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Analyticity and Borel-summability of the perturbation
expansion for correlation functions of continuous

spin systems

by Wolfgang Wagner
Institut für Theoretische Physik der Universität Zürich, Schönberggasse 9, 8001 Zürich

(10. III. 1981)

Abstract. Systems of continuous spins with single spin distribution exp (-fi<J>2-AP(<|>)) on a
lattice are studied. The pair interaction between the spins may have infinite range. It is proved that the
correlation functions are analytic in A for small |A|, Re A s=0. The perturbation series in A is
Borel-summable in the ordinary sense if the degree of P(<j>) is =s4, and in the generalized sense if it is
>4.

1. Introduction

We study a system of continuous spins tf> e U with single spin distribution
exp [-ptp2-X.P(tf))] on a lattice of arbitrary dimension. The function P is
assumed to be bounded from below and polynomially bounded from above. Such
systems are of considerable interest because they arise as lattice approximations
of P(<£)-Euclidean quantum field theories [1]. In this case the spins are coupled by
a nearest neighbour interaction

3(k,l)<M>„ |k-l| l.
In this paper we show analyticity and Borel-summability in A. of correlation
functions and free energy. Our method of proof is the cluster expansion used by
Eckmann, Magnen and Sénéor [2] in order to study these questions for (tf>4)2.

Since our interest comes from statistical mechanics, we allow the interaction to be
of arbitrary range. Then, however, the bounds on the derivatives necessary to
prove Borel-summability can not be obtained by the technique of studying
truncated correlation functions. This method has been worked out only in the
nearest neighbour case. Instead we use term-by-term estimation which, besides of
being more general, greatly simplifies the proof. Nevertheless, the method of
truncated correlation functions can be adapted to the lattice problem with finite
range interaction. It is then possible to derive cluster properties [2]. Strong cluster
properties have been obtained by Malyshev [3]. For the analysis of the perturbation

expansions it is not necessary to use these complicated methods.
For nearest neighbour interactions results similar to ours have been published

(analyticity) respectively announced (Borel-summability) recently by Constan-
tinescu [4]. We apply his method of analytic continuation in Section 8.
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2. Description of the system

Let the pair-interaction

(k,l)-»2.(k,l)
be subject to the following conditions:

(i) S(k,k) 0VkeZv
(ii) af(k,l) 3(l,k)Vk,leZv

(iii) S(k+m,l-rm) 3(k,l)Vk,l,m€Zv (D

(iv) I |S(o,k)|1/2 3<œ
keZ"

Let the function

P:R-»R
satisfy

(i) P(tf>)^-A V<^€R and some constant A 5*0.

(ii) P(tf))^Bx + B2tb2d V<£ and constants Bx, B2->0, deN.

In Sections 8 and 9 we shall assume P to be a polynomial. As the objects we shall
investigate are only trivially changed by the addition of a constant to P(tf>), we
shall assume A 0.

Let now A, the volume of the spin system, be a finite subset of Zv. A spin chat

lattice site ke A may assume any real value. We define a finite measure on the
configuration space UA of our system by

dßilx tt>j) exp -\ £ 3(k,l)<f.k^lnexp[-p^-AP(<f»k)]d^k (3)
*eA ' L Z k>|eA -I keA

for Re p, sufficiently large, Re A. s= 0. Now, for fi e A and abbreviating Xken <£k by
tf)n we define

(4)
keA\«

SA(</>n)=(fdpA)
' fe-^.-^(M)*^n e--«-xp(*»> U dfa

* J 'J keA keA\fi

S\(tf>a) û ^k
ken

is a normed complex-valued measure on Un, a probability measure, if p, A. and
3(k,l)Vk,l are real.

3. Cluster expansion

We choose some translation - invariant ordering on Z" and write the pair-
interaction term

û exp[-3(k,l)<M>il
k,leA
k<l
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as

fi [(exp [-3(k,l)<M>i] -D + l] I lì (exp[-^k,l)<M>.]-l)
k.leA -, (k,l)e-,
k<l

where the sum runs over the subsets y of the set of ordered pairs (k, 1), k<l, k,
1 e A. Obviously, the y's can be represented by graphs on A which allows us to
apply the graph-theoretic notion of connectedness to them.

