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Helvetica Physica Acta, Vol. 54 (1981), Birkhduser Verlag, Basel

Dispersion relations for Feynman graphs

by E. Remiddi

Département de Physique Théorique, Université de Genéve, 1211 Genéve 4, Switzerland
and
Istituto di Fisica dell’Universita Bologna, INFN, Sezione di Bologna

(1. IV. 1981)

Abstract. Some results of Ref. 1 are reviewed and their application worked out for two, three
and four point amplitudes in perturbative Lagrangian field theory, discussing the relation between
imaginary parts, cutting equations and discontinuities. A simple way is proposed for obtaining
dispersion relations in some invariant variable at fixed values of the others. The argument is based on
Fourier transform formulae for real variable functions and on the choice of suitable kinematical
configurations, without explicit reference to analyticity properties.

1. Introduction

Dispersion relations and the related language (analyticity properties, discon-
tinuities and the like) provide a by now classical tool for the study of strong
interaction physics. In this paper, however, we will be concerned with another
way of using them, which is also of the greatest importance, i.e. for the actual
evaluation, analytic or numerical, of Feynman graph amplitudes in perturbative
Lagrangian field theory.

Dispersion relations for Feynman graphs are usually derived (or justified) in
standard textbooks through the following steps: a parametric representation for
the amplitude, discussion of its Landau singularities, analytic continuation in some
variable and investigation of its analyticity properties, until one eventually obtains
the related discontinuities, to be further used in the dispersion relations, when
desired. It is of course known and emphasized that analyticity relies on the
locality and causality properties of the theory, which are very simple when
formulated in ordinary space-time, but a shorter path between first principles and
above mentioned results seems still missing in the literature.

It 1s the main aim of the present paper to propose a way of shortening the
path from causality to dispersion relations by means of elementary arguments
only (Fourier transforms of real variable functions and ad hoc kinematical
configurations), hoped to provide the reader with do-it-yourself rules for working
out dispersion relations in practical cases. This paper relies heavily on Ref. 1,
which shows how to establish the space-time causality properties of Feynman
graphs by means of direct inspection on each separate amplitude. As stressed
there, that approach is the graph-by-graph version of the order-by-order induc-
tive construction of the renormalized perturbative series of Quantum Field
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Theory as proposed in Ref. 2 and as worked out in a complete and mathemati-
cally rigorous way in Ref. 3. In Ref. 1 causality properties are used to derive an
equation for the imaginary parts, essentially equivalent to the Cutkosky rule [4],
and a wide family of dispersion relations in the energy, however of non-invariant
type. It will be shown here how to extract from them dispersion relations of the
usual invariant form, i.e. in some scalar variable at fixed values of the others, at
least in certain kinematical configurations. That is achieved by suitably taking the
P — o limit of Ref. 5; the way in which it is used here is closer to a later work [6].

As this paper intends to pursue also pedagogical purposes, any effort was
done to make it self-contained and clear. Due to the first reason, the relevant
results of Ref. 1, widely circulated but not in printed form, are reproduced; as a
consequence of the second, the mathematically oriented reader will probably
dislike the poor precision of the used language.

The plan of the paper follows.

Section 1 is the introduction (this section).

Section 2 repeats the relevant arguments and results of Ref. 1.

Section 3 works them out in momentum space and discusses the imaginary
parts of the two, three and four-point amplitudes.

Section 4 deals with the dispersion relations for those amplitudes.

Section 5 discusses the limits of the validity of previous sections results.

For the sake of simplicity, the fully scalar case is taken, where all the
propagators have the same non vanishing mass m and the interaction vertices
involve 3 particles and no derivative couplings; as examples, only the two, three
and four point functions are considered. The extension of the arguments to more
general cases should be straightforward in principle, although complicated in
practice.

2. The causality equations
Let us start by recalling some standard formulae. The Feynman propagator
for a particle of mass m is
d*p —i
2m)* p*+m*—ie

eipx, (1)

A(x) = I

with px =p - X — poxo. By contour integration in p, one has

A(x) = 0(x0)A™(x) + 6(—x0)A™(x) (2)
with
Ai(x):j d’p (2m)8(p*+m?)6(xp,)e™ (3)
(271_)4 p pO . ‘

The following properties are seen to hold (by letting p——p in the above
integrals, for instance)

A(x)=A(—x), (4)
A (—x)=A(x), B )
(A*(x))* = A (x). (6)
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One has further

ARG d*p i -
A= &)= I(Zfﬂ')“ p?+m?*+ie o )
A*(x) = 0(x0)A™(x) + 0(—x0)A™(x). (7b)

Use will also be made of the representation

dko =i .. [ d*%k —i

070

2m ko—ie ens 2m)* ko— i

6(x) = j (2m8(R)e—, ®)

which is easily verified, again, by means of contour integration in k.

