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Analyticity and Borel-summability of the perturbation
expansion for correlation functions of continuous
spin systems

by Wolfgang Wagner
Institut fur Theoretische Physik der Universitit Ziirich, Schonberggasse 9, 8001 Ziirich

(10. III. 1981)

Abstract. Systems of continuous spins with single spin distribution exp (— u¢>—AP(¢)) on a
lattice are studied. The pair interaction between the spins may have infinite range. It is proved that the
correlation functions are analytic in A for small [A|, Re A =0. The perturbation series in A is

Borel-summable in the ordinary sense if the degree of P(¢) is <4, and in the generalized sense if it is
>4,

1. Introduction

We study a system of continuous spins ¢ € R with single spin distribution
exp [—ud>—AP(¢)] on a lattice of arbitrary dimension. The function P is
assumed to be bounded from below and polynomially bounded from above. Such
systems are of considerable interest because they arise as lattice approximations
of P(¢)-Euclidean quantum field theories [1]. In this case the spins are coupled by
a nearest neighbour interaction

(ks l)¢k¢l3 Ik—ll = 1

In this paper we show analyticity and Borel-summability in A of correlation
functions and free energy. Our method of proof is the cluster expansion used by
Eckmann, Magnen and Sénéor [2] in order to study these questions for (¢?),.
Since our interest comes from statistical mechanics, we allow the interaction to be
of arbitrary range. Then, however, the bounds on the derivatives necessary to
prove Borel-summability can not be obtained by the technique of studying
truncated correlation functions. This method has been worked out only in the
nearest neighbour case. Instead we use term-by-term estimation which, besides of
being more general, greatly simplifies the proof. Nevertheless, the method of -
truncated correlation functions can be adapted to the lattice problem with finite
range interaction. It is then possible to derive cluster properties [2]. Strong cluster
properties have been obtained by Malyshev [3]. For the analysis of the perturba-
tion expansions it is not necessary to use these complicated methods.

For nearest neighbour interactions results similar to ours have been published
(analyticity) respectively announced (Borel-summability) recently by Constan-
tinescu [4]. We apply his method of analytic continuation in Section 8.
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2. Description of the system

Let the pair-interaction
J:7"x7* —>C
(k, 1) — J(k,1)
be subject to the following conditions:
(i) Ik, k)=0VkeZ”
(1) J(k,D)=310,k)Vk,1cZ¥
(iil) J(k+m,1+m)=3(k,1)Vk,1,meZ" (1)
(iv) }; 10, k)| 2 =J <o
keZ¥

Let the function
P:R—R
satisfy

(i) P(¢)=—A V¢ R and some constant A =0.
(ii) P(¢)<B,+B,¢** V¢ and constants B,, B,=0, d eN.

In Sections 8 and 9 we shall assume P to be a polynomial. As the objects we shall
investigate are only trivially changed by the addition of a constant to P(¢), we
shall assume A =0.

Let now A, the volume of the spin system, be a finite subset of Z”. A spin ¢y
at lattice site k€ A may assume any real value. We define a finite measure on the
configuration space R* of our system by

1
d#k(kxj\ d’k) =€Xp ["'2" z Sk, l)d’kd’l] l_[ exp[— “’d’i_AP((bk)] dey (3)

JdeA keA

(2)

for Re p sufficiently large, Re A =0. Now, for () € A and abbreviating X_keg ¢ by
bo we define

-1
Ada) = (Iduﬁ) je-%&-eAS<k">¢-=¢-H e i @) [T dy. (4)

keA ke A\Q

(o) [T doy

keQ)

is a normed complex-valued measure on R®, a probability measure, if u, A and
J(k,1) Yk, 1 are real.

3. Cluster expansion

We choose some translation —invariant ordering on Z* and write the pair-
interaction term

l_[ exp [— 3k, Ddp ]

kileA
k<l
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as

IT [exp -3 Dot ]-1)+11=Y I (exp [k Depdr]— 1)

kileA v (kDevy

k<l
where the sum runs over the subsets y of the set of ordered pairs (k, 1), k<, k,
1€ A. Obviously, the y’s can be represented by graphs on A which allows us to
apply the graph-theoretic notion of connectedness to them.