Let ftcZ"' be finite, non-empty, X^ß. Then, with T0(X) the set of all
connected graphs on X, rn(X) the set of all the graphs on X which connect every
leX\fl to some kefi and do not contain any direct connections between
elements of Cl, we define

o-0(tt>x)= i n (c-3(k-,)^*-i)n^,i*^p(<,'k)^k (5)
ysTç^X) (k,l)e7 keX

o-a(4>x)= n e-3(ki)^*. n e^-*1^
k.leO ken
k<l

x I FI (e-3*****—1) Jl e-1**-***** (6)
-,ern(X) (k,l)e-y IeX\n

If Cl X, the sum is put equal to one.
Now S\(tf>n) can be written in terms of the an,s and o-0's:

SM>n)= I (o-°(</>x) Il dfa I Ù U0(<Pw) U dcf>t

X:nsXsA J keX\n [Wt W,]e9>(A) 1 J leW,

xf i n fo-^w,) n dtpJ1 (7)
L[W1,...,Wr]e9>(A\X)t l J keWj -1

where, for XcZ", 3P(X) is the set of all partitions of X into disjoint subsets.
With the definitions

Z(A) fe-^2-^<*> dtp, (8)

0 if|X|=sl
Z"|x| itr^tpx) fi dtf>t otherwise

¦I ke5f

JZ- (9)

„Ui \zm \trn(tf>x) U afa ifX2fì
5jd<Pnl -1 J ksx\n

lO otherwise

(exp s0)x

we get

otherwise

if X=0
r

E FI sw, otherwise
t. [W1,...,Wr]e3>(X)i l

(10)

(11)

I s^tpa) I (exp s0)w
Si(tt>n) ^ ^^ (12)

£ (exps0)w



344 Wolfgang Wagner H. P. A.

Expansion of the denominator leads to

SA«>n)= I sx(tf>n) £ (exps0)Wo
XsA W(1___A\X

X £(-Dn I flCexps0)^ (13)
n=0 WU...,W„ i l

This expression can be reordered in the following manner:
Let Jf(A) be the set of functions

JV:Z"^Z+
k->Ar(k)

the support N of which is contained in A.
For a collection [W0,... ,Wn] of finite subsets of Z" and N as above, we

write [W0, ...,Wn]~N if the number of sets in [W0,... ,Wn] containing k is

JV(k)VkeZv.
Introducing

<ï£= Z (-irn(exP50)Wi (14)
[W0,...,W„]~N i=0

wonx=0
W,#0,l5Sja-:n

we can write (13) as

S\(<f>n)= I sx(<t>n) I tä (15)
XiflsXeA NejV(A)

For the q* a recurrence relation can be derived, which, with

\N\ X JV(k) (16)
keZv

allows induction on |X| + |N|:

Proposition 3.1

if N
otherwise

qg fl '/ * o

lo off "'"-

<7n — 4n ~~ 2^ svu{k}<îtaV-)taVu{k> /or keX, (18)
Vç=N-X{k>

where x denotes the characteristic function. The sum in the above expression is put
to zero if k i N.
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Proof

(17):

qf (exp s0)0 1

N^O:q0= I (-irrï(expS0)w,
[W0,W, W„]~N i=0

W,#0,lsisn

I - D" Il (exp s0)w, + X - D" ft (exp s0)w,
[W0,W, W„]~N i=0 [W,„W,,...,WJ~N i=0

W,#0,lsi=sn Wj#0,O«i«n
Wo=0 -

I (-irri(exps0V+ Z (-^-^(exps0);

0.

[W1,...,W„]~N i=l [W, W„]~N
W,#0,l«i«it W,#0,lsi«n

(18):
„X\{k> X

Z (exp S0)WoU{k} [ Z - D" Z .ft (exp s0)w1
WotatataN^xJJ L"=0 [WI,...,WJ~N-Xw„u(k} i-l J

wonx=0
Z^ s^u{k} £^^ (exps0)Wo

VsN-xST W0sJV-X:vu{l.}
vnx=0 won(vux)=0

xfZ(-Dn Z n(exps0)wl
L„=0 [W, W„]~N-XVu(k}-Xw0 >=1 J

V „0 „XUV r-i~ Z_i »VU{k(4N-XvuW I—I

VsN-X.k}
vnx=0

It is not difficult to see, that every q* can be calculated by repeated
application of (18) starting from q0's.

4. Estimates

In this section we derive various estimates which are needed later on to
control the cluster expansion of the correlation functions. By

0 « (tf>k ± tp,)2 tf>l± Itp^cp. + cpf

we have

-^^(^+^^l^k,!)!^^^!^^^^)
and therefore
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This implies

|e-3(k,i)<f>...i>.| -, ei3(k.D<(>k<(>1i .g e[|a(k,i)i/2](<(.2k-i-<f.; (20)
|g-2f(k,l)<f>k<f>. _ x\ «g giaKI-,1)*,,*,! _ 1 ^ e[|3(k.l)l/2](taJ.2+<(.; _ j t2\\

From now on we shall assume

Rep>3 £|S(o,k)|1/2 (22)
k

and

|3(k, 1)| «1, (23)

a restriction, which can be easily removed by scaling of the <f>k's. Let

K(k,l) |3(k,l)r^>M (24)

and pk, pi arbitrary complex constants. Then we have

Proposition 4.1

|e-M>2ke~:3(k-,),fv,>ie~,vf>? I =s e^[Re M.k-K(k,i)]<f>te-tR<= ^-k^dW, (25)

|c-K-ta.*i.(c-3*.,w>..*. _ \)e-^M |

°.
-g g-fRe u.L-Kfk.l.1tai>2e-rRe u.,-K(k.l)l^ g Ifffc j\|l/2 (26)

Rep—S

Proo/

(25) is obvious from (20), (24).