A Feynman graph in coordinate space is represented by N vertex points
X1, X3 * * * X suitably joined by lines. The corresponding amplitude F(x;) is (omit-
ting coupling constants) the product of a factor i for each of the N vertices and a
propagator A(x; —x;) for each line joining any two points i, j. With such definition,
F(x;) does not imply any integration and there is no distinction between internal
and external points of the graph.

Given any N-point amplitude F(x;), consider all the related amplitudes
obtained as follows: take the graph representing F(x;); duplicate it as many times
as needed adding circles around some of its vertices in all possible ways (the total
number of such drawings is 2~, including the original); correspondingly to each
graph with some circles, define its amplitude as the product of the following
factors:

i for each uncircled, (—i) for each circled vertex;

A(x; — x;) for each line joining two uncircled vertices x;, X;;

A™(x; — x;) for each line joining a circled x; to an uncircled x;;

A*(x; —x;) for each line joining two circled vertices x; —x;.

The operation of putting circles in a graph is closely related to complex
conjugation. Take indeed any graph with some circles and consider the new graph
obtained by removing the existing circles and putting new circles in all the other
vertices. From the above rules and equation (6) it is immediately seen that the
corresponding amplitudes are the complex conjugate of each other. The graph
with circles on all the vertices, in particular, is the complex conjugate F*(x;) of the
original Feynman amplitude F(x;).

The largest time equation asserts that the sum of 2V ‘underlined’” amplitudes,
corresponding to the 2V graphs circled in all possible ways, vanishes (the original
amplitude F(x;) is included in the sum). The proof is simple. Assume that x{ is the
largest of the time components of the N points x;; group the circled graphs in
pairs, consisting of a graph, where x; is not circled and the other points are in any
circle configuration, and the corresponding graph in which x; is circled and the
other points are in the same configuration. Call s any of the points joined to [; if s
is not circled, there is a factor A(x; — x,) in the first amplitude and A*(x; — x,) in the
second; but, from equation (2)

Al —x)=A"(x,—x,), if xP>x°.

Similarly, if s is circled, there is A*(x, —x;) in the first amplitude and A*(x; —x,) in
the second, but, from equations (7) and (5)

A —x)=A"(x,—x), if x2<x}.
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The factors corresponding to the lines, therefore, do not change; the only change
is the factor (—i) for the graph with the circle in x; as compared to the factor i for
the graph without the circle in x;. The two amplitudes of each pair therefore differ
only in an overall sign, and their sum vanishes.

Picking out the amplitude of the graph without circles, F(x), and the
amplitude of the graph with all the possible circles, F*(x), the largest time
equation can be written as

F(x;)+ F*(x;)=2 Re F(x;) = —F(x,), 9)

where F(x;) stands for the sum of all the amplitudes corresponding to the (2™ —2)
graphs having from 1 to (N—1) circles. (Let us recall here that the argument
leading to equation (9) applies as far as one of the times x? is larger than all the
others).

Suppose now that x% <x9; in this case x2, is not the largest time and the
largest time equation applies separately to the graphs with and without the circle
around x,,. In particular, one can write

0(xp—x0)(F(x;) +F(m, x,) =0, - (10)

where F(x;) is the original amplitude, F(m, x;) the sum of all the amplitudes with
circles not in x,, (equation (10) refers to half of all the 2™ graphs). Similarly, one
has

0(xm— x )NF(x,)+F(n, x,))=0. - (11)

We will now sum equations (10) and (11). The amplitudes in which neither x,, nor
x, are circled (their number is 3 2™) appear in both equation (10) and equation
(11); in the sum they are multiplied by

0(x2—x2)+0(x2—x%)=1.
The sum of equations (10) and (11) therefore can be written as

F(x;)=-F(m,n, x;)— 0(x2— x>)F(m, n; x,) — (x5, — x)F(m, n; x;),

where: F(m, n; x;) is the sum of all the amplitudes with x,,, x, not circled (3 2V —1
terms); F(m,n; x;) the sum of all the amplitudes having x, circled and x,, not
circled (5 2V terms); F(m, n; x;), similarly is the sum of the ;2" amplitudes having
x,, circled and x, not circled.

As an illustration of the above discussion let us look to Fig. 1. The lines in 1
and 2 as well as the arrows are to be disregarded for the moment. Graph 1 of Fig.
1 represents the Feynman amplitude in coordinate space:

F(x1, X5, X3, X4) = i4A(x1 — X3)A(x; — X )A(X3 — x4) A%y — X3)A(xy—X4).
Graph (9), for instance, corresponds to '
iz(_i)zA_(Jh —x3)A7(x; — x4)A*(x3 —Xg)AT(x3— x2) AT (x4 — X5)

and graph (16) is (F(xy, x5, X3, X4))™ .