Let Qc=Z” be finite, non-empty, X 2. Then, with I'»(X) the set of all
connected graphs on X, I‘Q(X) the set of all the graphs on X which connect every
le X\Q to some ke and do not contain any direct connections between
elements of (), we define

cZdx)= Y, [l (e8%&oti—1) [ e nsirP@o dg, (5)
vyelx(X) (k,Dey keX
M py) = H oS0 Db, l‘[ o "HbIAP(d,)
T kleQ keQ
k<l

" Z H (e~ SEDéb, _ 1) H e HPITAP() ()

yelg(X) (k,Dey leX\Q

If Q=X, the sum is put equal to one.
Now S *(¢q) can be written in terms of the o™s and o

ANdo)= Y jﬂ(qu) I[1 do 2 Hjaﬁ(qu) I1 de

X:0eXcA keX\Q [W;,...W,]eP(A) i=1 . 1eW,;
—1
T M [o™ew TT do] )
[Wy,..., W, ]eP(A\X) i=1 ke W, :

where, for X <= 7”, ?(X) is the set of all partitions of X into disjoint subsets.
With the definitions

Z0)= [emarer gg, ®)
0 if |X|<1 |
gz
Sx 'X'I P bx) [1 dob otherwise ®
keX
2% (0% T1 dt it X20
S QX(¢Q) = keX\OQ - (10)
0 otherwise
1 if X=0¢
&N _ §
(exprs x { Y IT §%.  otherwise UL
[W,.... W, ]eP(X)i=1
we get
Z sx(da) Z (exp 2w
Mg =222 HeAX ' (12)

Y. (exp sy

WcA
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Expansion of the denominator leads to

SXba)= Y sUda) 2 (expsw,

XcA WosA\X

DHEEIIS> 11 exp 9w, (13)
h= i=1

Wi#J,l<i=n

This expression can be reordered in the following manner:
Let N (A) be the set of functions

N:ZV—Z.
k— N(k)
the support N of which is contained in A.

For a collection [W,, ..., W, ] of finite subsets of Z* and N as above, we
write [W,, ..., W, ]~ N if the number of sets in [W,, ..., W, ] containing k is
N(k)Vke Z".

Introducing

ax= Y (]l (exps?y, (14)

[Wo..... W, ]~N i=0
WoNX =&

W #Z,1=<i=n

we can write (13) as

ANd)= Y  sHda) 2 q¥ (15)

X:0c=XcA NeN(A)

For the g% a recurrence relation can be derived, which, with

IN|= Y, N(k) (16)

keZ¥

allows induction on |X|+|N|:

Proposition 3.1

1 if N=0
®=
N {0 otherwise (17)
qﬁ_—_qﬁ\{k}_ /Z\/ S%U{k}qﬁgxu{k} fOT kEX, (18)

VeN-Xk}

where x denotes the characteristic function. The sum in the above expression is put
to zero if k¢ N.



Vol. 54, 1981 Correlation functions of continuous spin systems 345

Proof
(17):

o = (exp s9)g=1

N#£0:q%= Y (=1 [] (exps?)w,
[Wo,Wi,....W, ]~N i=0
W, #=J,1<si<n

= Y 0D+ X (—1)"Q(ems@)w

[W(),W] ----- Wn]NN i=0 [W()n le"swn]‘vN
W,#J,1si<n W, #J,0=<i=n
Wo=&  ~
n n
= Y rllexps?y+ X 0[] (exp sy,
[Wy,....W, ]~N i=1 [Wy,....W,]~N i=1
W;#, 1<i<n W, #J,l<i=n
= (.
(18):
ax "™ —qx
oo n
[#%]
= Y (exp s@)wou{k}[): (-n" > I1 (exp s )wi]
Wo(;f\,“_y{f} n=0 (Wi W I-N—Xw, Uk} i=1
WoNX =
= o ), (exp sy,
e e~
Ve N—X(k} Wos N—Xv Uk}
vNnX= Won(VUuX)=

<[ L o s [ (e s

[Wi W, ]~N—Xv Uik —Xw, i=1

@ XUV
= 2 s :
L SvumdN-xvum u
VeN-—-X{k}
VNX =3

It is not difficult to see, that every qx can be calculated by repeated
application of (18) starting from q%5’s

4. Estimates

In this section we derive various estimates which are needed later on to
control the cluster expansion of the correlation functions. By

0<(dpt )’ =g t2¢ P+ &7
we have

|S(k D| Iﬁ(k D|

— (P + dD)=<|3k, 1| b, =<

(P + 7))
and therefore
li”?(k 1|

Rk, Dbcn| < (di+ o1) (19)
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This implies
| e—ﬁ(k,l)«b,tb,l < o|3WDb, | < HISEDI2NS+b])

I e SkDdb, _ 1| < elﬂ‘(k,l)«bktb,l —1=< e[|£§(k.|)|/2](¢:+d>f) -1.