(26):

lg-M.k<f>2k(g-3(k,l)<J>.tataf>. _ l)c-M.,<i>; I ^ g-Re nk<t>2g-Re M-.ttf /g[|3(k,l)|/2](<(>2+<(>; _ j\
^ g-[Re M.k-K(k.l)]<f,2g-[Re n.-K(k,l.]-f>* (g-[K(k,l)-|3(k,l)|/2](<fr2+<(>2) _ g-K(k,l)(<f>2+<(>f)\

The last factor is bounded by

SUP (e~tK:(k.l)-|3(k,l)l/2]x _ e-taK(k.l)x\
x»0

„ |3(k, 1)1/2
__

|3.(k,l)|
'K(k, 1)- |3.(k, l)|/2 |3(k, 1)|1/2 (Re p)/S- |3(k, 1)|

a|a(k,i)i1/2
Rep-»p(k,l)| 1/2

which is smaller than |3(k, 1)|1/2 by (22), (23).
Re p — S
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Here we have used

sup(e—-e-*) (l-£)
x-sO V p/

ß-a
ß> ß

for ß .s a > 0, where x0 > 0 solves

-^(e"ax-e ßx) 0. D
dx

For fì, X finite subsets of Zv, ûçX, we define

n-l FI |3KM)I1/2 (27)
y (kj)e-y

where the sum runs over the trees connecting each 1 € X\fl with exactly one k e Cl.

Lemma 4.2

X ~~~\Z\ VRe p\\Z\ VRe p(Re p -S)i

k some element of X.

lt>, (28)

l*Ä*n)l<| :
1 II e-^^n (29)

|Z|VRep(Rep-2,)l ken

Proof. For fìcX, k^n, ß' n\{ki}, X' X\{ki} we have

an(tf>x) e-^ki-xp(*ki) JJ g-3(k1,k)<(»kl<(»kg-M4»i-xp(<(.1[)

ken'

x Z Il(«"ai*1',)*M*—l)o^'UY(<ftx'). (30)
YsX\nieY

This recurrence relation, together with

.T»(<k) e-'"»i-*p<«W (31)

as a starting point, allows for induction on |X|:
Let us assume that for any tçX1 the inequality

k*(<M * (idb)™ n. -p j - [». » -1, «h «]fi}tî
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holds. Then for fìsX follows

kn(*x)|«e-Re,t*t? fi le"0*»***»**!

I [n|e-^-'>^-l|x(-^—)''
sxxnLieY \Rep-J/

i-r ~J
JX\(OUY)|

X V' ¦ T-r - -¦ ' ~j

Ys

x n exp
keX'

Re p —

l>k

S

p-IX(k,l)l^WYl

)Xn riexp j- Rep-lK(k,l)Lü
\Re p—3

x Z ni3*i,l)r2T£UY
YsX\nieY

by (25), (26). This yields

(32)

|o-n(^x)l^^|r^)'XXn'inexp|- Rep-ilK(k,l)l^W

which completes the induction.
Now we have, by (24)

/ cv \ |x\n|
kn(<Px)l * ÏT^ û e"'1" »,2)*1 TX.

The estimates (28), (29) then follow from (9), (10), (32) and

sx js{x}(^k)^k for some keX D

Proposition 4.3. Let |arg|u.|=£.p< it/2 and X be in a semicircle SR

{A. | |A| =s R, Re A 3= 0} with radius R < B^^cos cp)112. Then, for every k with

Bx\coS<p)ll2-R
BlHcos cp)112

there is a constant p0 such that the integral Z(\) defined by (8) satisfies

kJ^^\Z(\)\^(1-k)J^ (33)
VIH v|p|

for IpI^Po-
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Proof. For Bx, B2 introduced in (2ii)

dZ(k)
sup

Re X 3=0 dk \P(cf>)e-^^ dob

Vi
Re p

[Bx + B2d\(Rep)-d] (34)

7n(-^r1/2k+7^ri^H']p| L (cos cpY J

It follows, that

l-.R(coscp)-1/2VnO
>|p| \

JiG-(i+R(coS<Pr,BfB1.--?^Ji^H) n os»" |p| \ L (cos cp) J/

Proposition 4.4 For arg p, À as in Proposition 4.3 we can, for every e > 0 find
a p0 such that for \p\^= p,0

V2u3

]Z|VRep(Rep-3D
(36)

Proof

V2ttS V2S

|Z| VRep(Rep-S) |Z| V|p|Mcos <p)1/2(|p| cos <p-3)

V2S

k(cos<p)1/2(|/x| cos <p —S)

for |p| large enough, which implies that

Vlïis

(37)

|Z|VRep(Rep-S)
to zero for |p|->°o.

