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Bounds on Ising partition functions II:
Application to frustration

by Andras Sito')
Université de Lausanne, Section de Physique, CH-1015 Dorigny

(16. II. 1981)

Abstract. Applying the method developed in I, two families of Ising models, one on the Kagomé
lattice and the other on the square lattice, are studied. The interactions are chosen so that the models
are strongly frustrated. It is shown that the free energy is analytic at every positive temperature. For
the Kagomé lattice models, the correlations in the totally symmetric equilibrium state are analytic for
T >0 and decay exponentially at every temperature, including T = 0.

1. Introduction

In the first paper (I) of this series we developed a method for locating the
zeroes of Ising partition functions. Now we apply this method to study the
analyticity properties of the free energy and the correlations in certain frustration
models. In these systems a competition occurs among the interactions which may
prevent the spins to take up fixed orientations in the ground state. This property is
easy to see on small systems containing a few number of competing interactions:
the correlation functions may remain smaller than unity even at T=0. We will
make use of this fact in the following way. Considering some special models, the
whole set of bonds will be divided into small subsets (each containing 3 or 4
bonds, in our examples) so that frustration occurs in any subset. Using the results
of I, we obtain a high temperature (H.T.) expansion for the free energy and the
correlations in which the ‘small variables’ are the correlations on the
frustrated small subsets instead of the usual quantities, tanh BJ,. Knowing that the
formers do not increase up to unity while the latters do that with 8 going to
infinity, one may expect a better convergence for our modified H.T. series than
for the conventional one.

In this paper we consider examples where the convergence and, therefore,
the domain of analyticity extends over the whole positive temperature axis. A
prototype of the models for which the best results can be obtained is a family of
frustration models on the Kagomé lattice, discussed in Section 2. Beside the
analyticity of the free energy for any positive temperature T, we can prove that
the correlations in the totally symmetric equilibrium state (i.e., the state corre-
sponding to vacuum boundary conditions) are analytic for any T>0 and they
decay exponentially at every temperature, including T = 0. This latter property is
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very peculiar and the author does not know about other classical models with a
similar behaviour. In Section 3, we study a similar family of models on the square
lattice. These are interesting as marginal cases in which the absence of phase
transitions can be proved with our method: one can show that the free energy is
analytic at any T >0 but no result, similar to that valid for the Kagomé lattice, is
obtained for the correlations.

The notations applied in this paper are those introduced in I. We will refer to
the formulas of the first paper as 1.1 etc. ,

The lengthy proof of the exponential clustering on the Kagomé lattice is
relegated to an Appendix.

2. Frustration models on the Kagomé lattice

The Kagomé lattice is a plane lattice built up from regular triangles and
hexagons so that every edge is shared by two different types of polygons.
Therefore, if J,# 0 only for nearest neighbour pairs (nnp), their set B can be
covered with the set {B'} of pairwise disjoint triangles:

Bi=(b',b% b7

where b* are nnp forming a triangle (Fig. 1). The elements of the H.T. Group can
be visualised as graphs of even order, and the members of inf G are the simple
(non-crossing) polygons. Now inf G does not generate G uniquely because
crossing graphs have more than one decomposition. It is easy to see, however,
that {B'} may play the role of the cover {Q'} of Lemma 2: if G° is the subgroup
associated with the cover {B‘= Q' via equation 1.9 then G/G° is uniquely

\/
/\

Figure 1

The bonds of the Kagome lattice and their covering with the set of triangles. The three bonds of any
triangle form an element of inf G and, also, of G°. A general element of G° is a set of triangles. The
six edges of a hexagon form an element of inf G and they represent an element of inf G/G° as well.
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generated by inf G/G°. (This is true because every lattice site belongs to only two
triangles and for any A € G/G° s, has at most one element common with
P(B")/G".) Let us consider now G' and the cosets of P(B') according to G'. The
corresponding quotient group is

