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Bounds on Ising partition functions I

by Andras Siité")
Université de Lausanne, Section de Physique, CH-1015 Dorigny

(16. II. 1981)

Abstract. The partition function Z of an Ising model can be considered as a polynomial of certain
variables. The localization of the zeroes of this polynomial allows to determine the domain of
analyticity of the free energy. We describe a new method which provides with domains where Z is not
zero and permits to give bounds on Z and the correlation functions in these domains. Qur method is
expected to work particularly well in determining the high temperature domain of analyticity for Ising
frustration models.

1. Introduction

Many of the rigorous methods to discuss the analytical properties of the free
energy of statistical ensembles originate in the celebrated paper of Lee and Yang
[1]. In their treatment, Lee and Yang considered the partition function of a
ferromagnetic Ising model as a polynomial of z=exp (—2Bh) where B is the
inverse temperature and h is the external magnetic field. Basing on a theorem for
polynomials of several complex variables (named ‘circle theorem’) they proved
that all the zeroes of the partition function lie on the unit circle, |z|=1. This
implied the analyticity of the free energy for real non-zero values of h. Perhaps
the most successful extension of this method was due to Asano [2] and Ruelle [3].
Here again, the starting point was a so called ‘Contraction theorem’ on polyno-
mials by which the zeroes of the partition functions of models with non-
ferromagnetic interactions could be localized and bounds on the domain of
analyticity of the free energy were obtained (see, e.g., Sarbach and Rys [4] and
Gruber et al. [5]).

This work, presented in two papers, is intended to provide with a powerful
Lee-Yang type method for discussing the analytical behaviour of the free energy
and the correlations in the so called frustation models. In these models, the
different interactions compete with each other as to their effect on the orientation
of the spins. The consequences of this competition are, perhaps, the most
interesting in the case of Ising spins: these may become ‘frustrated’, not being
able to ‘decide’ which orientation to take up. As a result, one may find a multiple
degeneracy of the minimum energy level: the number of ground states may go to
infinity with the increasing volume. This is in contrast with the ferromagnetic and

1) On leave from the Central Research Institute for Physics, Budapest.
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other non-frustrated Ising models, where the ground state degeneracy follows
from the symmetry of the Hamiltonian and is, therefore, finite.

The necessity for the elaboration of a new method is explained by this
difference. The technique of Asano contraction applies also to Ising frustration
models. However, the best estimate for the domain of analyticity, attainable by
the Asano contraction, is obtained for ferromagnets in external field; namely, one
can reproduce Lee and Yang’s result. The physical reason for the absence of
second order phase transitions in this latter case is the uniqueness of the ground
state. (This might allow first order transitions, which do not occur, either.) At
any finite temperature the system is magnetized and therefore one may say that
the critical temperature is T, = +o, Now in frustration models, at zero tempera-
ture there are still infinitely many available spin configurations, which is a typical
high temperature (H.T.) situation: the frustration ‘heats up‘ the system. If in such
a model there is no phase transition, the system is certainly above its critical point
at any positive temperature; the critical temperature may then be considered as
T,.=0.

In technical terms, the Asano contraction gives the best results in estimating
the low temperature (L.T.) domain (below T.) of analyticity of the free energy.
For treating the problem of frustration, we need another method which is the best:
if one applies it to estimate the H.T. domain (above T.) of analyticity.

Similarly to the authors mentioned earlier, we consider the partition function
of an Ising model as a polynomial of the variables tanh BJ, (H.T. situation) or
exp (—2BJ,) (L.T. situation), where J, is the strength of the bond b. In both cases,
this polynomial is linear in each of the variables and any of its additive terms can
be assigned to a set of bonds. These sets form a group, which is called the H.T.
and L.T. Group, respectively (see [5]). Both groups are embedded in a larger
group which is formed by all subsets of the total family of bonds. In Section 2, we
therefore study polynomials, the structure of which corresponds to the above
description. In a certain domain of the variables we give upper and lower bounds
on the absolute value of these polynomials. The lower bound being positive, the
zeroes of the polynomial are outside this domain: that is the property needed to
prove the analyticity of the free energy. In Section 3 we establish the formal
connection between the polynomials of Section 2 and the Ising partition functions
and correlations. Our method, though aimed to discuss frustration models, is
applicable to reproduce different results on high and low temperature analyticity
in general Ising models. This possibility is briefly considered in Section 4. Finally,
in Section 5 we sumarize the results from the point of view of future applications.

2. Bouhds on polynomials

We are going to consider polynomials of K complex variables, zq,..., zk.
Let Q={1,2,...,K}and P(Q) denote the set of all subsets of Q. We make use
of two properties of P(Q).