Proposition 4.5

V J«-g g3(|n|+n-l)
X:fisX
|x\n|=n

for ClfZ. (38)
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Proof. We proceed again by induction on |X|:

I Tx=n!-1 I TRu{ki kJ, (39)
X:n=X ki,...,k„
|X\n| n

with Tnu{ki kj 0, if kj =k, for some i, j, ij-j or if k, eCl for some i.
For lx e Cl, Cl' n\{li} we have

1* Tnu{k„...,k„>= Zj I.! 11 k(1i, 1)| Ti.'u{k„...x)
k.,...,k„ k!,...,k„ Ys{ki,...,k„i le Y

* z (n)n(zis(ii,k.)ii/2) z Tsyfe=y <40)
m=0 ^m> i l \k, ' km+1,...,kn

which is smaller than

„! V _ gSKIO'l+n-l) n j g3(|n|+n-l)
'm=otn\

ii we assume, that the assertion of the proposition is true for |X| - 1. We complete
the proof by observing that we can start induction with

718=1

Now, let [kj,..., kn] be a collection of points in Zv, We write [k1;..., kn]~
N, if [{kj},..., {k„}]~iV, with N, ~ as defined in Section 3, that is, [ki,..., kn]~
N, if every k e Z" is contained N(k) times in [k1;..., k.J.

If [kj, ...,kn] contains r different points occurring nl5..., nr times
(nx + • • ¦ + n, n), we define

[k1,...,kj!=—— -, andl, if n 0. (41)
nx-,...,nTl

Introducing qj>.,...,kJ <?*-, if [k1;... ,k„]~N we get

1 Qn=1 Z ró Z Z qtaL..,k„]taki,-...k„]r1 (42)
NejV(A) n=0NsX(A) n=Ok,,...,k„eA

|N| n

Now, with leX, the recurrence relation (18) yields:

Z qDk1„j.„][ki,...,kj!-1
k, k-sA

Z ^'Uj^-.-.kjr1- I [^....kjr1
k- fceA k.,...,k„eA

x 2, S[i.k„.,kj<![k„ta1,lJ,..X]r. -nr. .-,,, (43)

where sgk,,..kmJ is put equal to zero if two of the arguments are equal and
<ïfvl^i,'.;;3*Î] is Put equal to zero if 1 is not contained in [km+1,..., k„], otherwise
one of the k's equal to 1 is omitted.
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Lemma 4.6. For |arg p| *£ <p <rrfl, A e SR with R <Biocos <p)1/2, C> 1, c >0
we can /ind p0 such that

Z K kJ[k1,....kJ!-1SSC'x'c'\ (44)
k. k„

if IpI^Po-

Proof. By (41)

Z kit kJCk!,...,^]!-1^ Z la^wl!>!,...,kjr1
k, kn k!,...,k„

+ f.\ T. Is0.. jj™!-1Z [ Z l^,...,,
t l Lkta,...,km

x Z kî^^LilCkm.i,...,^]!-1!
km+_,...,k„ J

___i,m+lsi«n
withl=k.

k!,...,kn

+ Z f Z !«£* Jmr1
m l Lk! km

x Z \^^:.tf\^m+2,...,Ki.-1]
km+2 k„ J

(45)

By (28), (38) we have

V i 0 ,-i ^ / V2^3e3 T
Z srtk, i m! « 7= 1 (46)

kl, jj B**-"*-]l |Z|VR^l|Z|VRe^(Rep-3)j
Now we can show, again by induction, that, for Ol, c'>0

Z kDL..,kJ fri, - - -, kj!-1 *£ C'xl+V" (47)
ki k„

for |arg p| =£ tp < rrfl, A e SR, R <B71(cos <j>)1/2, |p| sufficiently large: Abbreviating

V2^
as a

\Z\ VRe p

and

V^Se*
as b

|Z|VRep(Rep-3)
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we have by (42), (43)