From now on we shall assume
Re u>3=) |30, k)|
k

and

¥, D=1,
a restriction, which can be easily removed by scaling of the ¢,’s. Let

Re p_ |3k, )|
23 2

and p,, w, arbitrary complex constants. Then we have

Kk, 1) = |3, )|

Proposition 4.1

| Habie ~IMDbb bl | < o [Re i K@&D6] , —[Re wy—K (DIdy

Ie—ukcbﬁ(e-—,‘:f(k,l)tbk«b, _ 1)e—u.fb.2 |

H. P A.

(20)
(21)

(22)

(23)

(24)

(25)

< ¢ [Re n,—K&DId] ,—[Re u,—K (A5 3 IS(k, ])|112. (26)
Re u—=S3
Proof
(25) is obvious from (20), (24).
(26):
l e Mti(eI®Dd, _ 1) e Mol | = medi p—Re ] (e[IS(k,l)I/21(¢§+¢$ ’—1)
< ¢ [Re 1, —K&DIb] , —[Re p,—K&DIb] ( e [KE&D—IJEDI2Wb+d]) _ e—K(k,l)(¢g+¢§))

The last factor is bounded by

—[K&D—|3&.D]/2]x -K (k,l)x)

sup (e

x=0

—e
S& D2 1Sk, 1)|
K& D30 D)2 S0k, DY (Re w)/S— |3k, D)

_ 33k, D
Re p—3 |3, |2

which is smaller than & |3k, D|Y? by (22), (23).
Re n—S3
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Here we have used

—ax __ ,—BxYy — 1_3) _axo__<_B_.a
sp (e -et)= (1-5)e<

for B =a >0, where x,>0 solves

d
—ax __ ,—Bx -
I (e e P)=0. O

For €, X finite subsets of Z*, {) < X, we define
T$=2 II 136, DI

v (kDevy

347

(27)

where the sum runs over the trees connecting each 1€ X\ with exactly one k € ().

Lemma 4.2

k}
X »

< V2 V2 X
* 71ZIVRe p\ 12| VRe p(Re 1 —2)

k some element of X.

V273
|Z| VRe p (Re p —S)

|S§(¢n)|“<~(

Proof. For Q= X, k,€Q, ' =0\{k,}, X' = X\{k,} we have

oMy ) = e Ha P [T e IhiMObybrpudi-AP(S)
keQ)

X Z 1-[ (eﬂﬁ(kl, D by _ 1)UQ’UY(¢X’).

YeX\QleY
This recurrence relation, together with
O.{I:}(d)k) = e MOLTAP(dy)

as a starting point, allows for induction on |X]|:
Let us assume that for any ¥ < X’ the inequality

leX’
1>k

13"\
lo¥(dx)| < (R—e_f_——g_) H exp {— [Re i — Z K(k,1

x\al ,
l"[ e~ Re wDoL TR
ke)

Joefrs

(28)

(29)

(30)

(31)
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holds. Then for ) < X follows

|0%(gx)| < e Reudd [ e d®ibousy|

kel
3 X\ @©QUY)|
x Z [H |30 Doud, 1| x (R )
vyex\a|ley ep—S

x [ exp { [Re w— 2, Kk, 1)] ¢5}T§'.UY]
keX' le X’

1=k

_ % x\q| '_ B 5
2 e e g

1>k

x ¥ [T 186, pv2TgeY

YeX\Q1leY

by (25), (26). This yields

Ix\0l
o l= (=) k[!(exp{ - [ Rep— ¥ Kk n}bi}r‘,},

1>k

which completes the induction.
Now we have, by (24)

X\l ;
o= () [Le®arg
X

The estimates (28), (29) then follow from (9), (10), (32) and

J' $(d0) doy, for some keX. 0O

H. P. A.

(32)

Proposition 4.3. Let |largpu|<o<m/2 and A be in a semicircle Sg =

{x |IA|<R, Re A =0} with radius R <B7'(cos ¢)">. Then, for every « with

Bi'(cos ¢)'?—R
B71(cos ¢)"?

there is a constant wo such that the integral Z(A) defined by (8) satisfies

KJ%S‘Z(A)]S(Z_K)JI_%I

for |u|= wo.