If, say, x3 is the largest, the pairwise compensations leading to equation (9)
occur within the pairs (1, 3), (2, 6), (4,9) etc. In the notation of equation (10),
F(2; x;), for instance, corresponds to graphs (3,4, 5,9, 10, 11, 15); with respect to
equation (12), F(1, 2; x;) consists of graphs (3,4, 9), F(1, 2; x;) of (5, 10, 11, 15)
and F(1, 2; x;) of (2,6,7, 12).
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3
p 1 2
]:4 /iv\ j[
(1) (2) (3) (4)

(5) (6) (7) (8)
(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 1
A Feynman graph and its related ‘circled’ graphs.

3. Momentum space. The imaginary part

We take now the Fourier transform of the equations established in the

previous section, in order to discuss their content in the momentum representa-
tion.

Let us define the Fourier transform G(p,) of F(x;) through

G =1 | (DoFe) (13)

i

where (Dx) stands for

oo [a) L) emrw(Togn) oo

(we ‘factorize out’ conservation of four-momentum). In above formulae, i runs on
all the points of the graph, j on the incoming (external) lines bringing the
momenta p;, k on the outcoming lines leaving the graph with momenta p, and n
on all the in and out external lines. The conventional factor 1/i in equation (13),
reminds the factor i between § and T matrix (S=1+iT).

Before proceeding, let us make an obvious remark: if

f(x)=f(—x) (15)
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and
f(p)= | dxe ™ f(x) {16)

by letting x— —x in equation (16), one has

f(p) = | dx cos (px) f(x). (17)

If f(x) is complex, equations (17) can be written as

Re f(p) = [dxe(Re f(x),

- (18)
Im f(p) = | dxe(1m f(x).
The extension to more variables is obvious.
For any Feynman amplitude
F(x;)=F(—x,), (19)

because F(x;) is a product of propagators, even under the inversion of all the
coordinates, equation (4). Therefore, in particular

1 .
Im G(p,) =+ [ (Dx)(Re Flx)). (20)
Due to equation (9), equation (20) becomes

Im G(p,) =-;— J.(Dx)F(xi). (21)

Strictly speaking equation (9) was established only if one of the times x{ is the
largest and not, for instance, if two times are equal and larger than the others. We
have therefore to assume (or to verify in a practical case) that the considered
Feynman graph is sufficiently regular in coordinate space so that such equal time
regions do not give finite contributions to equation (21).

One can now insert in the r.h.s. of equation (21) the representations (1, 3, 7a)
and integrate on all the points x;, obtaining the usual four-momentum conserva-
tion at each vertex etc. Recalling that an exponential e®*7Y) = giPE™9=polxo7v,)]
gives a momentum p = (p,, p) flowing from y to x, one finds that a line joining a
non circled to a circled vertex and carrying a momentum p towards the circle
corresponds to (27)8(p,)8(p*+ m?), while lines without or with two circles carry
energy in both directions. The rules are summarized in Fig. 2.

Lines of the type (2) of Fig. 2 are called cut lines and a graph containing cut
lines is a cut graph. Equation (21), which holds for arbitrary values of the
momenta p,, gives the imaginary part of a graph as a sum of cut graphs (Cutkosky
rule [4]). If one goes from the graphs to the S-matrix, by putting the external lines
on the mass shell etc., equation (21) can be used as a starting point for
establishing unitarity equations.

We will now discuss equation (21) in some particular cases.
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P p p
> © G ©
2 -'2 . (2n)0(p°)5(p2+m2) 2 : 2
p+m-ie P +M+le
{n (2 (3)
Figure 2

Graphical rules in momentum space.

A two point (self-mass) amplitude

Let us take again the graphs of Fig. 1, considering this time also the momenta
and the arrows, which are drawn according to the rules of Fig. 2. By working out
the §-function constraints, i.e. by looking at the arrows, one sees immediately that
the cut graphs 3, 4, 8, 9, 13, 14 vanish for any value of the momentum p. In the
cut graph No. 3, for instance, all the three lines bring positive non-zero energy to
the vertex 3, while no line carries out energy, incompatibly with energy conserva-
tion (note, in this respect, that energy can flow in both directions along lines
joining two vertices both without or with circles). Always as a consequence of the
6-functions, one further finds that for a given p the cut graphs (5, 15) and (10, 11)
do not vanish only if p,>+vp*+4m? and p,>vp>+9m? respectively, while the cut
graphs (2,6) and (7,12) do not vanish only for negative values of p,, po<
—Vp?+4m? and p,<—+vp>+9m? respectively. In all cases, the value of the
vanishing cut graphs depends, on invariance grounds, on p*>=p>—p3 and not on
Do, P separately.