P(B')/G'={G, at, a? a3}
where

G'={p,{b', b b’}}
and

a*={b*, {b', b™}}

with (k, I, m)=(1, 2, 3) and its cyclic permutations. The coset a* can be indexed
with the nnp b*; the variable, assigned to a* through equation I.17c, is

Lo = (Zpe + Zpizpm ) [ (1 + Zpezpizpm) (1)

where z, are given by equation 1.30. According to 1.31, for real non-negative
values of B, &, is a pair correlation function belonging to the nnp b*. It is useful
to introduce the variable w,

w, =tanh |J,| B (2)
Then (1) becomes

Gox = sgn Jp (Wyr + p (i) wywym )/ (1 + p (i) Wy wyiwyym )

where

p(i)=[] senJ, 3)
beB!
Let us notice that (3) simplifies to
& = (sgn J)wi/(1—p(i)w; + w?) (4)

if w, = w, for all b € B'. This can be reached by choosing |J,| to be the same for all
nnp in a given triangle.

Let now
N -

B=J B!
i=1

and consider the function

¥(B)= lim i (B) (52
with
In(B)= (1/N) log [R(B)/R°(B)]
~(/N) 3, tog (1+113'(®) (5b)
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Here R is defined by 1.29, R° corresponds to 1.13:

RB)=]1 (1+p(i> I1 wb(B)) (6)

i=1 beB!'

and t{}}'(B) is determined by R and R° through equations 1.17-1.20 and 1.30.
Apart from a term analytic in 8 for 8 €[0,%), ¢(B) is the specific free energy of
the system; we know the existence of the limit (5a) for real B if the potential is
periodic. Notice that ¢(8) depends on B only through ¢,. We have the following
result.

Theorem 1. Consider a periodic nnp potential on the Kagomé lattice which
satisfies the condition that for any triangle B’

I‘Ibi = |Jb'l for b, b'e Bi. (73)

Then
(i) ¢(B) is an analytic function inside the domain

@ ={BeC:|L,(B)|<0.34 for all nnp b}
(11) the limit

lim (o%)p = (o) (8)

exists and is an analytic function of B inside 9, for any finite subset d of the lattice;
moreover,

|<0_d10_d2> _ (O'd1>(0'd2>| < 1066—0.09p(d,;d2} (9)

holds in @ (p(d,, d,) is the distance between d, and d,).

Remarks. 1. The theorem refers to a family of potentials. Apart from the
freedom in choosing |J,| to be different in different triangles one can choose the
signs p(i) and

atk)y=sgn  [I
b € kth hexagon
independently. This is a general property of two dimensional lattices.
2. Let us consider the case when

p(i)=-1 for all B'. (7b)

From (4) and (7a,b) it follows that |{|=3% for any real B. As a consequence,
Y(B) and the correlations in the totally symmetric equilibrium state are analytic at
any real non-negative B and the correlations decay exponentially at any 8 =0,
including B = +oo,

It is easy to check that to any potential satisfying (7a,b) there exist infinitely
many periodic ground states. The simplest example is the antiferromagnet,
J, =—1 for all nnp; this corresponds to q(k)=1. The plot of the domain

|w/(1+w+w?)|<0.34,

relevant in the case (7b), is shown on Fig. 2.
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1-4i

Figure 2

The domain of analyticity (outside the shaded region) on the complex tanh|J,| B plane, for the
Kagomé lattice models. '

Proof. (i) A brief inspection may convince us that for N, of equation 1.15 the
following values can be chosen:

N,=0 fornisoddand n=2,4,8

N6=3! N10=15, N12=6

N,,=2" for n=7.
Putting these values and x =0.34, £ =0.1 into 1.2 one finds that the inequality is
satisfied. The statement is then a consequence of the uniform boundedness of
{¢n(B)} in @ and Vitali’s convergence theorem.

(ii) The existence and analyticity of the correlations (o) follow from the

uniform boundedness of (0%)z in the domain & and from the H.T. existence of
the limit (8). The former is a consequence of 1.27 and the estimate

Ni<2n (10)

which is valid for any d = Z.