0<k<

(33)
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Proof. For B,, B, introduced in (2ii)

dZ(A 2
|

Re A=0

< \/ﬁ [B;+B,d! (Re n) 4] (34)

\/| eose)” 1/2[31 (cos )"[| ul” ]

It follows, that

\/%Tl (1—R(coscp)‘”2[B1+ By me DS.|Z()\)|

(cos )d

< \/% (1+R(cos cp)_”z[Bl By i || d]) & (88)

(cos (p)d

Proposition 4.4 For arg u, A as in Proposition 4.3 we can, for every € >0 find
a po such that for |u|= wo

V21 _ .
Z| VRe w(Re =) e

Proof
V2 _ V23
|Z| VRe w(Re u—3)  |Z|V|ul/m(cos @)"*(|pu| cos ¢ =)
V2

=
k(cos @)"*(|u| cos ¢ — )

(37)

for |w| large enough, which implies that

V2
|Z| VRe w(Re p — )

goes to zero for |u|— oo,

Proposition 4.5
Y Te<eXnb for Q4 5. (38)

X:0csX
| X\Q|=n
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Proof. We proceed again by induction on |X|:
Z Tx=n!" Z Tgu{h ..... K.} (39)

X:0ex Ky,
|X\Q|=n

with TQu,. x1=0, if k; =k; for some i, j, i#]j or if k; € Q for some i.
For 1,€Q, Q' =Q\{l,} we have

Z Tgu{k, ..... K.} Z Z Hl3(11,1)11’2 u{k1 k)

,,,,, k;...k, Ycik,. . k,} leY

<3 (I (Trewr) I miesm @

m=0 i= K i1s---Kn

which is smaller than

n! Z S n=1) _ Ly L3(Q+n—1)
m=0 m

if we assume, that the assertion of the proposition is true for | X|—1. We complete
the proof by observing that we can start induction with

{:izl D

Now, let [k, ..., k,] be a collection of points in Z*, We write [ki,...,Kk,]~
N, if [{k,}, ..., {k,.}]~ N, with N, ~ as defined in Section 3, that is, [k, ..., k,]~
N, if every ke Z” is contained N(k) times in [k, ..., Kk,]. _
If [k,,...,k,] contains r different points occurring ng,...,Hn, times
(n,+ -+ +n,=n), we define
n!

[klﬁ"'skn]!:

, and 1, if n=0, -‘ (41)
n!,...,n! :

Introducing g, 1= 9%, if [Ky,...,k,]~N we get

L a¥=Y Y =2 Y af.siky,... . kI . (42)
NeN(A) n=0_0 NI’;.{\;(:) n=0Kk,...k, €A

Now, with 1€ X, the recurrence relation (18) yields:

Z qgﬁl ----- k"][kl’ R kn]!ﬁl

kl ..... kHEA

= Z q)l(i},{l},k ][kla e kn]!ﬁl— Z [kb DR | kn]!g1

ki,...k, €A ky,...k,eA

- XUk [k, ..., k]!
X ), 8 il , (43)
mz_:l e ‘k][kl,...,km]![km+1,...,kn]!

w)t(xere Sk, Is put equal to zero if two of the arguments are equal and
q k:ft.ill".'.‘..,} i 11is put equal to zero if 1 is not contained in [k,..4, . ...k, ], otherwise

one of the k’s equal to 1 is omitted.
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Lemma 4.6. For |arg p|< ¢ < /2, A € Sg with R<Bj'(cos ¢)"?, C>1, ¢>0
we can find o such that

Y olak ik K T = O, (44)

| ST

if ||= po-

Proof. By (41)

Y ok, sl ks, kNS Z 100 D B ]
Ki,...K,
+ X [ 2 sfu o m!?
m=1 LYk,,...k,
D M i R | TR )
Ko ol
Jim+1l<i=n
with 1=k;
Z lq[J:;fl},kn]l [kl) ey kn]!_l
ky,...K,
+ ) [ 2 5B aal m!?
m=1 Lk,,... Kk,
DT o | PN T
K12, .Kpn
(45)
By (28), (38) we have
Z IS fx, gl MU i 2m3e” ! (46)
ke |Z| VRe p\ |Z]| VRe p(Re n—3)
Now we can show, again by induction, that, for C>1, ¢'>0
Y ok, Ky, Kk, T S CXen 47)

k]:" n

for larg u|<e@ <m/2, e Sg, R< B Y(cos ¢)'?, |u| sufficiently large: Abbreviating

_Vom
|Z| VRe p

and

V2ue® s
|Z]| VRe w(Re p—5)
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we have by (42), (43)

S [ S N o o D ML L
[kq,-..k, ]
ki....Kk, m=1
n b m
=C|XI+n—1 ’n[]_‘i'ﬁ (__) ]
¢ C’ mzj:l C’
for b <c' this implies
X -1 IX|+n—1 _.m a b/C, )
k,....k, ' ' =C (1-1-— g
k1§kn|q[kl ..... K, ] [k ] c ¢’ 1—blc
Choosing
a b/c )
C=\|1+—
( ¢'1-b/c’

we obtain (47). With ¢ = Cc’ the assertion of the lemma follows by Propositions
43.and 4.4. [