If G(p) is the scalar Feynman amplitude for the graph No. 1 of Fig. 1, one
can therefore write

Im G(p) =[6(po—vp*+4m?)+0(po+~p>+4m?)hy(p5 — p°)
+[8(po— VP> +9m?) + 0(py+ P> +9Im?)hs(pd — p). (22)

It is convenient to define a new scalar amplitude H(t) depending only on the
invariant p3— p>

H(p;—p*) = G(p); (23)
equation (22) then reads
Im H(t) = 0(t—4m?)h,(t) + 0(t —9Im?) h;(2). (24)

The real functions h,(t), h;(t) are referred to as the two- and three-particle cut
contributions to the imaginary part of H(t), with thresholds 4m? and 9m?>. The
cut graphs contributing to them can be drawn in the simplified form of Fig. 3. A
solid line drawn across all the cut lines cut the graphs of Fig. 3 in two regions, one

<D <K &

Figure 3
The independent non vanishing cut graphs of Fig. 1.



Vol. 54, 1981 - Dispersion relations for Feynman graphs 371

with circles and the other without the circles, and the circles are not more shown
(the always vanishing cut graphs are omitted for simplicity). From the previous
discussion, one is free to choose the direction of the energy flow across the cutting
line and the cut graphs of Fig. 3 are then seen to be equal to the cut graphs No. 5,
15, 10, 11 or 2, 6, 7, 12 of Fig. 1, depending on the choice.

The vertex amplitude

We consider now the scalar vertex amplitude No. 1 of Fig. 4 (to be
interpreted as a vertex graph in general, not as a particular one). By carrying out
the same detailed analysis bringing from Fig. 1 to Fig. 3 one finds that the total
momentum flowing across the various cutting lines in Fig. 4 can be different in
different cut graphs. It is natural to classify them according to the invariant square
mass of that momentum. More precisely, write the vertex amplitude No. 1 of Fig.
4 as

G(pla P2, p3) = V(_p%7 _p%: _p%) p1+p2 Ps» (25)

where in the r.hs. exphc1t reference is made to the dependance on scalar
variables. One then has, in general,

Im V(a, b, c)=0(a—ay)v(@a, b, c)+8(b—by)v(a,b, c)+0(c—cyv(a, b,c). (26)

The first term in the r.h.s. stands for a possible contribution to Im V(a, b, ¢)
for a above its threshold a, and arbitrary b, c; it corresponds to the cut graph No.
2 of Fig. 4 and the underlining of the variable a in V(a, b, ¢) refers to the square
invariant mass of the cut lines. The interpretation of the other terms of equation
(26) is analogous. (In the actual case of a complicated vertex graph, each term can
consist in turn of several cut graphs). For large enough values of a, b, ¢ any
combination of the three terms in the r.h.s. can contribute at the same time to
equation (26).

Consider again the cut graphs of Fig. 3 and take the energy flowing from left
to right. The contribution of the first cut graph of Fig. 3 to equation (24) is the
two-particle phase space at square energy t, times a vertex amplitude whose
arguments are the square invariant masses of the cut lines and ¢, say V(m?, m?, t).
As t>4m?, i.e. larger than the t threshold for that vertex graph, V(m? m?,t)
develops an imaginary part and becomes complex. That imaginary part is however
compensated by the second cut graph of Fig. 3, which is the complex conjugate of
the first, and the total contribution to equation (24) is therefore real, as expected.

P2
Qg Q
(1) (2)

Figure 4
The vertex graph and its cut graphs.
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The four-point amplitude

Let us consider, finally, the four point graph, No. 1 of Fig. 5. Let the
kinematical conventions and definitions be

P17+ P2=Pp3+ P4,
ai=—pi23 i=17"'=47

s =—(p1+p2)?, (27a)
t=—(p1—pa),
u=—(p1—ps)*

The 7 invariants a;, s, t, u are not independent, but satisfy the familiar relation

s+tttu=a,+a,+as;+a,. (27b)

Finally, the four-point scalar amplitude can be written as

G(pl; p23 p3’ p4) = B(a17 a2: a37 a47 S, t: u)° (28)

One can have, in general, seven different cuts on all the seven invariant variables,
~ although they are not independent; they are shown by the graphs No. 2-8 of Fig.
5. The contribution to the imaginary part of the box amplitude from, say, the
s-cut graph No. 6 will be indicated, by underlining the cut variable, as
b(aq, a5, as, a4, s, t,u); s, will be the corresponding threshold and a similar
notation will be used for the other contributions.

In order to illustrate the structure of the (s, t, u) cuts, it may be convenient to
look at the simple box graphs of Fig. 6. Graph 1 of Fig. 6 represents an ‘s, t box’
and graphs No. 2, 3, 4 its s, t and u cuts. Note that the u-cut has a four particle
intermediate state (to help the eye, the actually cutting of a line is evidenced by a
dot) and splits the original graph into four disconnected pieces. Its value can be
different from zero only if, besides u>16m?, one has also a;>4m? for all the
external invariant masses.