Z kDk1,...,kJ[ki)...,kn]r1«C|x|+n-1c"l + aC|x|+"-1 £ bmc,n-x-m
k!,...,k„ m l

for b < c' this implies

Z IqgL-Ajl fri, • • ¦ ,kn]!-^Clx|+"-V"(l+-,^-\
k,._.*„ \ c 1-b/c /

Choosing

o(l +^-^UI1 c'1-b/c'J

we obtain (47). With c Cc' the assertion of the lemma follows by Propositions
4.3. and 4.4. D

5. Convergence of the cluster expansion, thermodynamic limit and analyticity

Let F be a polynomially bounded function on Un and

f \F(<Pa)\ FI e-(Re »™< dtp* « KF. (48)
J ken

Defining for finite A, A 2 fl

<F)A= fF(^»n)SA(^»n) û d*k (49)
J ken

we have

Theorem 5.1. For |arg p|^cp<7r/2, A e SR with R <Bï1(cos cp)1'2 we can
find a p0 such that for |ju.|3=|u,0

(a) the series

Z Z \n4rtds&4>tòll dfr-'qS (50)
X:n=XsA Ne-V(A) J ken=taV(A)

\Xis absolutely convergent to a limit (F)A uniformly in A and uniformly in A e SR.

(b) for any increasing sequence {An}neN of finite subsets of Z" with UneN An =Z"
and A e SR the thermodynamic limit

(F)K lim <F)A„ (51)

exists and is independent of the choice of the sequence.
(c) the series

Z Z fF^s^cpn) û dtf>k • <jx (52)
X:n__.X N J keO
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is absolutely convergent to (F)x uniformly in A e SR.

Proof. The expressions (50), (52) can be estimated by

Z f |F(*n)l Is&M n^kl k£l < KF Z ft'IXXn1^ • C|x| Z c»
X:(igxJ ken N X:n=X n=0

^l^ V L»me3(|n|+m-l.£|n|+m_i
m=0 1—C

pini
- g-tatatagSKlol-i) rsT."Kf€ (l-bO(l-c)' (53)

where we have used Lemmas 4.2 and 4.6, Propositions 4.5 and 4.4 and

6= b be^
|Z|VRep(Rep-3)

This shows (a) and the convergence of (52). That (F)x exists and equals (52)
follows from the fact that the right hand side of (51) is just a reordering of the
absolutely convergent series (52). D

Corollary 5.2. Under the conditions of Theorem 5.1 on p and A, (F)A and
(F)K are analytic in A for A in the interior of SR.

Proof. The assertion follows from analyticity of the q£'s and the integrals
J F(«£n)sx(4>.a) Piken dtpk and uniform convergence of (50), (52) by a standard
theorem of complex analysis.

6. Bounds on the derivatives of correlation functions

Proposition 6.1. For |arg p|=s<p<7r/2 there are constants p0, R, 0<R<
Br1(cos tp)1'2 and K0, Kx such that for |p|^p0, A e SR

|D^(Z(A)-1)|^|p|1/2K0K?p!d (54)

Proof. With

A(A) Z(0)"1(Z(A)-Z(0)) (55)

we have

Z(A)-1 Z(0r1(l + A(A))-1 (56)

By (34), with R^B^cos cp)1'2 we have

|A(A)MA| sup |DxA(A)|^R(cos<Pr1/2fB1+-^7|p|-dl (57)
XeSR. L (COS Cp)a J

for A e SR, R « Rx which shows that we can find a p0 ensuring that

|A(A)|^c0<l (58)
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for IpI^po, A e SRi. Consequently

Z(A)"1 Z(0r1 ZL-A(A)f (59)
n=0

converges absolutely and uniformly in A and therefore

D^(Z(A)-1) Z(0)-1 £ (-1)" I ——^ -riD^A(A) (60)
k=0 Pl,..!X»0 Pl- • ¦ • 'Pk- i"

ÏPi=P

for IpI^Po, AeSRl.
For p 3= 1 we have

|D^A(A)|^^||P(^)|pe-Re^2d(f»

W— Z (p)Brqß!(Repr(d<,+1/2)r(dq+|)
v w q=o \q/

^(coscp)"1'2 X (P)BrqB?(|p|cos<prd"(dq)!
q=o \q/

"(cos<p)"i/2[ßi+(äS|'Ai"d]Pp!d (6i)

Therefore, choosing C^ such that

Q0^(cos<Pr14B1+-^^pödl, (62)
L (cos tp) J

we can, using (57), (61), estimate (60) for R^Rx, |p|^p0, P^l by

Vi
i oo min (p,k) [

T k=0 1 1 \'/ Pi.....pk»l Pl'--"Pfc'i l
Ip. P

VI,,
I °° min(k,p) /r_\

-picï,Z Z (,)(Rcjk-1 Z lip.<dl (63)
¦" k=0 1 1 vt ' p,,....pkssl i l

£Pi P

for A e SR. By

y i (p-1W (64)