(i) P(Q) is partially ordered w.r.t. the inclusion: if a, and a, are subsets of Q,
then a, is smaller than a, if a, < a,. For any A ={a,,...,a,}, where a; < Q, let
inf A denote the minimal elements of A —{J},; i.e., a;€inf A means that no
element of A is included in a;, except q; itself and, possibly, the empty set. If A
has elements different from the empty set, then inf A is not empty.
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(ii) P(Q) is a group w.r.t. the symmetric difference of its elements: if g, and

g, are parts of Q then
2182=(g1Ug)—(g1Ng,)

is their symmetric difference.

Now let G be a subgroup of P(Q) such that it is uniquely generated by inf G

in the following sense: for any g€ G there is a unique set

{gla ceey gk}cinf G
such that

aNg=0 if i#]
and

g=gU---Ug.

For any i€ Q let N, (i) be the number of those elements of inf G which contain i
and exactly n—1 other points of Q. For any n>0 we choose a number

N, =N, (i). Now the following statement is true.

Lemma 1. Consider the polynomial
R(z)= Z l_[ziE Z z=
geGieg geG

and suppose that

Z Nx"(1—¢g)" =g

n>>0

is satisfied by some x>0 and € <1. Then
(1-e)*=|R(2)|=1+¢)X

if |z|=x for allieQ.
Proof. For any a < Q let
G,={geG:gca}
R, = Z ol

zeG,

r,= 2 z%R,

icgeGaun

and

[i]=11,...,i}

We have the following product representation of R.

R = R[le](l + rﬁc_l})
= R[K—2](1 + rﬁg_lz])(l + rf%_l])

K .
=g o '=l__[ (A +ri—gp
i=1

(1)

(2)

(3)

(4)

(5)
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The proof can be performed by showing that |ri|<g for any i€ Q and a < Q,
provided that |z;|=<x for any je€ Q. We do this by induction according to |a|, the
number of points in a. For a = (J we have

i _{zi if {iteG

2710 otherwise.
Therefore,

rbl=x=Nx=) Nx"/(1—¢g)" '<e.

Suppose now that |ri| =g is proved for any j and a with |a|<i. It is sufficient to
show that |r{}}'| = e; for other sets we get the result by permutation. Now

i+1 __
iy = > 2*Rpiy-o/ Rpi (6)
i+1egeinfG[H1}

where we used that g has a unique decomposition into the disjoint union of the
elements of inf G. On the other hand, if

g={i+1,j...,Jtci+1]
and
glkz{j2a L 7jk}

then
lgl

R[i] = R[i]—g H (1 + rg'i(]*g’k) (7)
k=2

where |g|=card g =n. Putting (7) into (6) one obtains

lgl

NN Y4 | (RN ®
i+legeinf G k=2

For each r!, in the denominator o has at most i—1 points and therefore 7/, is
bounded by e. Then equations (8) and (2) clearly imply that rf;;' is bounded
by e. I

In the following, we discuss a possibility to obtain bounds on the polynomial
R of equation (1), even if G is not uniquely generated by inf G.

Let {Q'},_; n be a disjoint cover of Q:

N
Q= Q" and Q'NQ'=g if i#].
i=1
Let G° be a subgroup of G, defined by
G°={ge G:gNQ'eG for any i} 9

Consider the quotient group, G/G°. We show that under certain conditions it may
substitute G in Lemma 1. Let

G'={geG:gcQ'}

then, clearly, G is a subgroup of G° and also it is the projection of G° into Q'. In
general, if A is a coset of G according to G° then

Proj;A={gNQ':gec A} (10)
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is a coset of P(Q')-the power set of Q'-according to G'. Any A e G/G° is
uniquely represented by the set of those projections (10) which differ from the
corresponding G': if

g =Pr0ij{7E G™ for m.= | FUR
=G™ otherwise (11a)

then this set is

sa={a",...,a"%} (11b)
Now let

A N A .

Q= aL=J1 Q'
where

Q' =(P(Q)/G")~G'
and let

S={scQ:s=s, for some A e G/G% (12)

Clearly, if s € S then card (s N Q)< 1 for any i. The elements of S form a group:
if s,s'c S then s=s,, s'=sg for some A, Be G/G"; let now
Proj; A=a' and Proj, B=0b’
then
ss'={a'b'}iL,—{G'}L, €S
defines the group operation. Here
a'b’={gg'=Q':gea’, g'eb’}

is a coset of P(Q"). The group $ is isomorphic with G/G°. S is ordered w.r.t. the
inclusion and inf S is the set of the minimal elements of S —{}; inf G/G? is that
part of G/G° which is isomorphic with inf S.