If |d| (the number of points in d) is odd, the correlations vanish identically. If
|d,| and |d,| are odd numbers then

I(o_d,udz)l <4.1e0270W,.d)

follows immediately from 1.27 and (10) and the fact that
Nd‘Ud2 =0

for n<p(d,, d,).
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For |d,| and |d,| even, the weaker bound (9) can be obtained. The proof is
lengthy and we leave it to the Appendix.

4. Frustration models on the square lattice

Again, we confine ourselves to nnp potentials. Consider the squares of y A
forming an infinite chessboard and let B® be the set of the four nnp bordering the
ith black square:

Bi={bY, ..., "%

Now | JB' covers the whole set of nnp (Fig. 3). Due to the crossing graphs, inf G
does not generate G uniquely while G/G° (where G° is defined by 1.9) is uniquely
generated by inf G/G°. Using the variables introduced in (2) and (3) we find

&1 =sgn Jp (Wb1 +p(i) ,l].:o_ be)/(l +p(i) ble_L‘ Wb)
and
L = (sgn Jp1Jy2)(Wpr wp2 + (i) Wys W) (1 +p(i) ]._‘[i Wb)

where ¢ is a diagonal pair or it is the set of the four sites of B". If w, = w; for all
b e B' and p(i)=-—1 then { vanishes and

&y = (sgn Jb)We/(1+Wi2)':‘(Sgn )& (11)

Let ¢(B) be defined for the present group G and cover B, by equations (5) and
(6). We obtain the following theorem for /(B).

Figure 3
The bonds of the square lattice and their covering with the set of ‘black’ squares. The four bonds of
any black square form an element of inf G and, also, of G°. A general element of G° is a set of black
squares. The four edges of a ‘white’ square form an element of inf G and they represent an element of
inf G/G° as well.
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13i

1-3i

Figure 4
The domain of analyticity (outside the shaded region) on the complex tanh |J,| 8 plane, for the square
lattice models.

Theorem 2. Consider a periodic nnp potential on the square lattice which
satisfies the conditions (7a,b). Then (B) is an analytic function inside the domain

P, =4{BeC:|4| <} for all b}.

Remarks. 1. The theorem refers to a family of potentials. |J,| may vary from
square to square and the signs

aky=sen [ 4
b € kth white square
can be chosen independently. For periodic potentials satisfying (7) there are
infinitely many periodic ground states. The simplest examples can be obtained by
fixing |J,| =1 and choosing either q(k)=—1 or q(k)=1. These give the so called
‘odd’ and ‘chessboard’ models, respectively, whose free energies were calculated
exactly and found to be analytic for any positive temperature ([1], [2]).

2. The analyticity of (8) follows for any real finite 8. The domain |w/(1+
w?)| <3 is shown on Fig. 4. We cannot prove the analyticity and clustering of the
correlations for all B €[0, %), the reason of which becomes obvious from the proof
of the theorem. However, these properties could be shown, with the method
applied for the Kagomé lattice, in a relatively large H.T. domain.

Proof. Asymptotically, N, =2" is an upper bound for N, (i) and one would
find difficult to improve it. On the other hand, as (11) shows, |5 |=3 if 1/8 =0.
One should choose x =3 in equation 1.2 in order to obtain analyticity for all
B €[0,»). However, with these N,, and x the inequality 1.2 cannot be satisfied for
any £ <1.

We need to use some special properties of the lattice and the potential. Let us
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rewrite the formula 1.18 for ¢}, i¢ a:

=2 & 2 OIT.= 3, LTYT,

beB* seS§ beB!
Sz={SCUBj:lsﬂBf|51aﬂdnb’=b}. (12)
jea b'es

Now t., depends on B through the set of variables &={& =(sgnJp)&be=1.2..
each belonging to a square B*.

Below we show that, with a suitable choice for the numbering of the set {B'},
one can obtain the bound

IENGIES

for all i, if |&|=3 for all k.