XPl=P

we have now

Vili
I °° min(k,p) /jG\

-p!d(2Q/Z Z ,)(«CJk-'. (65)
rr k=0 1=1 v./
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Let us consider the two cases
fc=£p:

min(p.k)

(2CJP Z (j(RCJk-1^(2CJp(l + RCJk^[2CJl + RCJ]p, (66)

k>p:
For R<l/C^

min(k,p) /ig\ k /K\
(2CJP Z (J(RCJk-^(2CJp(RCJk-pZ(J

IV,(2RCJk. (67)

Choosing C^\ and fulfilling condition (62), R with R «.Rj and R < 1/2Q0 we
get by (65), (66), (67)

ID^Z(A)-1)! ^ yj^ p!a([2ÇJl + RCJT(P + D + (|)P
k

£ (2RCJk)

* Vv P !"([4C*°(1 + RCJT + 2RCJ4CJp t _^J (68)

Therefore

iD^ZUr1)^^ J_ [4C.„(l + RCJ]pp!d (69)
' rr i-zKL^.

for A e SR. As

|Z(A)-W-^r-i-- (70)
V TT 1-RC^

by Proposition 4.3, (35), (62), the estimate (54) is valid for

Ko= r-
l-— -, K^CJl + ÄCJ] D (71)

V7H1-2RCJ

Proposition 6.2. With |arg p|^<p, tp, p0, R as in Proposition 6.1 we have for
|p|s=p0, AeSR, meN

|D^(Z(A)-m)|«|p|m/2(2Ko)m(2K1)pp!d (72)
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Proof. By Proposition 6.1

|D£(Z(A)-")K|p|1/2Kor Z „,.P". ,n^'Pi'd
p,,...,pmsO Pl'""-'Pm!_==l

£Pi =P
HI /yyt\ 1

^(\p,\ii2K0rKip\ i r) i Up.'.*-1
1 1 M / p„...,Pi»l i l

Epi=p

«|p|m/2(2K0)m(2K1)pp!d (73)

by (64). D

' Proposition 6.3. For |arg p | =S cp < rr/1 there are constants p0, K2, K3 such that
for IpI^Po, ReA-sO

(a) |D?(Z(A)|x|sf)|^Kkx||p|-|x|/2(rT-^
"

Kpp!dT£} (74)
\|p| cos cp— xs/

for some keX where Tx is given by (27),
(b) for any F on Un, Cl^lT finite,

\F(4>n)\^KF\~[\cf>^, (75)
ken

d^(z(a)ixi [f^s^còn ^ ^KFn L ,'k! y2K^\p.\-™2
J ken ken U2 |p| cos <p)V

/ o* \ |x\n|
x n « Klv[d T" (?6)

\|p|cos<j>-3./

Proof.

D^(z(A)|x| f F(<f,n)sx(^n) FI dtp*) D{ \F(tpn)trx(tt>x) R dtpk (77)
\ J ken / J keX

by (10). Then, by (32),

D^(z(A)|x| \F(tpn)Sx(cpn) û dc^k)|

« Z ~~ \ |F(*n)l |o§(<fcr)l II |F(4>)h d<»k
PkaO,keX H Pk! •> keX

Epi=P keX

/ jj \ |x\n|

Z 11 Pk!^1 f |^kmB1+B2^2d)p"e-(R£^2^ d</>k (78)
»O.keX keX Jpk»0.keX keX
I Pi_=P
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where, of course, .k is put equal to zero if k^ Cl. For integrals of the type occurring
in the last expression, we have bounds

j \cf>\l(Bx + B2cj>2dye-^^'2)^ dcf,

B2dd
(2 cos cp)"

P!,d (79)

This leads to

D£(Z(A)|X| fF(4>n)sS(^n) û d*k
J ken

^**n L, M- ,)1/2[(2cos<P)-^2J^t1'x'ts
ken \(2 |p| cos <p)V L y|p|J

xh+(2Mcos yTp! i nPk!-1
L (2|p|C0S<p) J Pk30,keX keX

Xpi.=p

-IXI/2

(80)

^KFÀl\(2|p|cos<p)dJ WcosJ ^

where we have used again

z i* £ z i^2p-
p„....,pm30 1 1 \ t / p, p,»l

IPl=P 5.Pi=P

(80) implies (76) and, with Cl k, F(<£k) l, keX, (74) follows.

Lemma 6.4. For |arg p|^<p<ir/2 there are constants R>0, p0, K4, K5 such
that for |p| s= p,0, A € SR

/ cv \|X|-1
(a) \Dls^K[x\rr^ -) Klp\dT™ (81)

\|p| cos cp— XS/

/or some k € X.
(b) /or F on R" safis/ying (75)a\ / cv \|x\n|

F(4>a) s%(cpn) U dtp* * QKf n .K.§p!d Tg,
ken / \|p|cos <p-X$/

(82)
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where

I /i \ 1/2

CF XFnL, | TT • (83)
ken \(2 |p| cos (p)1»/

Proo/.

