace of states fulfilling the condition (2.9), the quantized current
reduces to '

fu () =—(1Vme,, 8" C(x)+(1/Vmd(x)) (2.10)
With E,=0, the total electric field is:
E(x)=(8pA; —8,A0)(x) = Eo(x)— (e/NmE(x) + (1N mp(x)) (2.11)

In the following we will always assume that the external current vanishes
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outside a bounded space-time region [0, T]X[—L, L], i.e.:
J.(x)=0 if either x°<0, x°>T or |x'|>L. (2.12)

Then by conservation of the total external charge, this latter is at all times
Zero:

J. dx'Jo(x°, x1) =0 (2.13)

As a result of (2.6) we see that E_,, also vanishes outside the domain
[0, T]x[-L, +L].
In order to define ¢(x) uniquely we choose the retarded solution of (2.4):

B = brax)=e [(dyP Dol y) Euuly). (2.14)

Here D, (x) is the retarded Green’s function of the Klein—-Gordon operator.
Thus ¢..(x)=0 for x°<0 and (y, A,) reduces to (=5, ALS) for negative times.
With this choice the solution (2.3) of the field equations (2.1), (2.2) reduces to the
Lowenstein—Swieca fields for negative times, the latter thereby playing the role of
incoming fields. We indicate this explicitly by replacing the lable ‘L.S.” by ‘in’ in
equations (2.3) (also 3 by 3., (2.7)) which become:

P(x) = exp (iy° e (X)) f™(x),
A, (x)=—(1/e)e,, 0"Pe(x)+ AT(x).

The significance of ¢,.(x) is seen by computing the expectation value of the
total electric field E(x) in the incoming vacuum, the state in which there are no
incoming 3-particles; (2.11) gives:

(E(x))in = Ecxi(x) = (€] ) rer(X). (2.16)

This shows that ¢,...(x) measures the polarization produced by the external
current. Our later discussion makes this observation more precise.

(2.15)

3. Transitions between incoming and outgoing configurations

In this short Section we consider the transition from an ingoing configuration,
observed at negative times, to an outgoing configuration detected after the
external current has been switched off (x°> T). We show that the external current
absorbs incoming X-particles and emits outgoing ones. These processes are
described by a rotation in the Fock space of the 3-particles.

For x°> T, ¢,.(x) satisfies the free Klein-Gordon equation. Let ¢, (x) be
tl})e solution of this homogeneous equation which coincides with ¢,.(x) for
x'>T:

O+ mNbou(x) =0 VX,  ¢elx)=doulx) for x">T (3.1)

Since ¢, satisfies the same equation as the 2-field, we can define an
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outgoing field:

3 (%) = Z10(x%) + (V) poe() (3.2)
and write
5 . 0
), AL = @0, AR for {% 50 (33)
where:
W (x) =2 exp [iVary* Gy () +7())]: tho(x),
(3.3)

AS () = ~(rfe)e, o (B (1) + ().

The incoming and outgoing 3-fields differ by a square integrable function and
consequently are related by a unitary transformation U':

Sou(x) = U3 (x)U. (3.5)

The operator U is nothing but the S-matrix of the transitions induced by the
external current. It is easily seen that it has the form:

U = exp [(i/J?T) j Ax (%) ‘a}iom(x)]. (3.6)

Equations (3.5) and (3.6) show that the incoming vacuum ();,,, the state with
no incoming X-particles, is a coherent superposition of outgoing Z-particles, since
Qin = Unout'

The interaction lagrangian describing the coupling of an external current J,,
with a quantized electromagnetic vector potential A, being equal to —eJ*A,,, one
expects the in-out transitions produced by the external current to be described by

[7]:
U =exp [-ie j (dx)zl‘*(x)Au(x)]. | (3.7)

It 1s quite easy to verify that (3.6) and (3.7) are indeed equivalent, up to a
c-number phase factor. One has to use the relations (2.5) and (2.7) between the
2-field and A, as well as the connection of ¢, with J,.