S. Convergence of the cluster expansion, thermodynamic limit and analyticity

Let F be a polynomially bounded function on R® and

j [F(¢0)| l'!) e ReHD dgy < K. (48)
Defining for finite A, A2Q

% = [Flonsion ] a6, (49)
we have

Theorem 5.1. For |arg u|<¢ <m/2, A €Sz with R<Bi'(cos ¢)"?* we can
find a pq such that for |u|= wq
(a) the series

Z Z J'F(ff’n)sg(d)n) H doy CI§ (50)

X:Q=XcA NeNA) ke

is absolutely convergent to a limit (F)\ uniformly in A and uniformly in A € Sg.
(b) for any increasing sequence {A,}, . Of finite subsets of Z* with |J,..n A, =2"
and A € Sg the thermodynamic limit

(FY* =lim (F)}, (51)

exists and is independent of the choice of the sequence.
(c) the series

) IF(<!)Q)S§(¢Q) I1 déy - o (52)

X: QX N keQ)
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is absolutely convergent to (F)* uniformly in A € Sg.

Proof. The expressions (50), (52) can be estimated by

2 IIF(¢Q)| IsU o)l [T dén - X laXl<Ke Y »™XTE-CX Y "

X:0cX ke N X: QX n=0
- 1
< rm, I(Q+m—1) M| Q+m
K m);:ob e e
Clﬂl
= K. e3e-1 , 53
ré —0a-o’

where we have used Lemmas 4.2 and 4.6, Propositions 4.5 and 4.4 and

_ V2
|Z| VRe w(Re u—%)’

This shows (a) and the convergence of (52). That (F)* exists and equals (52)
follows from the fact that the right hand side of (51) is just a reordering of the
absolutely convergent series (52). O

!

b=b'ed

Corollary 5.2. Under the conditions of Theorem 5.1 on w and A, (F)\ and
(F)Y* are analytic in A for A in the interior of Sg.

Proof. The assertion follows from analyticity of the gx’s and the integrals

J F(¢a)s5bo) [Tkcq déx and uniform convergence of (50), (52) by a standard
theorem of complex analysis.

6. Bounds on the derivatives of correlation functions

Proposition 6.1. For |arg u|<¢@ <m/2 there are constants p,, R, 0<R<
B1'(cos )? and K, K, such that for |u|=po, A € Sg

IDR(Z(A) )< |ul"? K KEp!® (54)

Proof. With

AN)=Z(0)"Y(Z(\)—Z(0)) (55)
we have

ZA) '=ZO)y'A+AQ) (56)
By (34), with R, <B7'(cos ¢)"* we have

B B,d!
|AQV)|<[A| sup |D,A(A)|<R (cos ¢) ”2[Bl+(cos X |l "‘] (57)
A€ESg, 54

for A € Sg, R <R, which shows that we can find a u, ensuring that
AN |<=co< 1 . (58)
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for |u|= po, A € Sg,. Consequently
ZW T =ZO) " X [-AWT
n=0
converges absolutely and uniformly in A and therefore

oo k
DYZM) H=2z0)" Y (-1 Y l] A(A)
k=0 i=1

prpe=0 P11
Zp =p

for |u|= wo, A € Sk,
For p=1 we have

iprai= [ 1poyre e dg

14
< \/U ) (p )B‘{"Bg(Re ) V2T (dg +3)

ar q=0

<(cos @)™ ), (q)B" “B3(|u| cos @)~ (dq)!

q=0
B, d¢
(cos ¢

< (cos cp)‘m[Bl @ Il ] p!

Therefore, choosing C,, such that

B, d* d]
(cos ¢@)* L

C,. = (cos ‘P)~1/2[B1 +
we can, using (57), (61), estimate (60) for R<R,, |u|=wuo, p=1 by

l

| mln(pk) k p'
V57 Bre 3 2 i cua
™ k 0 I=1 [ ° ! °

PraeessDi =1 pilopelich
X pi=p

H.P. A

(59)

(60)

(61)

(62)

\/'Ml 'C" i mmfp) (l)(RCM)k | Z l_[p!'d —_—

=1 e=1li=1
Zp =p
for A € Sg. By
p—1
Y 1= ( ) 2°
Pi»-- D=1 k-1
Xpi=p

we have now

1o | >~ min (k,p)
iz i<y precy £ 7Y (Mre
k=0

=1

(64)