(i) If 0=¢ =<3 for all k then it is possible to define a potential and some
‘8 =0 so that they determine just these & through equations (2) and (11). As a
consequence, T2/T, is a correlation and

(&)= Y &{o%)s,

beB!
where
B, = B'.
jea

Now if n(i, «) is the number of those vertices which are shared between B' and
the squares of B, then

, 1 if L a)=<3
Lei=f, & e

13
bt n(a)=2 o

because S:# & for at most two or one b € B, respectively.
(i1) Let

t@= Y [lelle/T ellg

seS,u bes  jes [seS,bes jes
ies

where ¢, is defined for each nnp so that
e =41 if b is the lower nnp of some B*
° 1  otherwise

Clearly, T, is a function of the form of 1.18 or (12): it corresponds to a particular
choice for the signs of the interactions. One can show by elementary methods that

Heb=—1

bes

for all seinf S. Now let 0= §_ =3 for all k, then
.(6)=0 (14)
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for all « and i¢ . Indeed,

fo(£) = — [1 ﬁ/ﬁ (1+ e —n(£)). (15)

semeuU{ yJ€s
ies

Now

s={isj25---sjn}

is a set of indices of squares which form a ring by joining via vertices. The
numbering can be chosen so that neighbouring indices belong to joining squares.
Therefore,

n(jks a —S’k) = n(jk: (8 _{j?.’ cee ]k}) =3
which implies
|Fi_nl&)=1 (16)

by equation (13). Equations (15) and (16) then prove (14).
(iii) Let |&| denote the set {|& |} =1.»... . Suppose that |&|=3 for all k. Then

|te(&)| = —Z.(1&]) (17)
This can be shown by induction. For, t.=0 if |a|<3; if «={1,2,3} and
B', ..., B* surround a white square then

[ti2,l =& - &l - &3] - |&al = —T{12.5y(|€)).

In the nth step,

wol= ¥ el /T -1 el

seme,,u{ =]
ics

Is|
= ¥ Tial/TL i+ .06
seirffS(,U” jes k=2
= —1.(1€])

Here we applied the induction together with (16).

(iv) Consider now the set {B', B?, ...} which covers all nnp of the lattice. Let
the numbering be chosen so that B joins B'*! through a vertex and the whole set
forms an infinite spiral of squares. Then

n(i+1,[i])=2
and (13) implies that

—t[l]l(‘gl)
This, together with (17) proves that

151 o) =3 (18)

for all i. The remaining is an application of Vitali’s theorem.
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Appendix. Exponential clustering

Let d,, d, = A be disjoint sets with even number of points. Now we have to
estimate

(oh0%)g —(ap{o®)p = (T"V=T - THT%)/ T (A.1)
This can be done by dividing (A.1) into terms and estimating them distinctly.

T4%= ¥ Ta=Ti+T,

s einf §41Y42

where

— S S
Tl - z z € 1€ 2T'[N]_Sl_sz
syeinf S84 s, einf §%2
s N8, =

and

L= Z ’ 4 ST[N]ks

seinf §41V42

the prime indicating that no part of s is an element of inf S“. If s occurs in the
summation for T, then |s|=p, the distance of d,; and d,, and

ITTI= Y, @x/(1—e)"=(1-y)'y" (A.2)
Here we used the bound (10) and

5| = x*!

)=

y=2x/(1—¢g). (A.3)

On the other hand,
T4T%=U,+U,
where
U= X Y, 0 Tive Tingss
s1€inf §¥ syeinf $42
s51Ns, =&
and

U= }, > ¢ 2 T gn, T[Ny

s €inf 8§91 s,einf S%
8y nh# g

Now if (s, s,) occurs in the summation for U, then |s,|+|s,|= p. We can use the
simple estimate

card {(sy, s;) € inf S% Xinf S%:|s,|+|s,| =n}=n2" (A.4)
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to obtain the bound

|UL/T?| < Y. ny"<(1—y) 2py~. (A.5)

n=p

Let us consider TT,—U,.