T>rffF(^n)sg(<f»n)n^k)
\J ken /

Z (PÌDrq(Z(A)-|x|)D2(z(A)|x| f F(<frn)sS(*n) II dtp*) (84)
q=oVq/ \ J ken /

Propositions 6.2, 6.3 yield

I ^J ken /
/ cv \ |x\n|

=S CF(2K0K2)'X' ^? Tx
\|P| COS Cp—LrSl

x £ (P)(2K1)p-"K5(p-q)!dq!d
q=o \q/

/ os \ |x\n|
^CF(2K0.K2)'X| j-: - (2K1 + K3)pp!dTg (85)

\|p|cos <p —S$/

This proves (82) and (81). D

Lemma6.5. For |arg/x|sscp, cp, R, p,0, K5, F as in Lemma 6.4 there is a
constant K6 such that for |p| s* p0> A e SR

If / 3 \ m-'n'
Dï F(tpn)Sx(<pn) û dtp* *: CFKZ n Kip !d

J ken \|p,|cos<p-2./
|X|=m

(86)

/ CV \m-l
(b) Z iDSsfl^Krln S) K"p!d (87)

x:iex \|p|cos<p-3/
|X| m

where 1 € Z" is /ixed.

Proo/. By Proposition 4.5 we need only replace K4 by K6 e3K4.

Lemma 6.6. For |arg/x|=s-<p<Tr/2 and given constants CD>1, cD>0, K7>
K5 we can find R>0, p0 such that for |p| 3* p0, A eSR

Z \DUn\ ^C%lcnDK7pld (88)
N:|N|=n
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have
Proof. Up to a point, we follow the proof of Lemma 4.6 closely. By (43) we

Z |ü£q£.,...,kj[ki,...,k„]!-
ki k„

Z |Dfa£^JI3ki.....iür1
k.,...,k„

+ Z Z(P)f Z Iö^,ki,...,km]|mr1
m l q=0 «Ï' Lkl,...,km

x Z lDrqqKrjer>l[km+2,...,kn]r1l
km+2,...,k„ J

(89)

Now we can show by induction on |X| + n, that

Z \Dlq^,...,*J[kx,...,kn]r1^C^+"cSK7p\d (90)

for any CD > 1, c'D> 0, K7 > K5, A e SR for some R > 0, |arg p| =s tp, provided that
|p| is greater than some p0 depending on CD, c'D, K7. With

a=rr^—s (91)
|p| cos <p-X?

we have

Z l^qL...,kJ[ki,:..,kjr1

;Cg:l+n-icjnKpp!d+ £ £ (P)KZ+1amKqsq\d
m=lq=0 «Ï'

x C£l+n-1cïTm-1Kr',(p - q)'"

Cg'—^gf^pf+^ Z (^fZ (PWKrqq!d(p-q)!dl
L cD m=1 \ cD / q=0 \<1' -I

*i,~,K,

• f"i|X|+n-l ,n i+a(^y__i__i
Vcf,/ X6ae" 1 _^5

K7J

K?p!d (92)

where we have assumed a<c'DIK6 and used Lemma 6.5b. As we can make a
arbitrarily small by making |p| large, (92) proves the lemma. D

Now we are ready to prove the main theorem of this section.

Theorem 6.7. Let F satisfy (75). Then, for |arg p\mtp<ir/l there are
constants R > 0, p0, K such that for |p| 3= p0, A e SR

\Dl(F)i\^Kpp\d (93)
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uniformly in A and

|D£<F>x|*£Xpp!d (94)

Proof. By Theorem 5.1

\Dl(F)k\^ Z (P) Z Z Dr[WsS(tó 11 dtp,
q=0 \<!'m=OX:nçX J ken

|X|=m

X Z Z Iö^qx|
n=0 |N| n

* £ (rf^4)" £ * <95>
m=o \|p|cos<p-S/ n=0

by Lemmas 6.5a, 6.6. Obviously, this estimate is valid for the finite volume
correlation functions, too.

For cD<l, |p| sufficiently large, the series in (95) converge and for some
constant C \DPK(F)\\, \Dpx(F)k\ are bounded by C(K5 + K7)"p\d. D

Corollary 6.8. Let F, tp, R, p0 be as in Theorem 6.7, {An}ngN as in Theorem
5.1b. Then, for |p|>p0, (F)a„ converges to (F)K uniformly in A for AeSR.