The cover of Q can always be chosen so that inf S uniquely generates S, in
the sense we used it earlier (indeed, for instance, covers with at most three subsets
all have this property). This can be told as inf G/G° uniquely generates G/G°. To
G°, one can assign a polynomial analogous to (1):

N

R%z)= Y z¢=[] ¥ z* (13)

geG° i=1geG!

Now one obtains the following result.

~Lemma 2. Let Q={1,...,K}, G be the subgroup of P(Q) and a cover
{Q%i_1_n be given so that, with G° defined by (9), inf G/G° uniquely generates
G/GP°. Let, moreover

N, (i) = card {A einf G/G°:Proj, A# G* for k =i and for exactly
n—1 other values of k} (14)
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and N, be chosen so that
N,=N,(@{) for i=1,...,N (15)

Suppose that (2) holds with these N, and with some x>0 and € <1. Let R and R°
be the polynomials defined in (1) and (13), respectively. Then

(1-&)"'=|R(z)/R°(z)|=(1+&)" (16)
provided that

g;izg/z -

geG!

=X

for any 1=i<N and a' € Q'

Proof. Let S be the group (12) and for any acQ, let ¢, be a complex
variable assigned to a. Consider the polynomial

T(Q) = Z [1e= Zs ¢ (17a)

It is easy to show that
T({)=R(z)/R%(z) (17b)

if, for any i=1,..., N and a'e Q', one makes the substitution
(o= 2 zg/ >zt (17¢)
geat geG!

Hence, one has to prove only that the bounds (16) are valid for T(¢) if |£,|= x for
any a € Q. We introduce the following notations: let a« ={1, ..., N}, then

Sa={seS:sC_U O'}
s={ie{l,...,N}:snQ'+ &}
T.= Y O . (18)

seS,
i S
= X T,
seS,uppies

The equations (18) are analogous to equations (3), just as

N-1
T=[] a+44h (19)
i=1 )
and
Is|
= Y /T ard 20)
seinfSp1p3i+1les k=2

Aare analogues of equations (5) and (8), respectively. In (20), j, is the kth point
of

Sz{i+1ﬁj2a---a]‘n}
and

S,k ={j2’ 220y ]k};
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the cardinals of s and s are the same: |s|=s|. Noticing that
N,(i)=card {seinf S:|s|=n and s N Q' # T}
one can conclude the proof by showing, in the same way as in Lemma 1, that
t(Dl=<e (21)
for any 1=i=<N, ac{l,...,N}. O

So far, we considered only the subgroup G of P(Q); now for any De
P(Q)/G, one can define

R% ()= Z Z%

In view of applications, it is interesting to obtain bounds also on RP/R. To this
end, let us continue the earlier discussion. In fact, G° of equation (9) factorizes
not only G but also the whole P(Q). Meanwhile, it factorizes the elements of
P(Q)/G distinctly. For D € P(Q)/G, let

D/G°={A e P(Q)/G": A = D}.

Now we extend the definition of s,, as given in equations (10), (11), to any
A € P(Q)/G° and consider the set

SP={s=Q:s5=s5, for some Ae D/G%
A polynomial
()= )
sesP

can be assigned to S”; it is easy to show that
T”(¢)=R"(z)/R%(z) (22)

if £ is given by equation (17c). Equation (22) is a generalization of (17b); for
D = G the two equations coincide. Dividing (22) by (17b) one obtains

R”(2)/R(z)=T"(Q)IT(L) (23)

For D e (P(Q)/G)— G, let inf SP denote the set of minimal elements of S°. Any
s € SP can be written as

s=5,Us,
S1032=® (24)
s €inf SP, s,€8

though, in general, this decomposition is not unique. The cover of Q can always
be chosen so that inf G/G° uniquely generates G/G° and also, the decomposition
(24) is unique for any D € (P(Q)/G)— G and s € D. (This is true, for example, for
the trivial cover {Q} and the cover with two disjoint sets {Q", Q?}.) Assume that
the cover, we have chosen to Lemma 2, satisfies these conditions. Then we can
write

T°IT@) = Y Tines/ Ting

seinfSP
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where we applied the notations (4) and (18) (notice that T;y;= T). The analogue
of equation (7) gives then
Is!

@@= ¥ ¢ /11 a+din 25)
seinfSP k=1
Let now
NP =card{s einf S :|s|=n} (26)
From equations (21), (23), (25) and (26) we find
IR®(2)/R(2)|= X NRx"/(1-&)" (27)

provided that |¢,:|=x for any ., given by (17c¢).