Graphs 5-8 show the similar case of a ‘t, u box’ in which the role of s and u
are exchanged.

(2) (3) (4)

(5) (6) (7 (8)

Figure 5
The four-point graph and its cut graphs.
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o3 Ps /

Py P4

(1) (2) (3) (4)

(6) (7) C: (8)
Figure 6

Two box graphs with their s, t and u cuts.

(5)

To complete this discussion, let us observe that in the case of the vertex, for
instance, there are three different kinds of cuts and three independent variables;
one can then keep two of them, say a and b, fixed and below threshold and let the
third, ¢, vary above its threshold, so that the imaginary part of the vertex is
entirely given by the c-cut. In the case of the box, as already seen, there are 7 cuts
but only 6 independent variables. One can keep constant 5 of them at most; when
the sixth is varied independently, the seventh is also varied according to equation
(27b). In the usual situation of, say, s channel scattering at fixed t, the four
external masses and ¢ are fixed and below threshold, while s varies above
threshold; the imaginary part of the amplitude is then entirely given by

b(al: Gy, A3, 44,8, L, U= ay + a2+a3 + aAs—8— t),

with the dependent variable u also below threshold. _

In next section we will consider another, less usual kinematical configuration,
in which a,, as, a,, s and t are constant; if a, is above threshold and large
enough, u is also brought above threshold by equation (27b) and the imaginary
part of the amplitude is given in principle by the a,-cut and the u-cut at the same
time (see however Fig. 6) and the accompaning discussion). More in general, for
large enough values of the invariant variables, satisfying of course equation (27b),

almost any combination of the 7 cut graphs of Fig. 5 can be simultaneously
different from zero.

4. The real part in momentum space

Let us now turn our attention to the real part of the graph amplitude, as
given by equation (12) (as matter of fact, equation (12) refers to both the real and
the imaginary part, but we will restrict almost always the discussion to kinematical
configurations in which the imaginary part vanishes). By taking the Fourier
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transform of equation (12) one obtains

G(p)=i I(Dx)[F(m, n; x;)+0(xp— xp)F(m, m; x;) + 0(xp, — x)F(m, n; x;)],
(29)

with G(p;), (Dx) defined by equations (13) and (14). As shown in Ref. 1, on
account of the integral representation equation (8), in momentum representation
equation (29) takes the form of a (non-invariant) dispersion relation in an energy.
We will show, in addition, how to rewrite it in the more familiar form of a
dispersion relation in some invariant variable.

The two-point (self-mass) amplitude

We find convenient to illustrate the procedure in various cases, starting as
before from the two-point amplitude represented by the graph No. 1 of Fig. 1.
Let us choose the two points m, n appearing in equation (29) to be the points 1, 2
of the concerned graph; the first term F(m, n; x;) in the r.h.s. will then drop out.
We further take p entering from the left and spacelike, for simplicity, with

p*=p*—ps>0. (30)

The Fourier transform of the second and third terms of equation (29) can
then be depicted by the graphs No. 1 and 2 of Fig. 7. The dotted lines stand for
the Fourier transform of the @-function equation (8); they carry formally a
four-momentum k, which has however only the fourth component different from
Zero

k= (ko, 6).

The remaining part of graph 1 of Fig. 7 represents all the cut graphs having a
circle at the vertex 2 and no circle at 1; the arrows at the extremities of the
cutting line remind the direction of ths energy flow within the cut graph. The
dotted line is not cut; note that the orientation of its momentum k, which is
determined of course by equation (8), is different in the two graphs of Fig. 7.
Recalling equation (21), equation (29) takes the already referred to form of a non-
covariant dispersion relation in the energy k:

1 dk
G(p)=— I -
w J ko—ie

the #-functions corresponding to the arrows of Fig. 7.
We can now use equation (22), keeping for simplicity only one term in the

[e(po+ ko) Im G(p+Kk)+ 0(ko—po) Im G(p—K),  (31)

_ Figure 7
The contributions to equation (29) for the two-points amplitude.
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r.h.s., with threshold t,, instead of the two terms with thresholds 4m® and 9m?;
equation (31) then becomes

G(0) = [ 2[00k + po~VFTF (Do ko~ )
) ky—ie
+60(ko—po— \/52 +to)h((po— ko)* — P*)]. (32)