It 1s amusing to note that we have here an example of radiation in one space
dimension, though with massive ‘photons’, by an external current. This is a purely
quantum phenomenon with no classical counterpart. Classically, the electric field
produced by the external current would be trapped inside the bounded region
[0, TIX[-L,+L]. In fact, we have a nonvanishing electric field in the causal
shadow of the external current as well as a nonvanishing current. For x°> T; it

follows from (2.15) and (2.9) that:
(E(x))in = —(e/m) b oulx),
(]u,(x» = _(1/77)8;1.1; avq"v:)ut(x)-

Looking at the results of this Section from the point of view of the state space
of the Schwinger model [1], we observe that the effects we have considered

(3.8)
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exhibit no #-dependence. We have merely a rotation in the 3-Fock space. We
consequently turn our attention to the region inside the support of the external
current.

4. Charge screening and electric field cancellation

* We saw in Section 3 that the transitions from free ingoing configurations to
free outgoing ones is described by the unitary transformation (3.6), ‘free’ meaning
J, = 0. In this Section and the next one we study the physical properties of a state
in the space-time region where the current J, and the electric field E.,, are not
zero. The external current we consider is obtained, as shown in Fig. 1, by taking
two equal but opposite charges at the origin x = (0, 0), separating them by a
macroscopic distance for a macroscopic time and bringing them together again at
x = (T, 0) (macroscopic = large compared to (1/m)). We thus have a large space-
time loop I' defined by the external charges.

In this Section the charges are kept fixed at x' = +L during the large time
interval [T, T,]. This enables us to study the charge shielding mechanism in terms
of the static response to the external charges. Over the interval [Ty, T,] the

Ax©

T

Ty

e i

-Lés) O @wpL

Figure 1
Two extended external charges of strength @ and —a (in units of e) and width [ are separated at
x = (0, 0), kept at rest at FL during the time interval (T,, T,) and brought together again at x = (0, T).
This set-up leads to a simple static response to the external charges.
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current J, describes a static charge distribution:
J.(x)=8.,0p(x),  pxH=p"(xH+p (x"), (4.1)

where p*(x') are the smooth densities of the positive and negative charges
localized at x' =—L and x*' = +L. Specifically, p*(x') and p~(x') are nonvanishing
only inside the intervals [~L, —L +1] and [L —1, L] respectively (L »[>» (1/m)).
The total charge of each distribution is [ dx'p™(x"') =+« in units of e.

The general solution written down in (2.15) is, of course, valid for x°<[0, T].
However, ¢...(x) does not satisfy the homogeneous Klein—-Gordon equation as in
Section 3 but the inhomogeneous equation (2.4). We show in the Appendix that
®..(x) can be decomposed uniquely into a static part ¢..(x") and a solution ¢;(x)
of the homogeneous Klein—-Gordon equation:

Prer(X) = Pgai(x) + @y (x) for x°€[Ty, Ts], (4.2)
where
b = 12) [y exp (o ' =y DBy 43)
2 " dk 71 : 0_ Iyl
d(x)=—(e"/2) J 3 [J'(wy, k) exp [—i(wx”—kx')]+c.c.] (4.4)
0o k

Here J'(k°, k%) is the Fourier transform of 0(T,—x)J"(x)(w, = (k> +m>)'?).
We have written E_,(y) as a function of y' only in (4.3) since it is static for
y'el[T,, T,].

We use the decomposition (4.2) to define a new 3-field in the interval
[T17 TZ]:

31(x) =20 00) + (V™ P (x). (4.5)

This field is unitarily related to the in-field as in Section 3. Thus the
non-static part of ¢,., is associated with absorption and production of X-particles.
We are mainly interested in the static part in order to isolate the charge shielding

produced by the polarization of the vacuum.