(65)
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Let us consider the two cases
k=p:

min (p,k)

2C.)" X (llc)(RCu,o)""S(ZC%)"(1+RC%)“s[ZCM(1+RCMO)]”, (66)

=1

k>p:
For R<1/C,,

ec™y” (’;)(Rcw)k-ls(sz)P(RCuo)"_p 2 (k)

1=1 (=0 \

< (%)p(mq,_o)k. (67)

Choosing C%B% and fulfilling condition (62), R with R<R,; and R<1/2C, we
get by (65), (66), (67)

przar =y oo, arreore+ 0+ (2§ ere.y)

R k=p+1
2 )
<\/ﬂ_ p!“\[4C, (1+RC,)PF +2RC, (4C,,) 1-2RC,. (68)
Therefore
T
D2(Z(A) ! s\/M-— 4C, (1+RC,)Tp!? (69)
IDXZ0) 1<\ Ty re (4G 1+ RCTD |
for A € Si. As
T
ZoreE 1 .
Z0 =N e (70)
by Proposition 4.3, (35), (62), the estimate (54) is valid for
1
K K,=[4C,(1+RC,)] O (71)

° " Vm1-2RC,)’

Proposition 6.2. With |arg u|<e¢, ¢, po, R as in Proposition 6.1 we have for
|w|=w, AeSg, meN

IDR(ZA)™™)|<|p|™*(2Ko)™ (2K1)"p!* (72)
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Proof. By Proposition 6.1

IDYZN) ™) <= (pPK)™ Y -———l'[ Kop, 14
P1s-e-sPm =0 pl us pm i=
Y pi=p
<(|u|"*Ko)"K2p Z ( ) ) H PP
..... =1i=
prp
<|pn|™?*(2Ko)™(2K,)"p!* (73)
by (64). O

* Proposition 6.3. For larg w| < ¢ < /2 there are constants ., K,, K5 such that
for |u|=po, ReA=0

o

IX|-1
@ |DK(Z(A)‘*‘S‘§)I$K'2-X‘lul"x“z(——————m‘CO;S(P_S) Kgp!* T (74)

for some ke X where Ty is given by (27),
(b) for any F on R?, Q< 7" finite,

F(do)< K [T loult, | C 1)
keQ)
DD(Z(A)D(I JF(d)Q)Sn(d)Q) l‘[ dé | <K 1‘[ ( ! )UZKIX1| |~!XI/2
§ . ke . erﬂ (2 |lu'| COs ‘P)!k 2 .u’
R X\ b a0
x(———mcow_s) KoplTS  (76)
Proof.
D5(20) [ Fonsitéa I db) =D [Fote [T s ()

by (10). Then, by (32),

DE(Z(A)‘X' JF(cbn)s‘;é(cbn) I1 dcbk)

ke

p=0keX H
Xn=p keX

( ) X\ o
2 pf e
P Re w —S) Kslx

I

— [IFnl o8l TT 1P@ ) doy

keX

< T T o B+ Bag e enmiiag,  (78)
p.‘fo keX keX
Px=D
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where, of course, [, is put equal to zero if k ¢ Q. For integrals of the type occurring
in the last expression, we have bounds

j || (B, + Byp>?)Pe Re /242 g4

p —[dq-+(1+1)/2] [1+1
=<1 (¢)mrm(5t) r(aa+5)

™ 12 B, d*
NS LN Yo
|| (2 cos @)+ (2 cos @)

q=0

|ul'd]pp!d. (79)

This leads to

DY(Z(A )™ JF(%)s“x(%) I1 dow

ke

<& 1 ( L! )1/2[(2 . ‘P)_IIZ\/%]IX‘T?(

rea M2 h-‘«l cos @)

B, g# ]p d—1
X|B{+ p! !
(B anreser |7, . L
¥ px=p

h! )1/2( \/ 2 )'X‘ .
= K, (
Fkl;!). (2 || cos @) cos @ o

Terer )P
X(Z[B1+(2“L|COS @)¢ PITx, (30)

where we have used again

y 152("?) Y 1=2evm

P1seesPm =0 Pi>--sbi=1
Y pi=p Y. pi=p

(80) implies (76) and, with Q =k, F(¢,) =1, ke X, (74) follows.