In order to rewrite it in covariant form, in the first term of the r.h.s. of
equation (32), change the integration variable from k, to

t=(po+ko)>— P>,
by putting, according to the first of the #-functions,

ko=—po+vp>+t; (33)
similarly, put
ko=po+Vp +i | (34)
in the second term. By further using equation (23), equation (32) becomes
1 dt 1 1
H(-p»=— [ + = . ]h 0, 35
=p") m ) oVpP+itl-po+Vpit+t—ic po+Vp +t—ie ® (33)
i.e., unifying the denominators,
1 dt
H(-pY)=—|—— :
=p) wJt+p’—ie hlr) (36)

Equation (36) has the familiar form of a dispersion relation for H(t) in the
invariant variable t = (—p?); it has been obtained, however, as an integral relation,
for spacelike p, between the two real functions of real variable H(—p?) and h(t),
without any reference to analyticity considerations. When continued to time-like
p, (as matter of fact the above derivation applies to time-like p as well) for
(=p®)>t, it develops a discontinuity which is seen to be 2ih(t), i.e. twice the
imaginary part of H(t), as defined in equation (24) - in full agreement, of course,
with the usual relation between discontinuity and imaginary part.

We show now another method for obtaining equation (36) from equation
(35). To that aim, take the components of p to be, for instance,

Po=F,  pspy,p. =P (37)
One has

p*=p*—ps=pi+p3, | (38)
i.e. p? is independent of the value of P. Take now the limit [5, 6]

P— (39)

in equation (35). From equation (33) one has

53— t+p?
ko=(—po+ szH);g 25 -0 - (40)

and from equation 34)
t+p?
2P

ko= (po+Vp*+1) —> 2P+ ) 41)
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Correspondingly, for the two terms of equation (35) one obtains

lim L ! = ! (42)
P—w 2Vp2+t —po+NpPH+t—ie t+p+ie

1 1
li 0; (43)

<lim ——5——=
Fatd 2VpZ+t po+Vpit+t—ie P 2(P2 + 1)

equation (36) is again recovered, provided that the limit can be exchanged with
the t-integration. That is the case if h(t) vanishes fast enough for large ¢t (which is
anyhow required for equations (35) and (36) to make sense). Such asymptotic
behaviour is easily checked for the graph 1 of Fig. 1 (of which h(t) is the
imaginary part).

The discussion of non-convergent graph amplitudes, requiring renormaliza-
tion, can be done according to the following lines (we sketch only the argument,
which can be found in Ref. 1 and in Ref. 2, 3 where it is exploited for the rigorous
inductive construction of the renormalized perturbation series of quantum field
theory). Observe that the cut amplitude is finite (because renormalization in lower
orders, when needed, has been already carried out), so that the divergence is due
to the ky-integration only. Use some regularization prescription (for instance the
continuous dimension [1] one), obtain a meaningful dispersion relation, write it in
a suitably subtracted form and take the ‘non-regularization’ limit. Alternatively
write from the start a suitably subtracted dispersion relation in k,, taking it to be
the very definition of the amplitude (and forget about other forms of regulariza-
tion).

The vertex amplitude

Let us consider the vertex amplitude equation (25), represented by the first
graph of Fig. 4; the contributions to the r.h.s. of equation (29), with m, n equal to
the points 2 and 3 of the graph, are shown in Fig. 8.

The first graph of Fig. 8, corresponding to the first term in the r.h.s. of
equation (29), is the a-cut of the vertex, graph No. 2 of Fig. 4 (to be obtained for
negative pqo, as it corresponds to one circle in 1, no circles in 2 and 3). The second
term in the r.h.s. of equation (29) consists of all the cut graphs with one circle at
the point 3, no circle at 2. They are either b-cuts (circle at 1) or c-cuts (no circle
at 1) and are represented by graphs No. 2, 3 of Fig. 7, where the dotted line
represents as in Fig. 6 the 6-function. The remaining graphs No. 4, 5 of Fig. 8§,
similarly, represent the third term in the r.h.s. of equation (29), which then
becomes, in the notation of equations (25) and (26),

= i0(p1o+VPp3+ao)v(=p3, —p3, —pd)

1 dk =
# [ 0k + a0 —VBT F B0, ~(pa + K ~(pa+ k)

w J ko—ie
+0(ko+pso—vVp3+ co)v(—p1, —(p2 +k)?, —(pstk)*)
+0(ko—pao—+ ﬁ%“" bo)U(_P%, —(p.—k)?, “(Ps —k)?)
+0(ko— pso—VP3+co)v(—p3, —(p,—k)?, —(ps— k)1 (44)
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P2

(1) (2) (3)

(4) (5)

Figure 8
The contributions to equation (29) for the vertex amplitude.

Accordingly to previous conventions, k = (ko, K =0) and the underlining of a
variable refers to the cut in that variable.