Using (2.10), (4.1) and (4.5) we see that the total current is given by:

j:ft(x) = Iu(x) +j|.:.(x) = Su,O[p(x]) 5 (1/77) al¢stat(x1)]
~ (AN, 83,(x) (4.6)

Our interest lies in the c-number static part of (4.6) Inserting (4.1), (4.3) and
recalling (2.6), this term becomes:

) = 8, [p (6 + (e + o~ () (D], 47
where
P =—bm [ dy'exp[-m lx'~y!flo*(y") 4.8)

are the static polarization charges induced by the external charges. It follows
immediately from (4.8) that these polarization charges shield the external charges
exactly. The charge density p},(x") has an exponentially decreasing tail outside
the interval I_=[—L, —L +1] and so the polarization charge induced in any larger
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interval [—I.—a, —L+1+a] cancels the external charge in I_ up to a term of
order exp (—ma), i.e.:

—L+l+a
| avomeh =—aroem) (4.9)

—L—a

The shielding of the external charges implies that the total electric field (2.11)
reduces to the sum of a residual static field and the field due to the 3-particles;

E(x) = Egulx") + (elNmE, (x), (4.10)
where:
B =de [ dy'etc' =y expl-m x' ~ylo(y"). @11

This field is negligibly small at macroscopic distances from the external
charges.

Equations (4.9) and (4.11) display the charge shielding phenomenon of
massless QED,. They show that this shielding is complete for all values of the
external charge strength «, as is well known [4, 5, 6]. We remark that the picture
of charge shielding as arising from the creation of a definite number of electron-
positron pairs would lead one to suppose that only the integer part of « was
shielded and that a finite residual constant electric field survived.

We can now replace in (2.6) the constant background field E, that we had
dropped earlier. Examining (2.14) we see that we should add a term (w/e)E, to
the expression for ¢,.(x) we used until now. We see, however, that the total
electric field as given in (2.11) remains unchanged, since it involves the difference
E.,(x)—(e/m)d.(x). Consequently, equation (4.10) above is unchanged and thus
polarization effects cancel a constant external background field as well as the field
produced by the external charges +«a. We conclude that a nonvanishing E, cannot
be detected by an electric field measurement.

S. External charges and vacuum structure

We saw in Section 3 that a time-varying external field of compact support
resulted in the absorption and production of 3-particles. In comparison, a
constant external electric field E, introduces merely a constant phase-factor,
exp (iy>(m/e)E,) in the fermion field of the ‘free’ (i.e. J, =0) Schwinger model.
Let us consider now a point inside the space-time loop of Section 4. In a
neighbourhood A of this point lying wholly inside the loop I', we observe that we
have both situations arising. In A we have a constant background external field Er
and, consequently, we should expect to be essentially considering the ‘free’
Schwinger model. We should, however, also see the X-particles produced and
miss the particles absorbed on that part of the boundary of the space-time loop T’
which lies in the backward causal shadow of A. While the external electric field
has the same value Er at all points inside the loop, the Z-particles detected in A
will depend on the location and shape of this domain. We will show that ¢,., has a
decomposition in A of the form ¢, (x) = (7/e) Er + ¢pa(x) where ¢,(x) satisfies the
massive Klein—-Gordon equation. We no longer require the special form of the
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Figure 2
The external charges « and —« define a loop T in space and time. A state exhibits, inside and outside
I', the properties of distinct states of the ‘free’ Schwinger model, belonging to distinct 6-sectors. This is
obtained from an analysis of measurements performed in domains like A.

space-time loop of Section 4, which was selected to allow the extraction of a static
response. In the calculations below we maintain the convention that the constant
term E, in (2.6) is zero; consequently Ep = —ce.

Figure 2 shows the space-time loop I" and the domain A. We choose A to be a
diamond-shaped region, the intersection of a forward and a backward cone, the
diamond lying wholly inside the loop. We can rewrite (2.14) as:

By e= (w/e>[Em(x) - [ (dy)* Dl — y)(DEext)(y)]. | (5.1)

The support of OJE.,, = ¢,, 3J” is the rim of the loop, shadowed in Fig. 2. If
we restrict x to lie in A, the effective support of (IE,,, in (5.1) is the intersection
of its support with the backward causal shadow of A. Therefore, we don’t change
&d.o(x) if we replace (JE,,, by a different function outside this region. Define n(x)
such that:

(1) m(x)=—(w/e) OE,,(x) if x is in the backward causal shadow of A
(i) m(x)=0 if x is in the forward causal shadow

and m(x) is smooth everywhere. This is possible since the regions (i) and (ii) are
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disjoint. Define for x in A:

#a()=(fe) [ @y D~ y)m(y) (5.2)

where D(x)= D, (x)— D,q,(x). From Fig. 2 it is clear that ¢,(x) reduces to the
second term in (5.1) for x in A. Moreover, for x in A we have E.,(x)=—ea so
that we can write (5.1) as:

Prer(x) = —am + Pa(x), x€eA (5.3)

We note that ¢,(x) satisfies the same equation as 3,,(x), i.e. the free massive
Klein-Gordon equation. This comes about since D is the difference of two
Green’s functions.

The representation (5.3) tells us that inside the domain A the solution (2.15)
has the following form:

P(x)=exp (—iy’am)Pi(x), A,(x)=A%(x), (5.4)

where (¢*, A%) is the Lowenstein—-Swieca type solution obtained from (™, A}Y)
through the substitution:

Sin—= Sa=3+ (N A (5.5)

The transformation (5.5) corresponds to a unitary transformation of the Fock
space of the Z-particles and is effected by a unitary operator U, given by an
expression analogous to (3.6).

The constant term in (5.3), however, produces in (5.4) a global chiral
transformation of the Lowenstein—Swieca operator ¢*. We will therefore briefly
recall the status of the chiral transformations of the Schwinger model as discussed
in [1]. We saw that the algebra of observables of the Schwinger model consists of
functions of a chirality carrying unitary operator S tensored with the observables
associated with %(x). Consequently, irreducible representations of this algebra are
labelled by an angle 6, the chiral angle 65 in the notation of [1] which takes the
values 0 = 6; <. Each representation appears in a sector #(8) which is a copy of
the 3-field Fock space with unique vacuum (6).

The fact that the sectors #(6) are the sectors of a superselection rule follows
easily from the analysis of [1]. Consider a superposition W¥=c, ¥, +
c, V¥, (Ve #(0,), YV, #(0,), 6,F# 6,(mod m)). According to [1] we can find an
operator U implementing a strong local gauge transformation such that:

Uv = Clei61w1+C2€i62‘I’2. (5.6)

This shows that ¥ is not left invariant by all gauge transformations: conse-
quently this vector cannot represent a physical pure state. This argument is, of
course, analogous to the well-known argument for the univalence superselection
rule [8].

Coming back to the external field problem, we remember that the state space
1s not affected by the presence of external charges. With the choice ¢ = ¢,., the
building blocks of the solution (2.15) are incoming fields defined on incoming
sectors #;,(0) with incoming vacua ();,(6).

In order to identify the observable implications of the chiral transformation
appearing in (5.4) we consider the chirality changing string operators S.(x, y).
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Formally:
$.00 1) =301 27" exp [ie [ a2 Juiy). (5.7)

A precise definition is obtained by expressing the quantities appearing in
(5.7) in terms of the operator solution (2.15):

S.(x, y) = F.(x, y)SZ(x, y) (5.8)

Here S¥(x, y) is the string operator of the incoming fields and F,(x,y) is a
c-number quantity describing the influence of the external current:

(5 9)=exp {i{ £1010(2) + b~ [ d*e,,0000(2)) 59

It follows from [1], equation (5.12) that on %,,(0) the operators S'’(x, y) have
the form:

SP(x, y) = e*T"(x, y) (5.10)

where T! depends only on 3, and is given explicitly as:
T(x, y)=:exp {i(:l:[iin(x)+iin(y)]—j dz“sm,aviin(z))}: (5.11)
y

The phase factors exp (+£2i6) in (5.10) are eigenvalues of the operators S and
ST mentioned above. The operators S, and consequently also the observables S,
leave the 0-sectors invariant and can be used to label them. Let us, therefore,
consider S.(x, y) when x, y and the path joining them are entirely in the domain
A of Fig. 2. Then from (5.8)—(5.10) and (5.3):