Proof. By Theorem 6.7, |DX(F)A| is bounded uniformly in A, which implies
that the (F)A are equicontinuous. Together with pointwise convergence (Theorem
5.1b) this proves the assertion. D

7. The free energy

Concerning the thermodynamic function

/A(A) -qlogjdpA (96)

we shall content ourselves with a few remarks. It follows from (3), that

DJaW4I(P(«W>1 (97)
lAl keA

It is not difficult to see, that the thermodynamic limit of (97) exists and equals
(P(<Pìl))k for any k, if the cluster expansion converges. The conditions on the
sequence {A„}neN shall have to be chosen somewhat more restrictive (e.g. tending
to infinity in the sense of Fisher). We have then

/(A) lim/A(A) /(0)+f dA<P(4>k)>* (98)
A^oo -«O

showing that for /(A) analyticity and bounds on derivatives hold as well as for the
infinite volume correlation functions.
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8. Extension of the domain of analyticity

In this section we shall show, using a scaling trick due to Constantinescu [4],
that, with P a polynomial of degree Id, p real the correlation functions can be
analytically continued to a sector {ajJA|=£R, |argA|=£iH with dj<^ya + l)rrll,
where if, can be chosen arbitrarily close to (d + l)-7r/2 provided that R and p.,
depending on dj, are small respectively large enough. Throughout the preceding
sections we have assumed P real-valued and subject to conditions (2i), (2ii). In
this section P's occur which are complex-valued and satisfy for any 6 < irli

Re(AP(4>))3*-A|A| (99)

for A in the sector {A | |arg|=s 0} and some constant A and

\P(tf>)\^Bx + B2cf>2d (1°°)

for some constants Bx, B2. It is not difficult to convince oneself that the results of
the previous sections hold in that case with SR replaced by SR

{A ||A|=SR, |argA|^0}.

Theorem 8.1. For p real

2d-l
P(cf>) cp2d+ X ßnV, ßneC, l^n^2d-l, (101)

n l

F(4n)=Il<rè <102)
ken

<A<(d + l)f (103)

we can find constants R, p0 such that for p ^ p0

(a) analytic continuations <F)A, (F)K of <F)A, (F)x to SR exist,
(b) there is a constant K such that for A e SR

\DpK(F)\\^Kppld (104)

\Dpk(FTk\^Kpp\d (105)

Proof. For aeC, |a|= 1 we define

2d-l
Pa(<f>) tp2d + I a"/2-dßn-T (106)

n l

a"2 [F(^n)exp[-| 2>(k,l)<M.,l û e-"^~KP^ dtp*

gA(A,a) — L-Ajü Ima (i07)

fexpf-^ Z-9*.D<M>.1 FI e-^W dtp*
J L Z kji J keA
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where

i= 2a
ken

For gA(A, a) we get by the substitution a1,2tp -> tf> the relation

gA(A,a) gA(a-dA,l) (108)

Pa(d>) fulfills condition (99) and (100) for any sector SeR with 0 < ir/2 where A, B1;
B2 can be chosen so that the inequalities hold uniformly in a for \a\ 1. Now, by
Corollary 5.2, Theorem 6.7 and the remarks preceding Theorem 8.1 we see that
for |arg a\«s 0 <7r/2 we can find R, p0 such that for A e SR, p. > p0 Sa(K «) and its
thermodynamic limit in the sense of Theorem 5.1b, g(A, a) are analytic in A and
their derivatives have bounds of the form (104), (105). As (108) carries over to
g(A, a) this proves the theorem, if we choose 0 if//(d +1) and take into account,
that

gA(A,l) <F(4>a))A for \eSeR

We obtain constants R, p0, K in (104), (105) independent of a because the
estimates used to prove Corollary 5.2, Theorem 6.7 depend on |2,(k, 1)|, A, Bx, B2
only. (We could also use the fact, that we need only a finite set of a's for our
analytic continuation.)

9. Borel-summability

Theorem 9.1. For P, F as in Theorem 8.1 there are constants R >0, p0 such
that for p., A real, p 3= p0, 0< A <R (F)\, (F)K, /A(A), /(A) are Borel-summable for
d=l, Borel-summable in the generalized sense for d>l.

Proof. The theorem follows from Theorem 8.1 and a generalized version of
Watson's theorem (see [5], chapter XII.4).

Remark. If P is real and satisfies conditions (2i), (2ii) with d 1, analytic
continuation is not necessary to prove Borel-summability and P need not be a

polynomial. One has only to apply Nevanlinna's theorem [6], which is stronger
than Watson's theorem. It yields convergence of the Borel-sum in a circle lying in
the right half plane and tangent to the imaginary axis at the origin. This theorem
seems to have been rediscovered only recently [7].
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