Lemma 6.4. For |arg u|< ¢ < /2 there are constants R>0, po, K4, Ks such
that for |u|= wo, A € Sg

&

Ix]—1

@ IDgsg=KE(

for some ke X.
(b) for F on R® satisfying (75)

Dx([Fl6a s260) TT dsv)

ke

b S P S__) s Bpld TY
-—<_CFK4 (I‘LICOS@—S 5p: X
(82)
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where

CF=KFH(

ke}

lk! 1/2
(2 || cos @)‘*) ' =

Proof.

D2 | Feositoo I1 dav)

ke)

:qgo (Z)DK*Q(Z(A)—!xi)Dﬁ(Z(,\)IXI jF(d,ﬂ)sgg(%) M dqbk) (84)

ke(}

Propositions 6.2, 6.3 yield

DK(JF(%)SQX(%) I1 dcbk)

ke

X\l
|| cos @ —

X go (Z)(2K1)”“*K§(p —gq)!*q

< CF(ZKOKZ)'X‘( =

X\l
m) (2K1 + K3)pp 14 TQ (85)

This proves (82) and (81). O

Lemma 6.5. For |argu|<¢, ¢, R, wo, Ks, F as in Lemma 6.4 there is a
constant K¢ such that for |u|= uo, A € Sg

X m—|Q|
(a) ’f,;%::‘;mx Di[ﬂ(ba)S%(fba) kl;!) déy | =< CeKg' (m) Kgp!?
' (86)
g\ |
(b) XEX lD;‘iS%‘—KE”(m) K2p!? (87)
|X|l=m

where 1€ Z” is fixed.

Proof. By Proposition 4.5 we need only replace K, by K= e~K,.

Lemma 6.6. For |arg u|< ¢ <m/2 and given constants Cp > 1, ¢p >0, K, >
Ks we can find R>0, p, such that for |w|=wo, A € Sk

Y |D2gX<CElcpKeEpt (88)

N:|N|=n
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Proof. Up to a point, we follow the proof of Lemma 4.6 closely. By (43) we
have

Y |D2aX, aillky, ... K, ]

Kki....k,
. Z IE )\q[{},{l}, k,] [kls cees kn]!“l
1,...,nn ] )
N ( )[ Y |IDisfx,..xlm!™
m=1 q=0 kl ,,,, k.

X Y |Dpagiotke- "m}l[km,...,kn]rl] (89)

[
Now we can show by induction on |X|+ n, that
Y DR, sl [k, - -, Kk, )T < CE e KoY (90)
ki,...k,

for any Cp > 1, ¢p>0, K,> K, A € Sg for some R >0, |arg u|< ¢, provided that
|w| is greater than some w, depending on Cp, cp, K;. With

R
T e — 91
|| cos @ — (91)
we have
Y D%k, i k]
k... Kk,
n p
<CE™legKipti+ L X (p)Kz‘“a”qu!d
m=1q=0 q
XCIS(H“_I '"—m—leﬂa(p_q)'d
K m D
L ) T Z ( 6a) L (E)Ksz’r‘*qsd(p—q)!d]
q=
[ KN\2 "al /K.a\™ K
el (5 3 (2o 5]
D CDL 7P an amzz:o & 7P: qzo K,
P K2 1 1
sc‘]‘;(l+n—lcg’l 1+a(_6) gp!d (92)
C’D 1_K6a1_£5_
L Cch K,

where we have assumed a <cp/Kg and used Lemma 6.5b. As we can make a
arbitrarily small by making || large, (92) proves the lemma. [

Now we are ready to prove the main theorem of this section.

Theorem 6.7. Let F satisfy (75). Then, for |arg u|<¢ < /2 there are con-
stants R>0, wo, K such that for |u|=wo, A € Sg

|IDXF)x|<KPp! (93)
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uniformly in A and
|DY(F)|<K°p!? (94)

Proof. By Theorem 5.1

o<y (°) T ¥

- JF(¢Q)SQX(¢Q) [T dew

q=0 m=0X:0cX ke()
IX|=m
x 3, 2 |Diq¥
n=0 |N|=n
D
< Gr(KoCo) ¥ (P )Ke K- g1
q=0
o KCo3 )"‘ -
" v6Cpay n 95
L (o) Lo )

by Lemmas 6.5a, 6.6. Obviously, this estimate is valid for the finite volume
correlation functions, too.

For c¢p <1, |u| sufficiently large, the series in (95) converge and for some
constant C |D¥F),|, |D2{F)*| are bounded by C(Ks+K;)’p!4. O

Corollary 6.8. Let F, ¢, R, u, be as in Theorem 6.7, {A,},.n as in Theorem
5.1b. Then, for |u|= o, (F)\. converges to (F)* umformly in A for A € Sg.