3. Bounds on Ising partition functions and correlations

The results of the former section can be applied to study Ising models. Let Z
be a lattice and o:7Z — =1 be a spin configuration. The potential of a finite
subsystem of spins is defined as

Hy(o)=— Y L[l otx)==Y Jo? (28)

beB xeb beB

where B is a finite famlly of finite subsets of Z. Now Hg defines the probablhty
distribution of the spins on

A=U Db

beB
and the corresponding partition function can be written as
2y = ¥, exp (-BHy(0)=2(IT cosh 61, )R
olA beB

Here R is defined by the H.T. expansion as
R= Y [] tanh gy, (29)

geG beg

and G is the ‘High Temperature Group’ [5]:
(by,...,b)eG

if and only if b,e B and b.b, - - b, = (bc =(bUc)—(bNc)). Now R can play
the role of the polynomial (1) if one identifies the set of bonds B with the set Q
and the complex variables z;, i € Q, with

z, =tanh BJ,, b e B. (30)

Furthermore, if D € P(Q)/G, then there is a d < A such that

[Ip=4

beg
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for any ge D: the cosets can be indexed with the subsets of the lattice. Now if

R*= Y [] tanh gJ,

gesD beg
then '

Rd/R = (0'd>B

where (-)p denotes the mean value according to the probability distribution
defined by the potential (28). The bound (27) then refers to (o). The variables,
introduced in (17c), also correspond to correlations: let BicB and G'=
G NP(B'). The cosets of P(B'), according to G', can also be indexed with the
subsets of

A= b.

beB!
Let b < Al correspond to a e P(B')/G'; then
L, =(0")s: (31)
where the mean value is taken according to the probability distribution

~exp (-BHy(o) =exp (B ¥ ho?) .
beB'
If {B'}iL; is a partition of B and G° and {G'}_, are the subgroups of G
corresponding to this partition, then by using equations (13), (17) and (30) we
obtain

Ty = Z'A‘{ﬁ ( IT cosh BIb)( Y I tanh BL,)}T(C) (32)

i=1 “beB! geGt beg

The prefactor of T in this equation is the partition function of the union of
independent small subsystems. If, while taking the thermodynamic limit, the sets
B' are kept to be small (i.e., the number of bonds in B! is bounded while i goes to
infinity) then the possible singularities of the free energy come from the zeroes of
T(Z). In fact, the sum (17a) which defines T({) can be considered as a high
temperature expansion where the ‘small variables’ are the {,’s of equation (31),
instead of tanh BJ,, the ‘small variables’ of the usual H.T. expansion.

4. A remark on the high and low temperature analyticity

Another variation of Lemma 1, if applied to the high and low temperature
groups (see [5]), can be used to show high and low temperature analyticity
properties of Ising models with any kind of finite range interactions. To obtain
these results, let us consider the set of lattice sites A and that of the bonds, B. We
choose a cover {B'},_, for B so that B* includes all the bonds containing the site i.
Now con G denotes the set of the connected elements of G, where G is either the
high or the low temperature group. That is, if g€ con G then the bonds of g cover
a connected set of sites in A. Clearly, there is a unique way to write any ge G as
the disjoint union of connected elements. By substituting inf G with con G in the
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definition of N, (i) and by modifying r. in an obvious way, one obtains exponen-
tial upper and lower bounds on the absolute value of the partition function
provided that |tanh BJ,| or |exp (—B |J,|)| are small enough. Then the analyticity of
the free energy can be proved by Vitali’s convergence theorem [6]. We remark
that the low temperature analyticity can be shown only for non-frustrated models.
In this way, we can merely reproduce earlier results (e.g., some of Gruber et al.,
[5]); therefore, we do not discuss this possibility in detail.

S. Summary

In this paper we developed a new method for the localization of the zeroes of
Ising partition functions. We emphasize two particular features of our method,
which affect the future applications. First, beside determining domains where the
partition function, Z, is not zero, we obtain estimates on |Z| and also on the
correlation functions in the same domain (cf. equation (27)). Second, our results
strongly depend on the lattice structure and the range of interaction through the
quantities N, (i), of equation (14). This is in contrast with Lee and Yang’s finding
for ferromagnetic models. This structure dependence may somewhat be exagger-
ated, because our method does not take into account a possible compensation
among terms of different signs in the polynomial (1); nevertheless, it may reflect
an existing feature of the distribution of the zeroes. Regarding the applications, a
consequence of this structure dependence is that one needs estimates of the
lattice-combinatorial quantities N, (i), as good as possible.
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