Equation (44) can be regarded as a kind of dispersion relation in k,, of non-
invariant type. The first term in the square bracket, for instance, involves the
b-cut of the vertex amplitude, where the first variable a = —p7 is fixed, but the
second and the third variables b, ¢ vary together with k,. A similar interpretation
holds for the other terms. _

We will now show how to convert equation (44) in an invariant dispersion
relation say in b at fixed a, ¢, at least in suitable kinematical configurations. To
that aim, let us take the following explicit values for the components of the
momenta (the first component being the energy)

P1= (Pa P1x> plw P)a
pZ:(_Ps Doxs p2y3 _P)y (45)
P3= (0’ Dix +p2xa ply +p2y’ 0)

They satisfy the conservation requirement p; + p, = ps; they are all spacelike and
give the following negative values for the invariants, independent of P

a=-pi=—(pi,+p1,) <0
b=—p3=—(p3.+p3,)<0 (46)
C :_pgz _(p1x+p2x)2_(p1y +p2y)2<0-

Consider then the first term in the square bracket of equation (44) and
introduce the new integration variable b’ defined as

b'=—(p,+k)> (47)

Due to the 6-function in equation (44) and to equation (45), one has

db’
ko=P+vPZ+b —b, dko= .
0 * VP +b —b
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In the P— o limit

ko=2P, ¢'=—(ps+k)=4P> (49)
If '
v(a, b, c'=4P? — 0, (50)

fast enough to allow the exchange of the P— limit with the b’-integration, in
that limit the contribution of the concerned term to equation (44) vanishes.

Consider now the next term of equation (44) and introduce the new integra-
tion variable ¢’ through |

c¢'=—(ps+k)=c+k3, (51)
so that

k():‘V C’_‘C, dk(): L (52)

2V —c¢

and

b'=—(p,+k)?=b+c'—c—2PVc'-c. (53)
If, again

v(a, b'=—2P~c'—¢, ) P—" 0, (54)

also this contribution vanishes. The same argument applies to the last term of
equation (44), corresponding to the graph No. 5 of Fig. 8.

Consider finally the remaining term, corresponding to the graph No. 4 of Fig.
8. (As it will be seen, it will play the role of the graph 1 of Fig. 6 for the two point
amplitude). Introduce

b'=—(p,— k) (55)
so that
ko=—P+VPPHB—b,  dkg=—m—a . | (56)
2P ib b
In the P— limit
ko= b;,b -0,
dkg db’

ko—ic b —b—ig’ (57)

¢'=—(ps—k)*=c.
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Equation (44) then becomes

Vi bo)=— [P —via b e) (58)
mJb'—b—is

equation (58) is the required integral relation between the vertex amplitude and

one of its cuts, established here in the kinematical configuration of equation (46)

and with the assumptions (50), (54) on the asymptotic behaviour of the cuts; it has

the form of a dispersion relation in the invariant variable b, for fixed values of the

other variables a and c —see in this respect the remarks following equation (36)
and equation (43).

The four-point amplitude

The approach of the previous paragraphs can be easily extended to the
four-point amplitude, apart from the obvious increase in complexity due to its
much richer structure.

Let us consider (without writing it explicitly, for simplicity) equation (29) for
the four-point amplitude equation (28) corresponding to the graph No. 1 of Fig.
5, choosing n, m to be to points 2 and 3, and limiting ourselves, from the very
beginning, to spacelike moment only (see that all the scalar variables of equation
(27) take negative values). The first term of the r.h.s. of equation (29) drops out,
and one is left with the contributions to the non-covariant dispersion relation
depicted in Fig. 9. With respect to the similar previously discussed Figs 6 and 7,
note that each of the graphs of Fig. 9 corresponds to two countributions, differing in
the direction of the energy flow across the cutting line and the dotted line
representing the @-function. One has a total of 8 contributions to the dispersion
relation; each of them is the covolution of the dotted line, the #-function, with a
cut four-point graph. Following as much as possible the notation of equations (27),
(28), the external momenta of the four-point graphs of Fig. 9 are p;, p, and p5, p5.
The values of the last two are

p:=p.xk, p5=psxk, (58)

the two possibilities corresponding to the two different contributions represented
by each single graph in Fig. 8. As a consequence, the scalar variables

at=—(p4)°,

as= _(pé)?,, (59)
- s'=—(p,+py),

u’=—(p,—p5)°

(2) (3)

Figure 9
Contributions to equation (29) for the four-point amplitude.



380 E. Remiddi H.P. A.

depend all on k and vary along with k, in the non-invariant k,-dispersion
relation. On the contrary, the scalar variables a,, a, and ¢t remain constant, i.e.
independent of k, in all the cut graphs of Fig. 9.