Proof. By Theorem 6.7, |D,{F)\| is bounded umformly in A, which implies
that the (F)} are equicontinuous. Together with pointwise convergence (Theorem
5.1b) this proves the assertion. [J

7. The free energy

Concerning the thermodynamic function

we shall content ourselves with a few remarks. It follows from (3), that
Difa) = AI 2 (P& (97)
keA

It is not difficult to see, that the thermodynamic limit of (97) exists and equals
(P(d))* for any k, if the cluster expansion converges. The conditions on the
sequence {A,},cnshall have to be chosen somewhat more restrictive (e.g. tending
to infinity in the sense of Fisher). We have then

FA) = lim fa(A) = £(0) + L A (P(S0) (98)

A—co

showing that for f(A) analyticity and bounds on derivatives hold as well as for the
infinite- volume correlation functions.
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8. Extension of the domain of analyticity

In this section we shall show, using a scaling trick due to Constantinescu [4],
that, with P a polynomial of degree 2d, p real the correlation functions can be
analytically continued to a sector {A ||A|<R, |arg A\|<y} with ¢ <d+1)7/2,
where ¢ can be chosen arbitrarily close to (d+ 1)w/2 provided that R and pu,
depending on ¢, are small respectively large enough. Throughout the preceding
sections we have assumed P real-valued and subject to conditions (2i), (2ii). In
this section P’s occur which are complex-valued and satisfy for any 6 < /2

Re (A\P(¢))=— A|A| (99)
for A in the sector {A | |arg| <6} and some constant A and
|P(¢)|<B;+B,¢> (100)

for some constants B,, B,. It is not difficult to convince oneself that the results of
the previous sections hold in that case with Sg replaced by Sg=
{AMAI=R, |arg A| < 6}.

Theorem 8.1. For w real

2d—1
P(¢)=¢>+ Y B.o", B,eC, l1sn<2d-1, (101)
n=1
F(do) =[] ¢t (102)
ke() ]
¢<(d+1)§ (103)

we can find constants R, p, such that for p = p,

(a) analytic continuations (F)A, @‘ of (F)\, (F)* to S% exist,
(b) there is a constant K such that for A € S%

IDY(F)| < K°pe - (104)
IDE(FY| < KPp! (105)

Proof. For a €C, |a|=1 we define

2d-1

P.(d)=0¢>+ Y " B,0" (106)
n=1

" [Fyerp | =3 Tk Doty | [T 7ot doy
: < (107)

JCXP [_ % Sk, l)¢k¢1] H e AT depy
k.1

ke A

gA(Asa):=
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where

I=Y 1,

ke

For g,(A, «) we get by the substitution a'?¢ — ¢ the relation
gA(A’y a) = gA(a _dA: 1) (108)

P, (o) fulfills condition (99) and (100) for any sector S with 8 < w/2 where A, B;,
B, can be chosen so that the inequalities hold uniformly in « for |a|= 1. Now, by
Corollary 5.2, Theorem 6.7 and the remarks preceding Theorem 8.1 we see that
for |arg a| <6 < m/2 we can find R, w, such that for A € S%, u = po ga(A, @) and its
thermodynamic limit in the sense of Theorem 5.1b, g(A, @) are analytic in A and
their derivatives have bounds of the form (104), (105). As (108) carries over to
g(A, a) this proves the theorem, if we choose 6 = ¢/(d +1) and take into account,
that

gaA, ) =(F(¢a))s for AeSk

We obtain constants R, py, K in (104), (105) independent of a because the
estimates used to prove Corollary 5.2, Theorem 6.7 depend on |3(k, 1)|, A, B,, B,
only. (We could also use the fact, that we need only a finite set of a’s for our
analytic continuation.)

9. Borel-summability

Theorem 9.1. For P, F as in Theorem 8.1 there are constants R >0, u, such
that for u, A real, u= wy, 0<A <R (F)), (F)*, fAo(A), f(A) are Borel-summable for
d =2, Borel-summable in the generalized sense for d > 2.

Proof. The theorem follows from Theorem 8.1 and a generalized version of
Watson’s theorem (see [5], chapter XI1.4).

Remark. If P is real and satisfies conditions (2i), (2i1)) with d =2, analytic
continuation is not necessary to prove Borel-summability and P need not be a
polynomial. One has only to apply Nevanlinna’s theorem [6], which is stronger
than Watson’s theorem. It yields convergence of the Borel-sum in a circle lying in
the right half plane and tangent to the imaginary axis at the origin. This theorem
seems to have been rediscovered only recently [7].
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