S.(x, y)=exp[£2i(0 +am)]T2(x, y), (5.12)

where T4 is obtained from T by making the substitution (5.5). Since the
transformation (5.5) is effected by the unitary transformation U,, the operator T%
is related to TT by this same transformation. Then, if ¥ is a state of #,,(6):

(W, S.(x, y)U)g = e* (W, U T (x, y) U, ¥)y (5.13)

The right-hand side of (5.13) is the mean value of ULST U, in the state of the
sector #(0+am) corresponding to WV, i.e. the state of #(6+ am) with the same
3,-particle component as V. We can write down an equation similar to (5.13) for
any gauge invariant observable O localized in A. In an obvious notation:

(¥, 00)y = (¥, ULO™U,D)P, ... (5.14)

The incoming form O™ of O is obtained by replacing (y, A,) by (™, A').
Equation (5.14) tells us that, up to effects due to the creation and annihilation of
3.-particles accounted for by U,, the result of a measurement performed in A in a
state of #(;,(6) is the same as the result of the same measurement performed in
the absence of external charges in the corresponding state of #;,(6+ aw). By
making the motion of the external charges sufficiently slow, we can reduce the
absorption and production of X-particles arbitrarily so that U, can be approxi-
mated by the identity. In this adiabatic limit:

(¥, OT)g = (T, O")r (5.15)

8 +ar?
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and so states belonging to ,,(8) behave in A practically as the corresponding
states of #,,(6 +«am) without external charges.

We have seen that a measurement of the electric field in A does not reveal
the presence of external charges outside A. The appropriate local quantities to
measure are the gauge-invariant densities:

x (x) = “P(X)P(x)" =
Xs(x) = “P(x)y P(x) =

In the approximation (5.15) we have:

} 35S (x+e x)£S (x+5, x)). (5.16)

cst. cos (28) outside T,

(@, X)W =~ {cst: cos (2(0 + o)) inside T (5.17)

with similar expressions for xs(x) with cos replaced by sin.

We have a transmutation of the external electric field — e« inside the loop T’
into a shift a7 of the chiral angle. This shift depends only on the magnitude of the
external charges and not on the geometry of the loop I'. This is consistent with
interpretations of 6 as a measure of the charges localized at infinity. Indeed the
constant term E, that we suppressed from (2.6) would correspond to the presence
of such charges. The presence of a nonvanishing E, does not affect the above
analysis; it merely means that we have to replace 8 in the above equations by
0 =0 —(m/e)E,. In other words, it is the angle 6 which is physically relevant, its
decomposition into ¢ and E,’is arbltrary since E, cannot be measured separately.

Our final conclusion is that the superselection sectors of massless QED, are
distinguished physically by the values of chirality carrying string operators and
their local limits xy and xs, whether external charges are present or not. The
changes of the total charge at the left are related to the shifts of the angle defining
the values of x and xs.

Appendix: the decomposition (4.2)

In a first step we rewrite ¢, as in (5.1). In the present case the time
derivative f(x) of [JE.,(x) has a support which breaks into two pieces localized in
(0<x°<Ty) and (T,<x°<T). Inserting

OE...(x) = J dtf(t, xV) (A1)

into (5.1) one gets:

@rfo| 5

k

Prer(x) = 17{(1/ e)E...(x) *% {

0Ty

X [1-cos (w, (0 y*)Je x> | (A2)

if x°e[T,, T,]. The first term in the square bracket of the integral over k and
(1/e)E., give the static part ¢ Of ¢ Using:

[ ayre, v =@y (A3)

and (2.6), integrations by parts lead to (4.3).
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The second term in the square bracket of the k-integral in (A.2) produces ¢;.
It is obviously a solution of the free Klein-Gordon equation. The form (4.4) is
obtained if one notices that

F(x) = € 88,0, 3 = U™ (A4)

The last equality is a consequence of the external charge conservation
a,J*=0.
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