TTl - U1 = Z Z €81€SZ(T[N] T[N]—sl_sz

s,€infS% s,einf S92
s1Ns; =

—TintoTines) =2, {2LA(s1, 52) (A.6)

(s1,52)

where Tpyy= T. Writing up the difference in the parentheses explicitly, one can
see that many terms cancel out. Omitting a lengthy intermediate speculation, we
present the surviving terms:

A(Sls S2) = Z (l-[ gs) T[N]—sl—sz—vT[N]—sl—sz

VeV,
2

- Z ].—.[ ( 1-.[ CS) T[N]—S1—52—V1 T[N]—S1 —82— V2

(v, v0)eVpi=1

3
F Z l-.[ (l-l gs) TEN}—S1—52“V1 —V2 T[N]_S1_52_"3 *

(v1,V2,03)eV 3 i=1

(A7)
With the definition
[S]={{s%,...,st}<inf S:s/Ns/ = for i#j},
the sets V,, Vi,, V.5 are given as follows:
Vo={{st,...,st}el[ST:s!N(s, Usy) # D fori=1,..., k
and s/ Ns; # J, s'Ns,# J for some 1=j=k} |
Vi={{s},....st}elSinis)isINs # T for i=1,..., k}
Vo={{s1,...,site[Sinjs l:8i NS, # T for i=1,..., k}
Via={(vy, v,)€ Vi X V, v, Ny, # T}
where '
v=Us;
Vi23 ={(1, V2, ¥3) € Vi X Vo X [Sintg,—s,] 1 (01, 02) € (VI X V) = Vi
and s N(v,Uv,) # I for any s € v,
and sNv,;# J, sNv,# J for some s € v3}.
Dividing (A.7) by T? and applying (A.3) we find
A(s1, )/ TP = (1—g) 2kl 2l 30 (y/2)! (A.8)

e VUV .UV ss

where [v|=}.,|s|. Let My, M, and M,* be the numbers of elements with
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length n in V,, V,, and V;,3, respectively. It is easy to show that
MO M12 - 2|sll+tszl+n
n?» n —

M};B = Z s, I+ls;l+mymin{m/2,(n—m)/6}+(n—m)
m
< 7.2|s1|+lszl+9n,’8

and therefore
M, = M°+ M2+ M123 < g Qlsil+ls;l+on/8 (A.8)
Moreover, if L(s,, s,) denotes the distance of the supports of s; and s,, then
M,=0 for n<2L(sq,s,) (A.10)

because every ve VyU V,U V,,; connects s; and s, with at least two chains of
triangles. From (A.8)—-(A.10) one finds

|A(s1, 82)/ T?| = 9(1—2"8y) 1(2/(1—g)?):I Il (218 y )2 lors), (A.11)
Another trivial bound comes from 1.19 and 1.21:
|A(sy, $2)/ T?|=2(1—g) 1, (A.12)

Now we are able to estimate (TT; — U,)/T>. Let n be some positive number; we
get

(TT,— Uy)/T?= Y A, o)/ T?

(s1,82):]s1l+[s2|<mp

+ Y A, s)/T?

(s1.82):|s1|+s2l=mp

=A_+A..
Using (A.3), (A.4) and (A.11) together with
L(sq, s2)=p—|sq|—|sal
we find that
|A<|=a(x, £)b(x, &5 m)°
a(x, e)=10.7(1-e —2°2x)(1—¢e) " (1—-2"*x)"'x

b(x, e;m)=20""%x2"(1-¢)2. (A.13)
To obtain a bound for A., we apply (A.3), (A.4) and (A.12). These give

|AL|=2(1-y)*npy™. (A.14)
Now we put

x=0.34

e=0.1

which were found to satisfy 1.2, and choose n so that
b(x, &;m) = (2x/(1—¢))™
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Substituting these values into equations (A.2), (A.5), (A.13) and (A.14) we obtain
Ko“o®)p —(o)p(0™)s| < | To/ T|+|U,/ T?| +]|A| +| AL

S60pe—0.o9lp< 106 . ewo_ogp
which is true for all B and therefore gives equation (9).
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