We discuss now the k,-dispersion relation in the kinematical configuration

plz(Pa plxa plya P)a

D> = (_P9 D2x> D2ys —P)a (60)
p3 = (Oa p3x9 p3y7 0):
p4 = (0’ Pax, p4y7 0)

It is understood that the unspecified x, y components of the momenta satisfy
equation (27). It is straightforward to extend the analysis already done for the
vertex to the eight contributions from the graphs of Fig. 9. For each of them, we
replace k, by the appropriate integration variable (i.e. the variable in which the
graph is cut) and express in terms of it k, and all the other variables in P—
limit. In most cases some of those variables diverge with P and we drop the
corresponding contributions under the usual assumptions on the asymptotic
behaviour of the Feynman graph and of its cuts. Only one of the two contribu-
tions from each of the graphs 1 and 4 of Fig. 8 are then found to survive 1n the
P — « limit. The result can be written as

1 da’
B(ala 4z, A3, Ay, S, L u) = j’—z__.___ b(aly ai: as, A4, S, t: u’)
wmJdad,—a,—lE =
1 du’
+— j—————— b(a,, a5, as, as, s, t, u'), (61)
U —u-—Ie

where, besides the identity equation (28), one has

s+t+u'=a,+ast+as+a,. (62)

Equation (61) has the required form of an invariant dispersion relation in a, and u
at fixed ay, ai, a4, s and t.

Equation (60), of course, do not provide the only possible kinematical
configuration; in general, each different configuration is expected to give a
different kind of dispersion relations. We will limit ourselves to illustrate one
more case, with the kinematics of equation (63):

P1 Z(Ps Pixs p1y9 P)a

p2 = (05 p2x’ p2y9 0)9 (63)
p3 = (07 p3x’ p3y’ 0)7
p4 - (P7 p4x: p4y> P)

As for equation (60), all momenta are spacelike and momentum conservation is
understood. By carrying out the same analysis as for the previous case, in the
P — limit and under the usual assumptions on the asymptotic behaviour, only
one of the two contributions from each of the graphs 3 and 4 of Fig. 8 is found to
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survive; the result is

1 ds’
B(ah a,, as, Ay, S, 1, u) = I ’ . b(ala a, A3, g, §’: L, u,)
mJs —s—ie
1 du’
A= j——“— — b(ay, az, as, a4, ', L, u), (64)
mJu —u—ie
with
s'+t+u'=a,+a,+as+a,. (65)

Equation (64) can be regarded as an invariant dispersion relation in s and u at
fixed a,, a,, a3, a, and .

As a consequence of equation (27b), both equations (61) and (64) involve
two terms. Concerning the u-cuts, however, see the comments to the simple
graphs of Fig. 5. In the case of the first graph of that figure, the u-cut
contributions drop out from equations (61), (64) for spacelike a,, a1, a,. Equation
(61) then becomes an obvious generalization of equation (57), i.e. a dispersion
relation in one of the external square invariant masses at fixed values of all the
other variables. In the case of the box graph No. 5 of Fig. 6, the u-contribution to
equation (1) remains: this fact might be seen as a consequence of requiring a
constant value of s in a graph whose ‘natural’ variables are t and u. Similarly, for
that same graph the u-contribution remains while the s-contribution drops out
from the fixed ¢ dispersion relation equation (64).

5. Conclusions

Formulae for the imaginary parts of Feynman graphs in momentum space
and for their real parts have been established. The first, valid without restrictions
for arbitrary real values of the momenta, express the imaginary part of a graph as
the sum of all its cut graphs, as illustrated in Section 3.

The equations for the real parts presented in Section 4 have the form of
dispersion relations in some invariant variable, at fixed values of the others. They
are obtained within the realm of real functions, by taking the Fourier transform of
a local causality equation in suitably chosen kinematical configurations; in particu-
lar, all the momenta must be spacelike and all the invariant variables negative, i.e.
outside the physical region (so that the —ig, nicely present in equation (58), (61),
(69), is of no effect there).

In the case of the two-point amplitude, the derivation applies to arbitrary
timelike momentum as well; for positive and above threshold values of the only
existing invariant, the amplitude becomes complex and the dispersion relation
shows that the discontinuity is equal to twice the imaginary part, as obtained by
the cutting formulae. A similar, suitably generalized result is expected to hold for
the other amplitudes too, but the argument of Section 4, at least in its present
form, does not apply to timelike vectors. It is not clear whether such physically
interesting values can be reached with arguments based on real functions tech-
niques only or whether analytic continuation arguments are needed (let us recall
here that the usual expression of a graph amplitude as the integral on internal
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loop momenta of Feynman propagators does define directly the Feynman amp-
litude as a complex number depending on real parameters, namely the external
momenta, allowed to take arbitrary real values). The formulae of Section 4
require also assumptions on the asymptotic behaviour of the amplitudes, to
prevent appearance of subtraction terms and the like; but in our opinion this
problem may be dealt with more easily than the previous one.

Finally, it might be interesting to look for an extension of the formulae
towards two-variable dispersion relations.
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